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 DENSITY TOPOLOGIES FOR PRODUCTS

 OF (j-IDEALS

 Abstract

 According to Wilczyński 's scheme, we consider density points for
 product <r-ideals IxL and LxK. We get the properties analogous to
 Lebesgue density theorem and create the respective topologies.

 1 Introduction

 In [W] (see also [PWW]) Wilczyński introduced an abstract notion of a density
 point. It was associated with a given <r-ideal in a cr-algebra of sets in M,
 invariant with respect to linear transformations. If the <r-ideal consists of null
 sets in the cr-algebra of Lebesgue measurable sets, this concept yields the usual
 density points. It is important that Wilczyński^ idea works for category and
 then the analogue of the density topology, called the Z-density topology, can
 be defined. The theory of J-density in the category case was developed in
 many papers (see [W], [CLO]). Similar considerations were carried out if X is
 the a- ideal of plane meager sets (see e.g. [W], [CW]). In this article, we give
 new applications of Wilczyński 's definition by the use of products of cr-ideals.

 Let us recall some basic notation. Assume that X ^ {0} is a cr-ideal of
 subsets of M and let S be a cr-algebra containing X. Suppose that X and S are
 invariant with respect to linear transformations.

 For A Ç M, B Ç M 2 and s, t £ M, we denote

 pri(s,t) = s, pr2{sit) = ť,
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 164 Balcerzak and Hejduk

 ^4±s = {i:±s:x€ A }, s ■ A = {sx : x G A },
 B ±(s,t) = {(x±s, y±t) : (x,y) € B},
 (s,t) ■ B = {(sx,ty) :(x,y)eB}.

 Definition 1.1 (See [W], [CLO, p. 17].) We say that:

 (a) 0 is an 1 -density point of A G «S if, for each increasing sequence {n, } of
 positive integers , there is a subsequence {n,-fc} such that

 limsup((- 1, G X'
 k-+oo

 (b) x o G M is an Ī -density point of A G S if 0 is an X -density point of
 A - x0 ;

 (c) xo is an 1-dispersion point of A G S if it is an X-density point ofM'A.

 Observe that if M ^ X (which will always be assumed) and xq is an X-
 density point of A G «S, then xo is an accumulation point of A (note that from
 M ^ X and the invariance of X under all translations it follows that U ^ X for
 any open interval Í7).

 Analogous definitions can be formulated if X is a <r-ideal of sets in M2, S is
 the corresponding (7-algebra and both the families X and S are invariant with
 respect to all translations in M 2 and the mappings of the form (x, y) »-)> (áa?, ay)
 where a ^ 0. Then (0, 0) is called an X-density point of A G S if

 limsup((-l, l)2'{riik,nik)A) E 1.
 k-ïoo

 If a pair (S,X) is given (for sets in X = M or X = M2) and A G «S, we
 denote by ipx{A) the set of all Z-density points of A. When A, B G S and the
 symmetric difference AAB is in X , we write A ~ B. The operator (fx (further
 denoted by <p) fulfils (for any A, B G S) the following conditions:

 (1) if A ~ B, then <p{A) = (p(B ),

 (2) <p(AC)B) = <p(A)r'<p(B)i

 (3) m = 0, <p(X) = X .

 The proof is the same as that given in [CLO, Lemma 2.3.1]. Any operator
 satisfying the above conditions and, additionally,
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 (4) <p(A) ~ A

 (for each A G S) is called an operator of lower density .
 Let us assume that (4) holds, and that each E Ç X has its «S-measurable

 cover (i.e., a set A G S satisfying EÇA and V(A ' E) C'S Ç 1). Then one
 can repeat the classical proof showing that the family

 rj = [A G 5 : A Ç <p{A)}

 forms a topology (see [LMZ, Prop. 6. 37] and also [O, Th.22.4]); rj is called
 the the X-density topology. For 1 = the Lebesgue null sets we get the usual
 density topology and for 1 = the meager sets - its category analogue proposed
 by Wilczyński.
 Notice that condition (4) fails to hold for some couples (<S,2). Indeed,

 the following example was brought to us by K. Ciesielski. Consider (P(R),Z)
 where 1 is either the ideal of meager sets or the ideal of null sets. Then, for
 a Hamel base being a Bernstein set, we easily obtain <p(R ' A) = R, so (4) is
 false. Some other examples can be found in [BHWW].
 The existense of «S-measurable covers is ensured (cf. e.g. [Fl, Lemma

 lH(b)]) by the so-called countable chain condition (in short, ccc) which means
 that each disjoint subfamily of S'1 is countable. We shall give new examples
 in which (4) holds and ccc is valid simultaneously.
 The following lemma states that, when (1), (2), (3) hold, condition (4) is

 automatically true if one assumes its weakened version. (It will be used in the
 proofs of Propositions 3.3 and 4.3.)

 Lemma 1.2 Assume that ( 1 ), ( 2 ), (3) hold for any A,B G S and let T C S
 be a family such that

 A ~ B,

 Vbz? %(5)G1.

 Then (4) holds for each A G S.

 Proof. Let A G S. From the assumptions we easily derive that A'ip(A) G X.
 Choose B G T such that X'A ~ B. Thus An B El. Hence

 ( p(A ) n <p(B) = <p(A n B) = <p(0) = 0.

 Consequently, <p(A) Ç X'<p(B) and thus we get

 <p{A)'A - <p(A) DB Ç B'(p{B) G X. □



 166 Balcerzak and Hejduk

 Let #(M) and #(M2) denote the families of Borei sets in M and M2, respec-
 tively. The ideals of Lebesgue null sets and of meager sets in M will be written
 as L and K, respectively. If X is a fixed cr-ideal of sets in M (or in M2), we
 denote by S(X) the cr-algebra generated by X U ß(M) (or X U #(M2)).
 For E CM2 and x G M, we denote

 Ex = {yeR:(x,y)eE}.

 Let X and J be cr-ideals of subsets of M. We define

 (V) X x J = {E Ç M2 : 3b£B(ri){E Ç G M : Bx £ J] G 2)}.

 Then 2 x J forms a tr-ideal of plane sets, called the product of X and J.
 Observe that if J = J' = L or I = J = K, then X x J is (by the Fubini
 theorem and by the Kuratowski-Ulam theorem) equal to the (7-ideal of plane
 Lebesgue null sets or of plane meager sets, respectively. The mixed products
 KxL and L xKform new interesting <r-ideals (cf. [CP], [G], [M]). In the paper
 we investigate X x J'-density points, in particular, Lxi- and K x L-density
 points.

 Let us explain why we do not define Ix J simply as

 (V.) {E Ç M2 : {x G K : Ex $ J) G I}.

 Namely, we want to associate the product of <r-ideals with Borei sets to
 avoid the existence of pathological sets in Ix J which cannot be covered by
 Borei ones from Xx J (cf. [M, Th. 1.3]). It is the same reason why one should
 assume the measurability of a plane set to convert the Fubini theorem. (See
 [O, Th.14.3].) Note that, in connections of K x L and Lxi with forcing [CP]
 and Boolean algebras [G], the version engaging Borei sets is natural. Observe
 that, assuming definition (V) we have E G S(X x J) iff {x G M : Ex £ J} G X,
 so, for sets from S(X x J)i conditions (V) and (V*) mean the same. Another
 reason that we use (V) is the referring to the literature where that version is
 supposed (Lemmas 3.1 and 4.1 below).

 2 General Case

 Assume that X and J are <r-ideals of subsets of M , invariant with respect to
 linear transformations. Consider the <r-algebras S(X) and S (J) and associate
 the a- algebra S(X x J) with the product X x J . Observe that, for any E G
 S(X x J)ì we have {x G M : Ex £ S (J)} G X. This follows from the definition
 of X x J and from the fact that Bx G ß(M) for any B G B(M2) and iGM.
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 Lemma 2.1 Let E CM2 and s,t,x G M. Then

 (a) (E + (s, ť))r = i?a7_5 + t ,

 (b) ((s, t) • E)x = *(£*/5) /or s ± 0,

 fcj if Eel X J, then E + (syt) eX x J ,

 (d) if E El X J , then (s,t) - E E X x J .

 Proof. Statements (a) and (b) can be checked directly. Conditions (c), (d)
 follow from (a), (b), respectively, by the use of the invariance of J and J with
 respect to linear transformations. □
 Observe that, for E G S( X x J), we have E G X x J iff {x G M : Ex £

 J} E I. According to Lemma 2.1 and the remarks at the end of Section 1,
 the general definition (given in Section 1) applied to the case 1 x J reads as
 follows

 Definition 2.2 The point (0,0) is an 1 x J -density point of E G S(ī x J)
 iff

 V{ni}3{»U3>lezVx€(-l,l)Vl limsuP((-M)Vi»*(£*/nit)) € J.
 k-+ 00

 In the standard way (cf. Definition 1.1(b)) we extend this definition to the
 case when (xo,yo) is taken instead of (0,0). (Then {E(x/nik)+x0 -yo) appears ,
 by Lemma 2.1 (a).)

 Proposition 2.3 Assume that (0,0) is an I x J -density point of a set E G
 S(I x J). Then 0 is an T-density point of each set D G S(l) containing pr'E
 and 0 is a J -density point of each set H G S(J) containing pr^E.

 Proof. To show the first assertion suppose to the contrary that 0 is not
 an Z-density point of D. Thus there is a sequence {n,} such that, for each
 subsequence {ntfc}, we have

 B = limsup((- 1, 1 )'nikD) £ X.
 k-too

 Since (0, 0) is an X x ^-density point of E} we can choose a subsequence {n,fe}
 and a set A G X such that, for each x G (-1, 1)'^4, we have

 (A) lim sup((- 1, l)'nifc£x/B,J) € J .
 k-¥oo

 Fix a point x G B'A. Thus there is a subsequence {n,-fc } of {n,-fc} such that
 ^ D for every j. Since D D pr' E} it follows that Ex/ni = 0 for every j
 *kj *kj
 and, consequently,

 lim sup((- 1, 1 )'nikEx/n ) = (-1, 1)
 k - >■ oo



 168 Balcerzak and Hejduk

 which contradicts (A).
 To get the second assertion, consider any sequence {n,}. By the assump-

 tion, we can pick a subsequence {n,fc} and a set A £ X such that, for each
 X G (-1, 1)'^4, condition (A) holds. Since Ex/nik Ç H , we have

 lim sup((- 1, 1 )'nikH) Ç limsup((-l, 1 )'nikEx/nik) e J. □
 k-too k-too

 Proposition 2.4 If 0 is an X-density point of A E S(X) and a J -density
 point of B G S{J), then (0,0) is an X x J -density point of Ax B.

 Proof. Obviously, AxBe S(X x J). Let {n,} be an arbitrary increasing
 sequence of positive integers. Since 0 is an 2-density point of A, there is a
 subsequence {n»fc} such that

 C = limsup((-l, 1 )'nikA) G 1.
 k - K oo

 Let x G (-1, 1 )'C. Then there exists an integer Ar* such that x G n>ikA for
 each k > k+. Since 0 is a J'-density point of B , there is a subsequence }
 such that

 D = limsup((- 1, 1 )'nik .B) G J .
 j -too 3

 Since G A for kj J > A:*, we get "it . J
 KJ .

 lim sup((- 1, l)'n¿ (A x ) = DeJ
 j-tOQ J

 which yields the assertion. □
 From Propositions 2.3 and 2.4 we derive

 Corollary 2.5 (0, 0) is an X x J -density point of Ax B, where A G S(l) and
 B G S{J), if and only if 0 is an l-density point of A and a J -density point
 of B. □

 If the (T-ideals 2, J and X x J generate the respective topologies rj, tj
 and Tjxj then, by Proposition 2.4, we easily get tx®tj Ç rjxj where tx®tj
 stands for the respective product topology. The equality cannot hold, which
 is shown in the following

 Example 2.6 Let a > 0 and

 u = {(*, y) e K2 : Iî/| < |*n u {(0, 0)},

 V = {(x,y)€M2:'y'>'x'a}U{(0,0)}.
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 Then A x B <£. U for any A G rj and B G tj such that 0 G A fl B. Indeed,
 if y G #'{0}, we have (0, y) G {A x B)'U. Similarly, A x B <£. V for any A G rj
 and B E tj. However, for certain values of a, we get U G tjxj or V G t"ix J'
 (in fact, it is equivalent to (0, 0) G <fixj{U) or to (0, 0) G <Pixj{V)). Consider
 three cases:

 Io a < 1; then (0, 0) is an 2 x ^-density point of U, and thus, an Ī x J-
 dispersion point of V. Indeed, take an increasing sequence {n,} of positive
 integers and let x ^ 0. Thus

 niUx,n> = (-n,1"' V, nj-a*a)

 and, consequently,

 lim sup((- 1, 1 )'niUxļni) = 0 G J.
 i - y oo

 Hence (0,0) G ^iXłr(t/).
 2o a = 1; then (0,0) is neither an lx ^-density point of U nor an

 T x ^-density point of V. Indeed, take an increasing sequence {n,-} of positive
 integers and let A El. Choose x G (0, 1)'A Then

 lim sup((- 1, 1 )'riiUx/ni) = (-1, -x] U [x, 1 )£J
 i-too

 and

 lim sup((- 1, l)'niUx/ni) = [-x,x] £ J,
 l'- ► OO

 which implies that (0,0) ^ <fixj{U) and (0,0) £ <pixj{V).
 3° a > 1; then (0,0) is an 1 x ^-density point of V, and thus, an

 I x J"-dispersion point of U . The proof is similar to that in Io.

 3 Lx K-density points

 It is known that the pair (S( L xK),(LxK)) fulfils ccc (see [G, Th.2.3], [Fl,
 Prop.8G(a)]). So, it is worth to verify whether the corresponding operator
 ^LxK satisfies condition (4) stated in Section 1. Instead of <£>lxK we shall
 write in short <p. The symbol A ~ B (see Section 1) will be reserved for the
 case Ą5C12 and AAB gLxK.

 Lemma 3.1 ([F2], [B, Prop. 2.1]). For each A G S(LxK) there are sequences
 of open sets Un in M and of Borei sets Bn in M such that A ~ UneN

 Corollary 3.2 For any set A G «S(L x K) ' (L x K) there are sequences of
 nonempty open sets Un in M and of Borei sets En £ L, such that En = (pi, (En)
 and A ~ * Un.
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 Proof. Choose sets Bn and Un according to Lemma 3.1. Let M = {n G N :
 Bn £ L and U„ ^ 0}. Let En = fh(B„) for n G M. Then En = fi(En) and

 A ~ (J Bn X Un ~ |J Bn X Un ~ (J En X Un. □
 n€N n£M n£M

 Proposition 3.3 For any A G S( L x K) we have A <p{A).

 Proof. Let T be a family of sets of the form B = UneN ^ n x w^ere En are
 Borei, <ph{En ), and Un are open and nonempty. By Corollary 3.2 and Lemma
 1.2, it suffices to show that B Ç <p(B) for any B G T . So, let B be as above
 and let (a?o, Vo) G B. We may assume that (xo, yo) = (0, 0). Pick m G N such
 that (0,0) e Em x Um- Since 0 G <PL{Em) and 0 G <pm{Um )> by Proposition
 2.4, we get (0,0) G <p{Em x Um )• Then obviously (0,0) G <p{B). □

 Corollary 3.4 71, xk forms a topology. □

 4 K x L-density points

 We want to get the respective topology 7^xl- Since ( S(K xL),(KxL)) fulfils
 ccc (see [G, Th. 2.3], [Fl, Prop.8G(a)]), it suffices to verify condition (4) for
 ^KxL- Here the symbol ~ is associated with K x L. In this case the following
 approximation lemma works.

 Lemma 4.1 ([B, Prop. 2.4], [Bl]) For each A G S(K x IL), there exists a
 set B Ç M 2 of type Gs such that A ~ B. □

 The proof of (4) for K x L is more complicated than that for Lxi.
 A careful choice of subsequences and, if necessary, the consideration of the
 diagonal sequence will serve as the basic tools.

 The Lebesgue measure on M will be denoted by A.

 Lemma 4.2 Let B G #(M2) and x G M. Then

 (o)
 OO

 0 € <ph (Bx) <£=> V{ni}3{ni K } ļim A(P|(n,l[5j:) n (-1,1)) = 2, K J- too
 k=3

 0>)

 0 G (vkxl(Ö))« <=>• V{n<}3{nik}3£»€KVt6(_i,i)'D
 OO

 n (-1'1)) = 2-
 k=j
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 PROOF, (a) Since

 limsup((- 1, 1 )'nikBx) GL <i=> A((liminfntJtSx) fl (-1, 1)) = 2
 k- too k~>°°

 OO

 <^=>- lim A(rļ(n,fcBx) 1 1 n(-l,l)) =2, j- too 1 1

 we get the assertion immediately , by the definition of an L-density point.
 The proof of (b) is analogous. □

 Proposition 4.3 A ~ for each A G S(K x L).

 Proof. For any set B Ç M 2 of type G 5 , we shall find E G K such that

 (*) <Pl{Bx) Ç (y?KxL(5))x

 for each x £ E . We then have

 Ąr '(^KxL(-ß)):r Ç= Bx'(Ph{Bx) •

 But #r'^L(#r) G L by the Lebesgue density theorem and thus, B'(p^xi,(B) G
 K x L. So, by Lemmas 4.1 and 1.2, that will complete the proof.

 Assume that B = C're^Br where Br is open and Br. j_i Ç Br for each
 r G N. Let {Un} be a sequence of open nonempty sets that form a basis of
 the topology in M. For any r, n G N, let

 Ern = {xeM:UnC(Br)x}.

 Observe that

 m'e; = pn((R x c/„) n (M2'sr))-

 Therefore M'££ is of type Fa (cf. [K, §20, V]) and E„ - of type G<$. Hence
 E„ has the Baire property. Let Hrn - (p^E^) fi E„. We have H„ Ç ££ and
 E„'H1 G K, = i/£, by the properties of (pK. Let

 E= [J (En'Hrn)-
 r,n£N

 Obviously, E G K.
 To show (*), fix x £ E and y G <Ph{Bx). For simplicity, assume" that

 y - 0. To prove that 0 G (^kxL^)^, we shall use the statement (b) of
 Lemma 4.2. Consider an increasing sequence {n,} of positive integers. Since
 0 G tß'hi^Bx ) , we choose (by Lemma 4.2 (a)) a subsequence {ntfc} of {nt} such
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 that limj^oo H (-1, 1)) = 2. Hence, from B Ç Br for every r,
 we deduce that

 oo

 (**) Vr€N lim A(f1(/I,t(ßr)x)n(-I,l)) 1 1 = 2. j-yoo 1 1
 k=j

 Note that (**) remains true if we replace {n,fc} by a subsequence.
 Claim. There are a subsequence of {nlfc} and a set D' G K such that

 °° 1

 Vp€NVt6(_i>i)'r»1 A(p(m,-(Bi).,.+(t/mi)) n (-1, 1)) > 2 -
 j=P

 Proof. From (**) it follows that, for each p G N there is jp G N such that

 A(fļK(5i)xn(-i,i))>2-l
 j=jp

 We may assume that jp+ 1 > jp for every p. Then

 (I) Vp6N A(f|Kł(B1),n(-l,l))>2-l
 k=p

 Put Ik = Tiijk for Ar G N. Since (£1)* is open, there is a sequence {USi} of sets
 from the basis, such that ( B')x = (J^ USi . Fix any p G N. By (I), we can
 choose z(p) G N such that

 OO i{p) ļ
 (il) A(r|(/*U^)n(-i,i))>2--pr.

 /c=p » = 1

 Observe that (II) remains true, if we replace {/*} by a subsequence. Since
 U!=i U*i £ therefore from the definition of the sets E' we get x G
 n»=i Put = n!=i From x ^ E it follows that x G Hp. By the
 properties of <p k and the sets H' we have x G

 Now, for each p G N we will define inductively a sequence {m^} such that

 (III) Di := lim sup((- 1, l)'mļp)(tfp - x)) G K
 k-Voo

 and

 00 1
 (IV) Vte(-1,1)'D1 A(fì (^P)(5i)x+(t/m(p>)) n (-1, 1)) > 2 -

 k-P
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 So, let p = 1. Since x G <Pk{Hi ), there is a subsequence {mj^} of {/*} such
 that (III) holds. If t G (-1, 1 )'£)ļ, we get x H

 mfc

 may assume that this holds for all k. Thus

 <(i)

 Vfc€ N (£l)*+(t/m<») 2 (J
 t' - 1

 and, by (II) we get (IV).
 Assume that for p G N we have chosen a sequence {m¡p^} fulfilling (III)

 and (IV). In the way indicated above we select a subsequence of
 { mf such that conditions (III) and (IV) with p replaced by p+ 1 hold. The
 induction is finished.

 If we put D' - U^i Dļ and for k G N, we obtain the assertion
 of Claim. □

 Next we use induction with respect to r. Let kj ^ = rrij for j G N. Assume
 that for r G N we have chosen a sequence and a set Dr G K such that

 o° ,

 (V) Vp6NVi€(_lil)VDr A(n(fcf(Sr)I+(t/fc(o))n(-l,l))>2-^rr. 3
 j=p 3

 If we repeat the procedure described in Claim, we obtain a subsequence

 {kjr+1^} of and a set Dr+' G IK such that condition (V) with r re-
 placed by r + 1 holds. Put kj = k^ for j'GN and D = (Jí^i Dr- We infer
 that DgK and

 °° 1
 ^p,r€NV(e(_i,i)'JD (ki{Br)x+(t/ki)) H ( - 1, 1)) > 2 - ^p-l '

 i=p

 Consider r - > oo andp - > oo. Then, by Lemma 4.2 (b) we get 0 G (v^KxiX-ö))*-
 That gives (*) as desired. □

 Corollary 4.4 t&xi, forms a topology . □

 5 Concluding remarks

 One can think that there is a strict dependence between our main results,
 Propositions 3.3 and 4.3; for instance, maybe at least one of them follows
 from the other. That is an open problem. Our proofs of those two facts
 present rather different techniques, so a simple connection is not visible. In
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 this section we want to give some more information on relationships between
 IxL and Lxi.

 From the well-known expression M = A U B where A G K and B G L ([O,
 Th.1.6]) we get M2 = (ixl)U(5xl) and thus it follows that A x M G K x L
 and B xR E Lxi. Hence there is no inclusion between KxL and L x IK ([M,
 Th.1.2]). However, this does not exclude the existence of a Borei isomorphism
 between KxL and Lxi (one can even conjecture that the mapping (x, y ) ►-»
 (y, x) is good). We will give some comments concerning that problem.

 If X and J are ideals of subsets of X, we say that a bijection / : X - y X is
 an isomorphism between X and J if, for the mapping f* 'V(X) ->V(X) given
 by f* ( E ) = f[E' (the image of /), we have f* [X] = J' if / is Borei measurable,
 it is called a Borei isomorphism. Note that an expression of type X = CUD for
 C G X and D € J, when CH and some natural properties of cr-ideals X and J
 are supposed, leads us to an isomorphism / between X and J . Indeed, here a
 scheme used in the classical Sierpiński- Erdös theorem holds. (See [0,Th.l9.5].
 Moreover, one can ensure that / = f~l which guarantees f*[I ] = J and
 f*[J] = X simultaneously.) Since the Sierpiński- Erdös theorem works for
 K x L and Lxi (see [M]), we get, under CH, an isomorphism between those
 products. This proof, however, does not give a Borei isomorphism. Moreover,
 in another model of ZFC, any isomorphism between KxL and L x K is
 excluded. Indeed, if, for an ideal X of subsets of X, one defines

 add(l) = min{ 'T' : T Ç Ik |J 7 i 1}

 then add(K x L) = wi and add(L xK) = add(L) ([CP] and [F2]). Since
 add(L) > cji is consistent, so is add(L x K) > add(K x L). Thus, in any
 model of ZFC in which add(L) > u>i, there is no isomorphism between KxL
 and L x K. Consequently, there is no Borei isomorphism. But, it turns out
 that this last statement is true in ZFC. Namely, Gavalec in [G] posed the
 following question: Are the Boolean algebras #(M2)/(Kx L) and Z?(M2)/( LxK)
 isomorphic? In the final remark of [G] we read that J. Truss excluded such an
 isomorphism. Observe that if there were a Borei isomorphism between KxL
 and LxK, the answer to Gavalec's question would be positive. So, the result
 of Truss implies that KxL and LxK are not Borei isomorphic (in ZFC).
 The following important question raised by the referee remains unsolved: Are
 71k xL and 7Tlxk homeomorphic? We conjecture that the answer is "no". It
 would be interesting to study the argument of Truss since the above problem
 seems related to Gavalec 's question. The original proof in [T] uses esentially
 the technique of forcing. A version translating it into the language of Boolean
 algebras has been sent us lately by Fremlin [F3].

 Notice that there is no inclusion between our topologies and
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 Indeed, if A and B are as above, then

 M X A G t)kxl' ttlxK and M x B G tLxk' tkxL-

 Moreover, A. Miller (oral communication) has observed that, if g(x1 y ) = z + y,
 then

 g'1^] G tkxł' n,xK and <7-1[-ö] G 7Tlxk' ^KxL

 Here y-1 [A] and y-1[i?] are invariant with respect to (z,y) i-> (y, z) which
 therefore cannot be a homeomorphism between and 71, xk-

 Finally, let us mention some simple properties of tkxL and 71, xk and list
 some questions. The proofs are omitted since they are similar to those for
 the classical density topology and the Wilczyński Z-density topology. Besides
 the analogues, several problems appear; they can make material for further
 investigations.

 From now on, assume that J = IxLorJ = LxK.

 1. Since tj is finer than the natural topology on M2, it must be Hausdorff.
 Is it regular? (Note: K. Ciesielski has informed us that 7x,XK is not
 regular but his argument does not work for r^xh)-

 2. A set E is closed and discrete in tj iff E G J.

 3. A set E' is compact in tj iff it is finite.

 4. tj is neither separable nor has the Lindelöf property.
 (For the proofs of (2)-(4), see [CLO, Th. 2. 6. 2].)

 5. A function / : IR2 - > M is called J -approximately continuous at p G M2
 if

 p e <pj{rx[{f{p) - e, f(p) + e)])

 for each € > 0. We say that / is J -approximately continuous if
 /_1[(a, 6)] G tj for every interval (a, b). Obviously, / is J- approximately
 continuous iff it is is ^-approximately continuous at every point. Ob-
 serve that (cf. Example 2.6) / : M2 -> M given by

 /(* y) J = { RÍŘ7 for <*,»>,¿<0,0)
 J = '0 for <*,») = <0,0)

 is ^-approximately continuous and discontinuous (in the usual sense) at
 <0,0).

 6. The class of all bounded ^-approximate continuous functions with the
 sup-norm forms a Banach space (cf. [CLO, Th. 2.5.5]).
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 7. Each function J'- approximately continuous J-almost everywhere on M2
 must be ^(JJ-measurable (cf. [PWW, Th. 6]). Is the converse true?

 8. Does every J-approximately continuous function belong to Baire class
 1? (Compare [CLO, Th.1.3.1 and 2.5.5].)
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