Franciszek Prus-Wiśniowski, Instytut Matematyki, Uniwersytet Szczeciński, ul.Wielkopolska 15, 70-451 Szczecin, Poland.

Current address: Department of Mathematics, Syracuse University, 215 Carnegie Hall, Syracuse, NY 13210-1150, wisniows@math.syr.edu.

Λ-VARIATION AND BAIRE CATEGORY

Abstract

Continuous functions of bounded λ -variation that are differentiable at least at one pointform a dense set of first Baire category in $C\Lambda BV$, the Banach space of continuous functions of bounded λ -variation. An example of a nowhere differentiable continuous function of bounded λ variation is given. Furthermore, $C\Lambda BV$, as a subset of C[0, 1] with the usual sup-norm, is a dense subset of first Baire category.

At the beginning of the 70s, D.Waterman extracted the useful concept of λ -variation from various techniques of the theory of Fourier series [8]. In this notewe will use the definitions and notations introduced in the fundamental paper[9].

Given a λ -sequence Λ , the set of all continuous functions of bounded Λ -variation is a closed linear subspace of the Banach space $(\Lambda BV, || ||_{\Lambda})$, and will be denoted by $C\Lambda BV$. The set of functions differentiable at least at one point of [a, b] will be denoted by D. A λ -sequence $\Lambda = (\lambda_i)$ is said to be proper if $\lim \lambda_i = \infty$.

Proposition 1 For any proper λ -sequence Λ , $D \cap C\Lambda BV$ is of first Baire category in $(C\Lambda BV, || ||_{\Lambda})$.

PROOF. We will follow the elegant idea of S.Banach [1]. Unfortunately, there is no suitable dense subset of CABV so that Banach's Satz 2 cannot be applied in our case. A slight modification of Banach's proof is required and careful construction of a "bad" function is necessary. Without loss of generality we may assume that the interval [a, b] is [0, 1].

Key Words: λ-variation, nowhere differentiable function, Baire category Mathematical Reviews subject classification: Primary: 26A45 Received by the editors October 13, 1993

For every positive integer m, we denote by Q_m^{Λ} the set of functions $x \in$ $C \Lambda B V$ such that for some $t_0 \in [a, b]$ and for all $t \neq t_0$

$$\left|\frac{x(t)-x(t_0)}{t-t_0}\right| \leq m$$

Clearly, $D \cap C \Lambda B V \subset \bigcup_m Q_m^{\Lambda}$. We will show that each Q_m^{Λ} is nowhere dense which implies that $D \cap C \Lambda B V$ is a set of first Baire category as a subset of $C\Lambda BV$.

First we will show that Q_m^{Λ} is closed in $C\Lambda BV$. Suppose $x_n \in Q_m^{\Lambda}$, then $||x_n - x||_{\Lambda} \to 0$. By definition

(1)
$$\forall n \quad \exists t_0^n \quad \forall t \neq t_0^n \quad \left| \frac{x_n(t) - x_n(t_0^n)}{t - t_0^n} \right| \leq m$$

Passing, if necessary, to a partial sequence, we can assume $t_0^n \to t_0$. Since convergence in $|| ||_{\Lambda}$ -norm implies uniform convergence [9, p.42], we get $x_n(t_0^n) \rightarrow$ $x(t_0)$. Passing to the limit in (1) for $n \to \infty$ yields

$$\left|\frac{x(t)-x(t_0)}{t-t_0}\right| \leq m$$

for all $t \neq t_0$, that is, $x \in Q_m^{\Lambda}$ as desired. Now we shall show that Q_m^{Λ} is nowhere dense in $C\Lambda BV$. It suffices to show that given any $x \in Q_m^{\Lambda}$, no ball centered at x is contained in Q_m^{Λ} , that is,

$$\forall \epsilon > 0 \quad \exists \tilde{x} \notin Q_m^{\Lambda} \quad ||x - \tilde{x}||_{\Lambda} < \epsilon$$

Given such an x and an $\epsilon > 0$, take n such that $\frac{3m}{n} \sum_{i=1}^{n} \frac{1}{\lambda_i} < \epsilon$. We say that an interval $I_i = [\frac{i-1}{n}, \frac{i}{n}]$ is of type A if

$$\exists t_0 \in I_i \quad \forall t \in I_i, t \neq t_0 \quad \left| \frac{x(t) - x(t_0)}{t - t_0} \right| \leq m$$

Now we will define an auxiliary function $y: [0,1] \to \mathbb{R}$. Set y(0) = 0. Suppose that y has been defined for I_i with $i \leq k$. To define y on I_{k+1} consider two cases.

If I_{k+1} is of type A, we set

$$y(\frac{k+1}{n}) = \begin{cases} 0 & \text{if } y(\frac{k}{n}) = \frac{3m}{n} \\ \frac{3m}{n} & \text{if } y(\frac{k}{n}) = 0 \end{cases}$$

and then define y to be continuous and linear on I_{k+1} . Otherwise, we set $y(\frac{k+1}{n}) = y(\frac{k}{n})$ and define y to be linear and continuous on I_{k+1} (that is, constant). For every interval J with both endpoints of the form i/n either |y(J)| = 0 or |y(J)| = 3m/n. Since for every family $\{J_1, \ldots, J_j\}$ of nonoverlapping intervals with endpoints of the form i/n it must be $j \leq n$, we get

$$\sum_{1}^{j} \frac{|y(I_{i_{k}})|}{\lambda_{k}} \leq \sum_{1}^{n} \frac{\frac{3m}{n}}{\lambda_{i}} < \epsilon$$

Further, since all points of varying monotonicity of y are of the form i/n, we conclude that $||y||_{\Lambda} < \epsilon$ [5, Prop.1.1.]

Let $\tilde{x} = x + y$. Then $||x - \tilde{x}||_{\Lambda} < \epsilon$, and it remains to show $\tilde{x} \notin Q_m^{\Lambda}$, *i.e.*, we must show that

$$orall t \quad \exists s
eq t \quad \left|rac{ ilde{x}(t) - ilde{x}(s)}{t - s}
ight| > m$$

Take any $t \in [0, 1]$. Then $t \in I_i$ for some *i*. If I_i is of type A and $t \neq t_0$,

$$\left|\frac{\tilde{x}(t) - \tilde{x}(t_0)}{t - t_0}\right| \geq \left|\left|\frac{y(t) - y(t_0)}{t - t_0}\right| - \left|\frac{x(t) - x(t_0)}{t - t_0}\right|\right| \geq 3m - m$$

If I_i is of type A and $t = t_0$, take any $s \in I_i$, $s \neq t_0$, and we get in a similar manner

$$\left|rac{ ilde{x}(s)- ilde{x}(t)}{s-t}
ight| \geq 2m$$

If I_i is not of type A, then

$$\left|\frac{x(t)-x(s)}{t-s}\right| > m$$

for some $s \in I_i$ which completes the proof because $\tilde{x} = x$ on such an I_i . \Box

Remark What we have proven is in fact that $\bigcup_m Q_m^{\Lambda}$ is of first Baire category in $C\Lambda BV$. Observe that $\bigcup_m Q_m^{\Lambda}$ is the set of all $C\Lambda BV$ -functions that have all Dini derivatives finite at at least one point. However, if necessary, one can slightly modify the above proof in order to show that a larger set of $C\Lambda BV$ -functions that have both right-side Dini derivatives finite at at least one point is also of first Baire category (cf. Banach'sSatz 1).

Example A nowhere differentiable continuous function that is of bounded λ -variation.

To construct such example, it suffices to slightly alter the well-known van der Waerden function [7]. Of course, we have to assume that $\Lambda = (\lambda_i)$ is a proper

A-sequence. Let $u_0(x)$ be the distance from x to the nearest integer. Set $u_k(x) = 4^{-k}u_0(4^k x)$ for k = 1, 2, ... Clearly,

$$V_{\mathbf{\Lambda}}\left(u_k, [0,1]
ight) \;\; = \;\; rac{1}{2\cdot 4^k} \sum_{1}^{2\cdot 4^k} rac{1}{\lambda_i} \;\; \longrightarrow \;\; 0 \qquad \mathrm{as} \; k o \infty$$

Next, select a subsequence (u_{k_p}) such that $\sum_p ||u_{k_p}||_{\Lambda} < 1$. Then $f = \sum_p u_{k_p}$ is nowhere differentiable, as can be proven in the standard way [2, p.496]. Finally, $f \in C\Lambda BV$ by the virtue of [6, Prop.VI.5], since $(C\Lambda BV, || ||_{\Lambda})$ is a complete space [9, pp.41-42].

S.Perlman has shown that $C[0,1] = \bigcup_{\Lambda} C\Lambda BV$ where the union is taken over all λ -sequences [3, Thm.9].We endow C[0,1] with the usual sup-norm.

Proposition 2 For any λ -sequence Λ , $C\Lambda BV$ is of first Baire category in (C[0, 1], || ||).

PROOF. We start with the obvious equality

$$C\Lambda BV = \bigcup_{n=1}^{\infty} B_{C\Lambda BV}(0,n)$$

where $B_{C\Lambda BV}(0,n)$ denotes the closed ball in $(C\Lambda BV, || ||_{\Lambda})$ of radius n, centered at 0 (the constant function 0). Thus, it suffices to show $B_{C\Lambda BV}(0,n)$ is nowhere dense in (C[0,1], || ||). Since $B_{C\Lambda BV}(0,n)$ is a closed subset of (C[0,1], || ||), the proof will be completed as soon as we show that $C[0,1] \setminus C\Lambda BV$ is dense in (C[0,1], || ||). Thus, it suffices to show that 0 is a || ||-limit of $C[0,1] \setminus C\Lambda BV$ -functions. Indeed, given $\epsilon > 0$, it is rather elamentary to construct a function $\tilde{x} \in C[0,1]$ such that $||\tilde{x}|| < \epsilon$ and $V_{\Lambda}(\tilde{x}) = +\infty$. \Box

We complete this note with the observation that both first Baire category sets discussed above are nevertheless relatively large.

Proposition 3 For any λ -sequence Λ :

- 1. $D \cap C \wedge BV$ is dense in $(C \wedge BV, || ||_{\Lambda})$
- 2. CABV is dense in (C[0, 1], || ||)

PROOF. (1) It is clear that, for $x \in C \wedge BV$, $||x_n - x||_{\Lambda} \to 0$ where

$$x_n(t) = \begin{cases} x(t) & t \le 1 - \frac{1}{n} \\ x(1 - \frac{1}{n}) & t \ge 1 - \frac{1}{n} \end{cases}$$

[9, Theorem 4]. Obviously, $x_n \in C \land BV$ for all n.

S. Perlman and D. Waterman gave a complete characterization of the inclusion $\Lambda BV \subseteq \Gamma BV$ for two distinct λ -sequences Λ and Γ [4, Theorem 3]. In the next proposition, we examine the proper case $\Lambda BV \subsetneq \Gamma BV$ from the point of view of Baire category.

Proposition 4 If $\Lambda BV \subsetneq \Gamma BV$, then $C\Lambda BV$ is of first Baire category in $(C\Gamma BV, || ||_{\Gamma})$.

PROOF. This can be proven in a manner fully analogous to the proof of Proposition 2. The only non-trivial ajustment is required in the construction of the function \tilde{x} .

It is elementary that $\Lambda BV \subsetneq \Gamma BV$ implies the existence of a sequence $a_n \searrow 0$ such that $\sum a_n/\gamma_n = \infty$ and $\sum a_n/\lambda_n < \infty$. For a number $\delta > 0$, set $a_n^{\delta} = \min\{\delta, a_n\}$, and then

$$x_{\delta}(\frac{1}{n}) = \begin{cases} \sum_{k=1}^{n} (-1)^{k+1} a_{k}^{\delta} - \sum_{k=1}^{\infty} (-1)^{k+1} a_{k}^{\delta} & \text{for } t = \frac{1}{n} \\ 0 & \text{for } t = 0 \end{cases}$$

We extend x_{δ} continuously onto the whole interval [0, 1] by requiring that x_{δ} be linear on each interval $[\frac{1}{n+1}, \frac{1}{n}]$. Then

$$V_{\Gamma}(x_{\delta}) = \sum_{1}^{\infty} \frac{a_n^{\delta}}{\gamma_n} = +\infty \text{ and } V_{\Lambda}(x_{\delta}) = \sum_{1}^{\infty} \frac{a_n^{\delta}}{\lambda_n} \longrightarrow 0$$

as $\delta \to 0$. Hence, by picking a suitable δ , we can take \tilde{x} to be x_{δ} . \Box

References

- S. Banach, Uber die Baire'sche Kategorie gewisser Funktionenmengen, Studia Math. 3(1931) 174-179.
- [2] G. M. Fichtenholz, *Differential-und Integralrechnung*, vol. II, VEB Deutscher Verlag der Wissenschaften, Berlin 1964.
- [3] S. Perlman, Functions of generalized variation, Fund. Math. 105(1980) 199-211.
- [4] S. Perlman and D. Waterman, Some remarks on functions of Λ -bounded variation, Proc. Amer. Math. Soc. 74 (1979) 113-117.
- [5] F. Prus-Wiśniowski, λ-variation and Hausdorff distance, Math. Nachr. 158(1992) 283-297.

- [6] H. L. Royden, *Real Analysis*, 3rd ed., Macmillan Publishing Company, New York, 1988.
- [7] B. L. van der Waerden, Ein einfaches Beispiel einernichtdifferenzierbaren stetigen Funktion, Math. Zeit. 32(1930) 474-475.
- [8] D. Waterman, On convergence of Fourier series of functions of generalized bounded variation, Studia Math. 44(1972) 107-117.
- [9] D. Waterman, On A-bounded variation, Studia Math. 57(1976) 33-45.