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 A- VARIATION AND BAIRE CATEGORY

 Abstract

 Continuous functions of bounded A- variation that are differentiate

 at least at one pointform a dense set of first Baire category in CABV,
 the Banach space of continuous functions of bounded A- variation . An
 example of a nowhere differentiate continuous function of bounded A-
 variation is given. Furthermore, CABV, as a subset of C[ 0, l]with the
 usual sup-norm, is a dense subset of first Baire category.

 At the beginning of the 70s, D. Waterman extracted the useful concept of
 A- variation from various techniques of the theory of Fourier series [8] . In this
 notewe will use the definitions and notations introduced in the fundamental

 paper [9].
 Given a A-sequence A, the set of all continuous functions of bounded

 A-variationis a closed linear subspace of the Banach space (A BV, || ||a), and
 will be denoted by CABV. The set of functions differentiate at least at one
 point of [a, 6] will bedenoted by D. A A-sequence A = (A,) is said to be proper
 if lim A, = oo.

 Proposition 1 For any proper A -sequence A, D fi CABV is of first Baire
 category in (CABV, || ||A).

 Proof. We will follow the elegant idea of S. Banach [1]. Unfortunately, there
 is no suitable dense subset of CABV so that Banach 's Satz 2 cannot be applied
 in our case. A slight modification of Banach 's proof is required and careful
 construction of a "bad" function is necessary. Without loss of generality we
 may assume that the interval [a, 6] is [0, 1].
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 For every positive integer m, we denote by Q ^ the set of functions x G
 CABV such that for some to G [a, b] and for all t ^ to

 x{t)-x(t0) ^
 - -

 t-to

 Clearly, D fi CABV C (Jm Q We will show that each Q ^ is nowhere dense
 which implies that D fi CABV is a set of first Baire category as asubset of
 CABV.

 First we will show that Q ^ is closed in CABV . Suppose xn G <3m> then
 Ikn - ®||a - >• 0. By definition

 (1) Vn *"(*)-*n(tg) < m
 t - to

 Passing, if necessary, to a partial sequence, we can assume t' ] -ïto. Since con-
 vergence in y ||A-norm implies uniform convergence [9, p. 42], we get £n(*o )
 x(to). Passing to the limit in (1) for n - ¥ oo yields

 x(t)-x(t0) ^ _
 t-to

 for alit ^ to y that is, x G as desired.
 Now we shall show that Q ^ is nowhere dense in CABV . It suffices to show

 that given any x G no ball centered at x is contained in that is,

 Ve > 0 ||z - x||a < e

 Given such an x and an e > 0, take n such that ^ < e. We say that
 an interval /,• = is of type A if

 3 10 G li Vť G t to t - p&à. < m t - to

 Now we will define an auxiliary function y : [0,1] - > M. Set y(0) = 0.
 Suppose that y has been defined for Ii withz < k. To define y on h+i consider
 two cases.

 If /fc+i is of type A, we set

 * + 1 ÍO ify(Ł) = to
 » if y(Ž-) = 0

 and then define y to be continous and linear on /*+i. Otherwise, we set
 y(^ïr) = vin ) anc* define y to be linear and continuous on Ik+i ( that is,
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 constant). For every interval J with both endpoints of the form i/n either
 'y(J)' = 0 or 'y(J)' = 3m/n. Since for every family { Ji, . . . , Jj } of nonover-
 lapping intervals with endpoints of the form i/n it must be j < n, we get

 ¿MM < ¿S < t
 Further, since all points of varying monotonicity of y are of the forrm/n,we
 conclude that ''y''' < e [5, Prop. 1.1.]

 Let X = X + y. Then ''x - x||a < e, and it remains to show x £ i.e.,
 we must show that

 V, 3»^< *<" - *<'> > m
 ~t S

 Take any t G [0,1]. Then t G /» for some i. If Ii is of type A and t / ťo,

 ž(ť)-ž(ť0) ^ y(t)-y(to) x(t)-x{t0) ^ „
 i-io ž ^ -TT„

 If I{ is of type A and t = to, take any s G /», s ^ t o, and we get in a similar
 manner

 ž(s) - x(t)
 -

 s - t

 If Ii is not of type A, then

 x(t) - x(s)
 - ^

 t - s

 for some s G Ii which completes the proof because x = x on such an /, . □

 Remark What we have proven is in fact that |Jm Q ^ is of first Baire
 category in CABV. Observe that (Jm Q * is the set of all CAi?V-functions
 that have all Dini derivatives finite at at least one point. However, if necessary,
 one can slightly modify the above proof in order to show that a larger set of
 CA.EV'-functions that have both right-side Dini derivatives finite at at least
 one point is also of first Baire category (cf. Banach 'sSatz 1).

 Example A nowhere differentiate continuous function that is of bounded
 X -variation.

 To construct such example, it suffices to slightly alter the well-known van der
 Waerden function [7]. Of course, we have to assume that A = (A,) is a proper
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 A-sequence. Let uq(x) be the distance from x to the nearest integer. Set
 Uk(x) = 4~~kuo(4kx) for k = 1,2, - Clearly,

 2-4fc

 Va («*,[0,1]) = ^ 0 as fc -► oo

 Next, select a subsequence ( Ukp ) such that | 1 1 A < 1- Then
 / = J2p ukp is nowhere difFerentiable, as can be proven in the standard way [2,
 p.496]. Finally, / G CABV by the virtue of [6, Prop. VI. 5], since ( CABV , || ||a)
 is a complete space [9, pp.4 1-42].

 S.Perlman has shown that C[0, 1] = |JA CABV where the union is taken
 over all A-sequences [3, Thm.9].We endow C[0, 1] with the usual sup-norm.

 Proposition 2 For any X -sequence A, CABV is of first Baire category in
 (C[ 0,1], II II).

 Proof. We start with the obvious equality

 oo

 CABV = |JßcABv(0,n)
 n = 1

 where BcABv{0,n) denotes the closed ball in (CABV, || ||a) of radius n,
 centered at 0 (the constant function 0). Thus, it suffices to show Bcabv{0 , n)
 is nowhere dense in (C[0, 1], || ||). Since BcABv{0,n) is a closed subset of
 (C[0, 1], H II), the proof will be completed as soon as we show that C[0, 1] '
 CABV is dense in (C[0, 1], || ||). Thus, it suffices to show that 0 is a || ||-limit
 of C[ 0, 1] ' CA^^-functions. Indeed, given e > 0, it is rather elamentary to
 construct a function x G C[0, 1] such that ||x|| < e and V'(x) = +oo. □

 We complete this note with the observation that both first Baire category
 sets discussed above are nevertheless relatively large.

 Proposition 3 For any X-sequence A:

 1. D fi CABV is dense in (CABV, || ||a)

 2. CABV is dense in (C[0, 1], || ||)

 Proof. (1) It is clear that, for x G CABV, ||xn - x||a - > 0 where

 f x(t ) t<l-±
 {«u-s) f x(t )

 [9, Theorem 4]. Obviously, xn G CABV for all n.
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 (2) This follows immediately from the inclusion Polynomials C CABV. □
 S. Perlman and D. Waterman gave a complete characterization of the in-

 clusion A BV Ç TBV for two distinct A-sequences A and T [4, Theorem 3].
 In the next proposition, we examine the proper case A BV Ç. TBV from the
 point of view of Baire category.

 Proposition 4 If ABV Ç. TBV , then CABV is of first Baire category in
 (CTBV, II ||r)-

 Proof. This can be proven in a manner fully analogous to the proof of
 Proposition 2. The only non-trivial ajustment is required in the construction
 of the function x.

 It is elementary that ABV Ç TBV implies the existence of a sequence
 an ' 0 such that anhn = oo and £^an/An < oo. For a number
 S > OjSet a6n = min{i, an}, and then

 = /EU(-i)M1«ž - £r=.(-i)"+,«Ě for ť = n
 V = 10 for 1 = 0

 We extend x¿ continuously onto the whole interval [0, 1] by requiring that
 xs be linear on each interval [^¿y, ¿]. Then

 00 a6 °° a6
 Vr(aîtf) = V" - = +00 and Va(x¿) = V] t2- - > 0

 ļ In 1 n

 as S - >• 0. Hence, by picking a suitable <J, we can take x to be x¿. □
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