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 A CONVERGENCE THEOREM FOR

 GENERALIZED RIEMANN INTEGRALS

 Abstract

 A necessary and sufficient condition is given that the limit / of a
 sequence {fn} of generalized Riemann integrable functions be integrable

 and that /7 / = lim fn .

 In this note we will establish an elementary necessary and sufficient condition
 that the limit / of a sequence ( fk ) of generalized Riemann (= Henstock-
 Kurzweil) integrable functions be integrable and that fjf = limfc fj fk • Some
 examples are considered, and we will show how this theorem can be applied
 to prove Hake's theorem for the integral over an infinite interval [a,oo].

 We assume that the reader is familiar with the elementary properties of
 the generalized Riemann integral; see, for example, the books [1], [4] and [5].
 If P := {(/¿, ź»)}£_i is a partition of a closed interval I := [a, 6] in the extended
 real numbers M given by the partition points - oo < a = x 0 < xi < • • - < xn =
 b < oo and tags t{ G Ii := [z¿-i, x,-], then the Riemann sum of a function /
 corresponding to P is

 n

 S(f;P) := £/(«<)(*.■
 1=1

 where, as usual, we understand that 0 • oo = 0 and that /(±oo) = 0.
 The ideas presented here are close to those in the article of R. A. Gordon [2];

 in particular, the notion of 7-convergence of a sequence of functions is similar
 to (but considerably weaker than) Gordon's notion of a ¿-Cauchy sequence. It
 is worth noting that the condition that we give applies to an infinite interval; in
 fact, it also applies to integrals over arbitrary closed intervals in M . Perhaps
 the most interesting aspect of this notion is that it provides a condition that
 is both necessary and sufficient.
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 Definition 1 Let (fk) : I - > M (Ar G N) be a sequence of functions on a closed
 interval I CM, and let f : I - > M. We say that ( fk ) is 7- convergent to f if for
 every e > 0, there exists me G N such that if k > m£ there exists a gauge 7^
 on I such that if P is any 7 £fk-fine partition , then 'S(fk',P) - S(f]P)' < e.

 Note that the notion of 7-convergence does not require that the functions
 are integrable, or that the sequence of functions converges at any point. Cer-
 tainly, the exact significance of the condition is not transparent. However, if
 the integrals of the functions fk are to be close to the integral of /, it seems
 reasonable that the Riemann sums for the fk should also approximate those
 of /. It will be observed that the gauges may vary with the index Ar, and there
 does not seem to be any uniformity present.

 Example 2 (a) If (fk) is a sequence of functions on a compact interval I :=
 [a, 6] that is uniformly convergent to / on /, then given e > 0 there exists
 an me G N such that if Ar > me and ť G / then 'fk(t) - f(t)' < e. Hence if
 P := {(/», *»)}"=! is any tagged partition of /, then

 n

 'S(fk; P) - S(f;P) I < £ |Aft) - /(ť,)| /(/,) < e(b - a).
 1 = 1

 Consequently, on a compact interval , the uniform convergence of a sequence
 of functions to a function implies its 7-convergence (with no need to find an
 appropriate gauge).

 (b) Let I := [0,2] and let gk(x) := Ar for x G (l/Ar, l/Ar -j- l/Ar2) and
 gk(x) := 0 elsewhere in /, and let g(x) := 0 for all x G /. Let the gauge 8k be
 defined on I by Sk(x) := ^dist(x, {1/A?, 1/Ar+l/Ar2}) if x G /-{l/Ar, 1/Ar+l/Ar2}
 and ¿/c(z) •= 1 elsewhere. It is seen that if P is a Sk- fine partition of /, then
 'S(gk] P) - S(g] P)' < 1/Ar. Thus the sequence (gk) is 7-convergent to g. It is
 to be noted that neither the Monotone or Dominated Convergence Theorems
 apply to this case. Moreover, the sequence (gk) is not uniformly integrable on
 /, since it is readily seen that the sequence of their indefinite integrals is not
 equicontinuous.

 Theorem 3 Let (fk) be a sequence of (generalized Riemann) integrable func-
 tions on an interval I - > M and let f : I -¥ M . Then (fk) is 7- convergent to f
 if and only if f is integrable on I and

 (1) /'=ä/a-
 Proof. (=>) We will first show that the sequence of integrals (fjfk) is a
 Cauchy sequence in M. Let e > 0 and let m£ be as in Definition 1, so
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 that if h,k > m£ then there exist gauges 7 £}h and 7 £)k such that if P is
 a 7^ -fine partition, then 'S(fh',P) - S(f;P)' < £, and if P is a 7^-fine
 partition then 'S(fk]P) - S(f]P)' < e. Further, since fh and fk are in-
 tegrable, there exists gauges S£th and S£tk such that if P is ¿^^-fine then
 I S{fh;P) - fj fh' < s, and if P is áe,fc-fine then 'S{fk', P) - fj fk' < e. Now,
 let rj£ := min{7ř)/l, 7^, S£ļk}- Therefore, if P is ^-fine, then

 ź 'lfh-S(fh;P) +'S(fh;P)-S(f;P)'

 + 1 5(/; P) - S(fk ; P) I + S(fk ; P) - J h | < 4e.

 Since e > 0 is arbitrary, we conclude that the sequence (fffk) is a Cauchy
 sequence in M , and therefore converges to some number A G M .

 We now show that / is integrable and that fff = A. For, if e > 0, let
 m£ be as in Definition 1, and let k > m£ be such that 'fjfk - A' < e. It
 follows from the 7-convergence of the sequence that there exists a gauge ^£)k
 on I such that if P is 7^/c-fine, then 'S(fk', P) - S(f ; P)' < e. Also, from the
 integrability of /*, there exists a gauge S£}k such that if P is ¿^-fine, then
 I S(fk]P) - fjfk I < £• Now let r]£ fk •= Hiin{7C)k, S£}k}- It follows that if P is
 rj£)k- fine, then

 'S(f-,P)-A'< 'S(f;P)-S(fk;P)'+ S(fk'P)~ ļfk' + 'ļfk-A <Ze.
 Since e > 0 is arbitrary, this implies that / is integrable on I and that

 f f = A= k->°° lim J [ fk . Ji k->°° J i

 (<=) Let e > 0. Since (ff fk)-> /, there exists m£ G N such that if Ar > m£
 then I fj fk - fj /I < e. Now let k > m£ be fixed. Since fk is integrable there
 exists a gauge S€ļk such that if P is i^-fine, then ' fj fk - S(fk',P)' < s.
 Since / is integrable, there exists a gauge such that if P is ie,o~fine then
 I J/ / - S(f ; P)| < e. Now let y£)k := min {¿e,o, so that if P is 7^-fine,
 then

 'S(fk-,P)-S(f;P)' < 's(fk]P)- + ļf'
 + |^/-5(/;P)| <3e.

 Therefore the sequence (fk) is 7-convergent to /. □
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 Application 4 Let f(x) := (- 1 )n~l /n for x G [n - l,n), n G N, and let
 /( oo) := 0. Then / is (generalized Riemann) integrable on the infinite interval
 I := [0, oo] and

 p oo °° / i 'n - 1

 J« / p oo /=E- °° / i » 'n - 1 ■ J« tii »
 Thus / is an example of an integrable function that is not absolutely integrable
 (and hence is not Lebesgue integrable).

 We define fk(x) := f(x) for x G [0, k) and fk{x) := 0 for x G [fc, oo]. Since
 each function fk is a step function, it is integrable on I and

 Jo n=l n

 We claim that the sequence (fk) is 7-convergent to / on I. For, let € > 0 be
 given and let m£ > '/e. If k is any natural number such that k > m£i we
 define the gauge 7 £tk on I by

 Je,k(x) := %dist(x,{k,k+ l,---}) if s G [0,oo)~ {k,k+ 1, - • },

 by fe,k(n) '■= £/2"+1 if k < n G N, and by 7ei¿(oo) := e. For the sake of
 brevity, we only sketch the (rather delicate) argument.

 It is not difficult to show that if P := {(/¿, ť,)}"=1 is a j£ļk-ftne partition of
 I and if ti is a tag in P such that ti < Ar, then fk{U) = f{ti). Further, tn = oo,
 so that fk(tn) = / (tn ) = 0. Hence we have that

 i=n - 1

 (2) S(f-,P)-S(fk;P)= £ /(«<)(«< "«<-!)•
 ti=k

 From the definition of j£ik, it is seen that if p G N is such that k < p < xn_i,
 then p is a tag in P and, by splitting the subintervals in P (if necessary),
 we may assume that p is also a partition point (and hence a tag for two
 consecutive subintervals). It is readily seen that the first term on the right
 side of (2) is less than e/2k+1. Also, a calculation shows that the contribution
 of the terms having tags in the interval [p- l,p] is within e/2p+1 of (- ')p~l /p.
 Similarly, the term corresponding to xn-' is seen to be close to (- 1 )q~l /q,
 where q = [xn_ij. Thus, the right hand side of (2) is approximately equal to

 Ylj=k(~^y / U + 1)- If we use a well-known property of alternating series, we
 conclude that the expression in (2) can be made arbitrarily small by taking k
 sufficiently large.
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 We now show that Theorem 3 can be used to prove the more difficult part
 of the theorem of Hake that shows that the integral does not admit a "Cauchy
 extension" by taking limits as the upper limit tends to oo; see also [1; p. 184].
 The same type of proof can be used to show that there is no extension as the
 upper limit approaches a finite point. (It is not claimed that the proofs here
 are substantially simpler, however.)

 Theorem 5 (Hake) Let I := [a,oo] and let f : I - y M. If f is (generalized
 Riemann) integrable on every closed interval [a,c] C [a,oo) and if there exists
 A G M such that

 lim f f = A,
 c-+°° Ja

 then f is integrable on I and f - A.

 Proof. Given e > 0, there exists m£ G N such that if k G N and £ G M are
 such that me < k < £, then | f' < e. Since / is integrable on [n - 1, n],
 where k < n G N, there exists a gauge Sn on that interval such that if Pn is a
 in -fine partition of [n - 1, n], then 'S(f; Pn) - f' < e/2n. We now define
 the gauge:

 '(k - x) if X G [a, Ar),
 min{ífc(t), Jjfe+i(t),e/(|/(fc)| + 1)} if x = fc,

 7e}k{x) min {in (z), '{x - n- h 1), '(n - z)} if x G {n - 1, n) (k < n G N),
 min{¿n(z),¿n+i(z), if x = n> k}
 € if X = OO.

 We define fk(x) := f(x) if x G [a,&) and fk{x) := 0 otherwise. Now let
 P := {(/,-, ť,)}"=1 be a 7ř^-fine partition. It is clear that all of the elements in
 N H [A:, £n_i] are tags in P and, by splitting these terms, we may assume that
 all of these integers are also endpoints of subintervals in P. Hence we have

 i=n - l

 S(f-,P)-S(f„-,P)= £ /(*<)(*<-*<-!)•
 ti-k

 The contribution to 5(/; P) and hence to 5(/; P) - S(fk ; P) due to the interval
 [xUi k] that has k as right endpoint is < 'f(k)(k - xu)| < e. If p > k + 1, we
 let Qp := Pn[p~ l,p]; since Qp is ip-fine, we have 'S(f;Qp) - f' < e/2p.

 Case 1. If xn_i = q E N, then

 - Jk r f' < ¿ < JTT p=k Jk p=k
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 Therefore we have

 'S(f;P)-S{fk'P)' < |/(*)| (*-«„)+! ¿5(/;Qp)|+ 1 f /I < £+£+£ = 3e.
 p=k 'Jk 1

 Case 2. If xn_i G (g, q+l) for some q G N, then additional terms contribute
 to S(f; P) from the subintervals in [q,xn- 1]. But since these subintervals form
 a subset of a ¿g-fine partition of [q) q + 1], it follows from the Saks-Henstock
 Lemma that this contribution is < e/2q < e. Hence, in this case, we have the
 estimate 1S(f;P) - S(fk'P) ' < 4e.

 Consequently we conclude that the sequence (/*) is 7-convergent to / on
 [a, 00], whence the conclusion follows. □

 It should be mentioned that Hake's Theorem can also be proved by noting
 that the sequence (fk ) is uniformly integrable

 For additional theorems concerning the convergence of generalized Rie-
 mann integrals, see [3] and the papers cited there. In closing, the author
 would like to thank Professor Gordon for some useful comments.
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