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 Density continuous transformations on E2

 Abstract

 In the paper we study transformations from IR2 into IR and from IR2
 into R2 continuous with respect to different density topologies on the
 domain sind range. In the former case the range will always be equipped
 with the one-dimensioned density topology and the domain with either
 ordinary density or strong density topology. In the later case the domain
 and the r cinge will be equipped simultaneously with the ordinary density
 or strong density topology. We will investigate the relations between
 these classes and with the class of ordinary continuous transformations .
 We will cilso examine relation between the (strong) density continuity
 of /: R2 - y R and of /(•, y), f(x , •). Similar question will be considered
 for transformations F = (/,</) : R2 - >• R2 and their coordinate functions
 / and g.

 1 Preliminaries

 The notation used throughout this paper is standard. In particular, EorM1
 stands for the set of real numbers and R2 for the plane. For A C R2 its outer
 two-dimensional Lebesgue measure is denoted by ni2 (A) . Similarly, mi (A)
 stands for the outer one-dimensional Lebesgue measure of A C M.

 Recall that x G R is a density point of A C R if its density

 dl(A,l)= lim
 £-+o+ mi((ai-e,x-t-£))
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 Density Continuous Transformations on M2 103

 (x, y) G ®2 is an (ordinary) density point of A C M2 if

 MA (*,»)) = lb. + g) ^ (v - g. y H- O" = J e-f0+ m2 ((x - e,x + e) x (y - £,y + e))

 and (a;, y) £ M2 is a strong density point of .4 C IR 2 if

 i,(A <*, »» = i™ M " it» -«.'+')r('' = i.
 a- ►()+, 6- >-0+ rii2 ((x - a, x + a) x (y - 6, y + 6))

 (Compare Saks [11, pages 106, 128].) Recall also that a point p is a (strong)
 dispersion point of a set B if it is a (strong) density point of the complement
 of B. The strong density topology T$ on M 2 is defined as the family of all
 measurable subsets A of M 2 such that every a G A is a strong density point
 of A [8]. Similarly we define density topologies and Tjfr on M and M2,
 respectively, using the notions of density point on M and ordinary density
 point on M2. (Compare [8] and [10].) We will drop the superscript in this
 notation and write Tm in all cases when the space is fixed. Notice also that
 Ts C Tjf and recall that the sets open in these topologies are measurable.
 The symbol To stands for the ordinary topology on 1 or on M2.

 The class of all functions from M 2 to M with the density topology T}¡ on
 the range and either ordinary density topology Tjfr or strong density topology
 Ts on the domain will be denoted by C(7]§-,7]¿-) and C(Ts ,7]¿-), respectively.
 They will be termed density and strongly density continuous transformations,
 respectively. Notice that C(Ts,T¿f) C C(7a/-, Tjj-).

 The class of all functions from M 2 to M 2 which are continuous with re-

 spect to Tjsf ( Ts y respectively) on the domain and the range will be denoted
 by C(TtfyT%f) (^(75,75), respectively). Functions belonging to C(7^,7^)
 and C(Ts,Ts) are called density continuous and strongly density continuous
 transformations, respectively.

 The class of all ordinarily continuous functions from Mn to Mm will be
 denoted by C(To,To)-

 Let us notice that the topologies Tjfr and Ts are invariant under transla-
 tions and exchange of coordinates. Thus, C(x} y) = (y, x ) and the translations
 T(5jt)(x, y) = (x + s, y + ť) are both density and strongly density continuous.

 Functions from IR to M continuous with respect to the density topology on
 the domain and the range are called density continuous. The next proposition
 lists some useful properties of these functions.

 Proposition 1.1 If f : M - y M is density continuous, then

 (a) / is Baire 1 function ; in particular , f is measurable ;

 (b) / has the Darboux property ;
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 (c) if f is not constant, then there exists p G /[R] such that mi ( f~1(p )) = 0.

 Proof, (a) and (b) can be found in [1], if we recall that density continuous
 functions from M to M are approximately continuous [9] .

 (c) follows from (a) and (b) since {/_1(p) : p G /[M]} is a partition of R
 into uncountable many measurable sets. □

 In what follows 'v' stands for the length of a vector v G Rn. For an ordinary
 open subset U of Rn we say that F : U - ► Rn is bi-Lipschitz with constant L
 (L > 1), if for every q,r EU

 L~l'q- H < l^(î)- -P(r)l <

 Transformation F : Rn - > Rn is locally bi-Lipschitz if for every point p G Rn
 there is U G To containing p such that the restricted transformation F'u is
 bi-Lipschitz. We say that /: M2 - >■ M is locally bi-Lipschitz if for every point
 p G M2 there is an open rectangle U = (a, 6) x (c, d ) containing p and ä constant
 L > 1 such that for every Xo G (a, 6) and yo G (c, d ) the coordinate functions:
 9y o: (a, 6) ->M,0yo(x) = /(s,yo), and hXo : (c,d) ->M, /^(y) = /(»o,y), are
 bi-Lipschitz with constant L.

 Recall also the following facts.

 Proposition 1.2 Locally convex functions from M to M are density continu-
 ous . /n particular, analytic and piecewise linear functions from 1 ¿o M are
 density continuous.

 Proof. See [4]. □

 Proposition 1.3 Locally bi-Lipschitz transformations from Mn into Mn are
 density continuous.

 Proof. See [2]. □
 We will finish with the following easy proposition.

 Proposition 1.4 If f,g: ln -ł 1, n = 1,2,..., are density (strongly den-
 sity) continuous, then max{/, <7} and min{/, <7} are density (strongly density)
 continuous.

 Proof. The proof of this proposition is precisely the same as the one for the
 density continuous functions from R to M. (See [5, Theorem 2] or [3, Theorem
 im].) □
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 2 Transformations from R2 into R.

 In this section we investigate the relation between (strong) density continuity
 of transformations /: M 2 - > M and density continuity of their sections f(x o, •)
 and /(♦, 2/o) - We will also study the relations between C(7]§-, 7^), C{Ts,T}f)
 and C(ToìTo)' We start with the following easy fact.

 Proposition 2.1 Let h : M -» M and define f : M 2 - >• M by /(x,y) = A(t/).
 The following conditions are equivalent.

 (a) h is density continuous.

 (b) / is density continuous.

 (c) / is strongly density continuous.

 Proof. Let A G 7]¿-. Then f~1(A) = M x /i_1(j4). It is easy to see that
 ^{A) € 7]J- if and only if M x A"1^) G T} if and only if M x ft-1 (A) G 7¿2.
 □

 The next theorem will be fundamental in constructing most of the exam-
 ples.

 Theorem 2.2 If f : M 2 - >• M is locally bi-Lipschitz, then f is strongly density
 continuous.

 Proof. Let (xo, yo) G M2. We will show that / is strongly density continuous
 at (xo,2/o)- Without loss of generality we may assume that (xo,2/o) = (0,0)
 and that /(0,0) = 0. Moreover, assume that L > 1 is such that for every
 ^o,2/o € (-1, 1) the coordinate functions: gyo : (-1, 1) -> R, gyo{x) = f(x , y0 ),
 and /iXo : (-1, 1) - > M, hXo{y) = /(#o, y) are bi-Lipschitz with constant L.

 Let A C M be measurable such that Q £ A and 0 is a dispersion point of
 A. It is enough to prove that (0, 0) is a strong dispersion point of f~1(A). Let
 € > 0. Since, by Proposition 1.3, functions <70 and ho are density continuous, 0
 is a dispersion point of gQX(A) and hQi(A). In particular, there exists So > 0
 such that for every S G (0,¿o)

 (i) mi(<,0-i(¿)n(-M))<2á^ & mi (/iq 1 (j4) n (- <$, ¿)) < 2S 0^4-

 We will show that for every rectangle R = (-a, a) x (-6,6) with 0 < a, 6 <
 we have

 m2 ( f~1(A ) n R) < em2 ( R ).

 This will finish the proof.
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 So choose a rectangle R = (-a, a) x (-6,6) with 0 < a, 6 < ¿0/(2L2).
 We assume that a < 6, the other case being similar. In the calculation that
 follows we will use the Fubini Theorem and the fact that for every bi-Lipschitz
 function : M - > M with constant L and for every measurable set B C M we
 have mi < L mi ( B ).

 m2 (/" 1 (-A) n R) = [ mi (h~ 1 ( A ) fi (-6, b)) dx
 J- a

 < f mi (h~1(A D (Ax(0) - Lb, /ix(0) + Lb))) dx
 J - a

 < f L mi (A H (go(x) - Lb, g0(x) + Lb)) dx
 J - a

 = / L mi (go o gā1 (A(~' (g0{x) - Lb, g0{x) + Lb))) dx
 J- a

 < f L2 mi (g^1 (A) H (x - L2b}x + L2b)) dx
 J - a

 < 2a L2 mi (gģ1 (A) D(- a - L2b, a + L2b)) (asa<b)
 < 2aL2mi(gõ1(A)í)(-2L2b,2L2b)) (by (1))
 < 2a L2 4L2 6-^r

 8 L4

 = £m2 (R).

 This finishes the proof of Theorem 2.2. □
 Now we are ready to examine the relations between the density continuity

 of transformations /: M2 - > M and density continuity of their sections f(x o, •)
 and /(•, yo). We will start with the following example.

 Example 2.3 There exists ordinary continuous function f : M2 - >■ M with
 density continuous sections f(x o,-) and /(-,yo) for all xo,2/o G M which is
 neither density nor strongly density continuous.

 Proof. Choose decreasing sequence {an}£L0 °f positive numbers converging
 to 0 such that 0 a dispersion point of A - UÍT=o[a2n+i} a2n]- (^or examPle Put
 ö2n+i = [{n + 5)!]"1 and a2n = [(n + 5)!]"1 + [( n + 6)!]"1.) Define g:R->R
 by putting ťjr(0) = 0, g{an) = an+i for all n G N and extend it to an increasing
 function linearly on each of the intervals (- oo,0], [ao,oo) and [an+i>ûn] for
 all n E N. It is easy to see that g is ordinary continuous. However, it is not
 density continuous, since 0 is a density point of M'^4, while 0 = <7_1(0) is not
 a density point of <7-1(M ' A ), since <7-1(M ' A) H (0, ao] C A.
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 Now, for y < X define

 ( 0 y < x/3
 f(x, y) = S • y - 2 g{x) 0 < x/3 < y < x/2

 [ g(x) x/2 < y

 and define /(x, y ) = f{y) x) for x < y. Notice that for fixed x > 0 the function
 /(x, •) is linear for x/3 < y < x/2.

 It is easy to see that /: R2 - > R is continuous. Also, sections /(xo, ) and
 /(•,2/o) of / are density continuous for all xo, yo EM, since they are piece wise
 density continuous. (They are either constant or bi-Lipschitz; see Propositions
 1.2 and 1.4.)

 To finish the proof it is enough to show that / is not density continuous.
 To see this, notice that

 00

 f-1(A) D {(x,y):Q < x/3 <y < x/2}n (J [a2n+2, a2n+i] x R =V
 mn= 0

 and that (ordinary) density of V at (0,0) is 1/48, since the ordinary density
 of {(x, y) : 0 < x/3 < y < x/2} at (0, 0) is 1/48 and 0 is a right density point
 °f UnLo[fl2n+2, Û2n+i]- Thus, (0,0) is not a dispersion point of f~1(A) while
 0 = /(0, 0) is a dispersion point of A. □

 Example 2.3 shows that we cannot conclude density continuity of function
 / : M 2 - > M from the density continuity of its sections. What about the other
 way around? Can we conclude density continuity of sections of / : R2 ->• M if /
 is either density continuous or strongly density continuous? The next example
 shows that the answer for this question is NO, in case of density continuity
 of /. Then we will show that the answer is YES in case when / is strongly
 density continuous.

 Example 2.4 There exists continuous and density continuous transformation
 f : R2 - ¥ R such that /(-,0) is not density continuous.

 Proof. Define / by

 {0 (1 - 0 x x x > > < 0 0 0
 0 x > 0 and 'y' > x2

 (1 - x > 0 and |y| < x2,

 where g is as in Example 2.3. It is easy to see that / is continuous. " / is
 density continuous at points ^ (0,0) by Theorem 2.2 and Proposition 1.4.
 It is density continuous at (0,0), because / equals to zero on a set D =
 {(x,y): x < 0 or x > 0 and |y| > x2} and (0,0) is (ordinary) density point
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 of D. Finally, /(♦, 0) is not density continuous, since it is equal to g on [0, oo)
 and g is not right density continuous at 0. □

 Now we will show that density continuity of /(x o,-) and /(-,yo) follows
 from the strong density continuity of /: M 2 - > M. The argument is essentially
 the same as in the proof that the sections of strongly approximately continuous
 functions from M 2 into M are approximately continuous [8, p. 502]. For the
 convenience of the reader we will extract here the main parts of that proof in
 the form of two lemmas. They will imply both of these results.

 Lemma 2.5 Let (X, a) be a topological space, yo G X and let r be a topology
 on X X X such that the following condition holds :

 (CL) for every U G r and xo G X

 if xo G cla{x: (2,2/0) £ U}, then ( x0,yo ) G clT U.

 Then for every regular topological space Y and continuous f : (X x X, r) - > Y
 function g : {X,a) - ¥ Y defined by g (x) = /(x,yo) is continuous.

 Proof. Let xo G X. We will show that g is continuous at xo. So let V C Y
 be open neighborhood of zq = <7(20) = f(x o>2/o)- It is enough to prove that
 xo is a (^-interior point of ^f"1(V).

 By way of contradiction assume that it is not the case. Then xq G
 cla (7_1(Y' V). By the regularity of y we can find disjoint open sets ř7, W C Y
 such that zq G W and Y ' V C U. In particular,

 Xo G cl og^iU) = cla{a: : (x,î/o) G /-1(Í7)}.

 Hence using (CL) to f~l(U) G r, we obtain

 (xo,yo) e clr /-'(U) C clT r1(Y' W)

 which contradicts the fact that (xo, yo) is a r-interior point of f~1(W). □

 Lemma 2.6 (M,7^/-) and (M2,^) satisfy condition (CL) of Lemma 2.5 for
 every yoGl, i.e.,

 (CL) for every U £ Ts and xo, yo € M

 if x0 G clr¿{x: (x,t/o) G f/}, then (x0,yo) G clTj U .

 Proof. The proof of this Lemma is implicitly contained in the proof of [8,
 Theorem 4]. For completeness sake we will sketch it here.
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 So let U G 7$ and £o,2/o G M be such that xo G cl^ V, where V =
 { X : (x,yo) EU). Then there exists s > 0 and a sequence of intervals In =
 (an, bn) centered at xo such that limn_».oo(tn - ^n) = 0 and

 (2) mi > e for all n € N.
 mi (/„)

 Now, fix n G N and notice that for every p G V point (p,yo) is an interior
 point of U . Thus, for en - mi (7n) and every p G V there exists Sp > 0, such
 that

 (3) m2 {U fi R) > (1 - £n) m2 {R) for every Rellp ,

 where 1Z,p is a family of all rectangles (p - ¿,p+¿) x (yo - S', 2/o + <0 with Í, S' G
 (0 ,¿p). Notice that for Vp = {(p - 6,p + S) C In ' 0 < S < <SP} the collection
 {Vp : p G In H V} is a Vitali cover of In fi V. In particular, there exists a finite
 collection {J»}^ of disjoint intervals such that J, = (p,- - + <S¿) G VPi
 and

 (4) III! (/„ n V) - mi < m, ļ(In n V) ' p < el .
 Now, let &' = min{¿¿ : z = 1,2,..., m} and define Rn = In x (t/o - S', Vo + <0-
 Then the rectangles J* = x (y0 - i', y0 + <0 are disjoint subsets of Rni and

 m

 1112(1/0^) > £m2(C/njr) (by (3))
 »'= 1

 m

 > 2(1 -e») m2 (J?)
 ť = l

 = (l-en)2í'mi ^IJ (by (4))
 > (1 - En) 2<5' (mi (/„ n V) - ejļ) (by (2))
 > (1 - £f») 2¿' (e mi (/„) - ejļ)
 = (l-e„)(£-e„)2í'en
 = (1 -e„)(e-£n) m2(En).

 Thus,

 m2 (t/ n ižņ) > £
 m2(ñn) ~ 2

 for sufficiently large n since e„ approaches 0. So (z o, yo) S c'r2 U. □
 As a corollary we conclude the following theorem.
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 Theorem 2.7 Let f : R2 - >• R, £o,2/o £ R and <7, A: R - >• R be defined by
 g(x) = /(x, 2/0) and A(y) = f(x0,y) for x, y G R.

 (i) // / is strongly density continuous , then g and h are density continuous.

 (ii) If f is strongly approximately continuous, then g and h are approximately
 continuous .

 Proof. It follows immediately from Lemmas 2.5 and 2.6 if we notice that the
 ordinary topology and the density topology on R are regular. □

 We will finish this section with the following comparison of classes of den-
 sity continuous £(7^, 7^), strongly density continuous and ordi-
 nary continuous C{To^To) functions from R2 into R.

 Theorem 2.8

 C{TŠ,TÚ) C C(T¿,T¿)
 U u

 C{Ti,T}r)c'C{To,To) C C(T¿,T¿) nC(T0,T0) C C(To,To )

 All the containments are proper.

 Proof. The inclusions follow immediately from C(Ts,T^) C C(T^y
 To see that they are proper it is enough to show C{T$ > Tfr) <ļi C(To > To) for

 vertical inclusions and C{To,To) <£ C(T^yT^) and C(7^,7¡J0 HC(7õ,7õ) ÇL
 CÍTÍ iTjsf) ^or horizontal inclusions.

 £ (7s >711-) (1- C(To,To) follows from Proposition 2.1 for an arbitrary func-
 tion /(#, y) = h(y)i where h : R - y R is density continuous and not continuous.
 For example, we can define

 {0 x £ A
 where A = Un^=ota2n+1» fl2nl *s from Example 2.3.

 C(To,To) <£ C(1 follows from Proposition 2.1 for any function
 f(xyy) = g{y), where g : R - y R is continuous and not density continuous.
 For example, function g from Example 2.3 works.

 C(7v, 7]ļ-)nC(7č>, To) <£ C{Ts>Tfr) is justified by function / from Example
 2.4 since, by Theorem 2.7 (i) , / cannot be strongly density continuous. □
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 Figure 1: F'1(A)  Figure 2: A

 3 Transformations from R2 into R2.

 In this section we consider the interrelations between (strongly) density con-
 tinuous transformations F = (f,g) : M 2 - > M 2 and their coordinate functions
 f ì g IR2 - M .

 If / and g are the coordinate functions of transformation F: M 2 - >■ M2,
 then /, <jr : M2 - > IR. It might happen, however, that either / or g depends of
 only one variable, e.g., f(x> y ) = h(y) for some h : M - >• M. Then, according to
 Proposition 2.1, we can replace / with h when examining the (strong) density
 continuity of /. We will use this convention throughout the rest of the paper.

 The next easy fact forms a base for the discussion of this section.

 Theorem 3.1 Let F : M2 - >» M2 be a transformation with coordinate functions
 f,g : M2 M, i.e., such that F(x,y) = (/(x, y),g(x, y)).

 (a) If F is strongly density continuous, then f and g are also strongly density
 continuous.

 (b) If F is density continuous , then f and g are density continuous.

 Proof, (a). Assume that F is strongly density continuous and let A E
 We have to show that f'1 (A), g~l(A) G 7^ . But AxR G 7¿2 and so, f~x(A) =
 F~X(A xl)G T§- Similarly, M x A G Ts so that g~1(A) = F-1(M x A) G Ts-

 The proof of part (b) is identical. □
 At this moment one might be tempted to prove the converse of (a) and

 (b) of Theorem 3.1. Indeed, such a claim would be obvious if either the
 ordinary or the strong density topology on M 2 was a product topology of the
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 Figure 3: F'^B)  Figure 4: B

 one-dimensional density topology on M. This, however, is not the case and the
 next two examples show that neither implication in (a) nor (b) of Theorem
 3.1 can be reversed.

 Example 3.2 The transformation F: M 2 - >• M2, F(xiy) = (x,y3), is not
 density continuous , while its coordinate functions f(x) = x and g(y) = t/3 are
 density continuous.

 Proof. The functions / and g are density continuous, since all real analytic
 functions are density continuous. (See Proposition 1.2.) To see that F is
 not density continuous put A = {(u, v) : |v| > |t/3|} LJ {(0, 0)} and notice that
 F~1(A) = {(tí, v): |ü| > M} U {(0,0)}. (See Figures 2 and 1.) It is routine to
 check that A G 7V, while F~1(A) £ Tm since d2(F~1(A)i (0,0)) = 1/2 ^ 1.
 □

 Example 3.3 The transformation F: M2 - > M2, F(xiy) = (x,x + y), is not
 strongly density continuous , while its coordinate functions f(x,y) = x and
 g(xiy) =■ x + y are strongly density continuous.

 Proof. / is strongly density continuous by Proposition 2.1. The function g is
 strongly density continuous by Theorem 2.2 since it is obviously bi-Lipschitz.

 To see that F is not strongly density continuous put

 B = {(u, v) : |v - ti| > i«2} U {(0, 0)}
 = {(tí, v) : v > u -f u2 or v < u - u2} U {(0, 0)}
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 and notice that F~1(B) = {(ti,v): |v| > u2}U{(0,0)}. (See Figures 4 and 3.)
 It is easy to check that B G 7$, while F"1(B) £ T$ because (0,0) is not a
 strong density point of F~1(B). □

 Notice that the transformation F(x , y) = (x, x+y) is evidently bi-Lipschitz.
 In particular, the next corollary proves that Proposition 1.3 cannot be gener-
 alized to strongly density continuous transformations from M 2 into M2.

 Corollary 3.4 There exists a bi-Lipschitz transformations from M2 into M2
 which is not strongly density continuous. □

 Example 3.2 suggests that there is no real chance to reverse implication (b)
 of Theorem 3.1. Also, Example 3.3 does no leave much hope for reversing im-
 plication Theorem 3.1(b). We can still hope, however, that F: R2 - > M2,
 defined by F(x,y) = (/(x), g(y)) is strongly density continuous, provided
 /, g : M - y M are density continuous. But, even this claim is too strong, as
 the precise condition in this direction is given by the next theorem.

 Theorem 3.5 Let /, <7: M - » M and define the transformation H : M 2 - >■ M 2
 by H(xiy) = ( f{x),g(y )). If H is not constant , then H is strongly den-
 sity continuous if and only if functions f and g are density continuous and
 mi (/-1(p)) = mi (flf-1(p)) = 0 for every p G M.

 Proof. "=>" Assume first that H is strongly density continuous. Then /
 and g are density continuous by Theorem 3.1 and Proposition 2.1.

 To prove the additional part first notice that neither / nor g is constant.
 To see this assume, to the contrary, that g is constant and equal to 6 G 1.
 Then / is not constant, since we assumed that H is not constant. Thus,
 by Proposition 1.1(c), there exists p G /[M] with mi (f~1{p)) = 0. Now
 notice that A = [M x (M ' {6})] U {(p, 6)} G as a set of full measure, while
 H~1(A) = i/_1((p, 6)) = f~l{p) x M is non-empty and has two-dimensional
 Lebesgue measure zero. Thus, H~1(A) £ T$> This contradiction establishes
 that g is not constant. A similar argument shows that / is not constant.

 Now, we will show that mi (/-1(p)) = 0 for every p G M. This will
 imply that mi (g~l(p)) = 0 for every p G M by using the same argument for
 G : M 2 - y M2 defined by G{xìy) = (<7(z), /(y)), which is also strongly density
 continuous.

 So pick p G M and, by way of contradiction, assume that mi ( f"1(p )) >
 0. Then by the Lebesgue Density Theorem, there exists a G f~1{p) with
 d'(f~1(p)i a) = 1. Since g is not constant, by Proposition 1.1(c) we can find
 q G g'ß] such that mi (g~1{q)) = 0. Put A = [(M' {p}) x M]U {(p, g)}. Then
 A G Ts as a set of full measure. On the other hand,

 H-'A) = [(R'r1(p))xR]U[r1(p)xi-1(ł)]
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 does not belong to T$ • To see this pick (a,b) G f~1{p) x g~l(q ) C H~1(A).
 Then

 (a, 6)) = ¿,((R'r1(p))xR,(al6))
 = di(M'/_1(p),a)
 = 1 -cři(/-1(p),a) = 1 - 1 1,

 since m2 ( f~l(p ) x 9~1(q)) = 0.
 The proof of implication "=>" is completed.
 "<=" First notice that it is enough to show that the transformation

 F(x, y ) = (f(x),y) is strongly density continuous under our assumption, since
 C(x, y) = (y, x ) is strongly density continuous. Moreover, it is enough to show
 that F(x,y) = (f(x),y) is strongly density continuous at (0,0), since transla-
 tions are strongly density continuous. We can also assume that /(0) = 0.

 So let A C M2 be such that (0, 0) is not a strong dispersion point of A. We
 will finish the proof by showing that F (0,0) = (0,0) is not a strong dispersion
 of F [A]. In the proof we will need the following easy lemma in which Ax
 stands for a vertical section of A C M 2 given by x , i.e., Ax = {y : (x, y) G A}.

 Lemma 3.6 Let e G (0, 1/2) and let A C R= [- a , a] x [-6, b] be measurable
 and such that

 mjÇA)
 m3(Ä) -

 If B = {x G [-a, a]: mi (Ar) > 2be2}, then mi (B) > 2 as2.

 Proof. Easy, by the Fubini Theorem. □
 Now, we can come back to the proof of Theorem 3.5. Since (0, 0) is not

 a strong dispersion point of A, there exists e G (0, .5) and a sequence of
 rectangles Rn = [- an,an ] x [- 6n,6n] such that max{an,6n} - y 0 and

 /r' m2 (AC'Rn) . . „
 (5) /r'

 m2 (Rn) ,

 Now, by induction on ¿ G N, we define an increasing sequence {n¿}£í0 of
 indices, sequences {c,}^0, of positive numbers and a sequence {£t-}?îo
 of sets such that the following inductive conditions hold for every i G N

 (i) 0 < Ci < di and < i for i > 0.

 (ii) Bi C [-an., ani] fi f"1((-diìdi) ' (-c¿, c,)) is such that mi (Bi) > 2 anie2
 and mi (Ax fi [-bnii 6nJ) > 2bnie 2 for all x G Bi.
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 To make the inductive step take i G N such that the construction is already
 done for all natural numbers less than i. If i = 0 put do = 1. Otherwise, choose
 di G (0,c,_i/¿). This guarantees satisfaction of (i) for step i.

 Now, since 0 is a density point of (- d¿, d¡) and / is density continuous,
 0 is a density point of /_1((- d,-, d»)) and (0,0) is a strong density point of

 Choose ni G N, n, > n,_i for i > 0, such that

 m2([f-1((-di,di))xR]í)Rn,) ^
 m2 (Rn,) ^ > £'

 Then, by (5),

 m2 (An[f-í((-di,di))xm)nRnt) > 2£
 m 2 (Rni)

 Moreover, since

 m2^ fļr^i-c.c)) xM nfi„,ļ =m2([/-1(0) xE]nñn,) =0
 we can find ct- G (0, d¿) such that ni2 ([/_1((- c» j c*)) x ®] ^ < 6 m2 (^nj,
 i.e., that

 m2 ([/"Mí-cňcQ) xM]nižn.)
 m2 ( Rni ) < 6'

 Hence, by (6),

 m2 (A n [f~1((-di, di) ' (-Ci, d)) Xl]n ñ„.)
 m2 (Rn.) > £"

 Now, using Lemma 3.6 with A fi [/_1((- d¿, d¿) ' (- c¿, c,)) x M]fl Rni and Rni
 we can find B{ satisfying (ii).

 This completes the inductive construction.
 From condition (ii) it follows immediately that 0 is not a dispersion point

 of B = U,~o Bi- Hence, since 0 £ B and / is density continuous, 0 = /(0)
 is not a dispersion point of f[B'. So, there exists S > 0 and a decreasing
 sequence {pn}£°=o converging to 0 such that

 mi ( f[B' O [-Pn.Pn]) ^ r
 2 Pn

 For fixed i G N let fc,- be the smallest natural number such that <

 Pi. Then f[B] D [-p,-,p,] = 'JT=k, f[Bi' n [~Vi,Pi] since f[Bk] C (~dk,dk) '
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 (- et, Ck) for every k € N. Hence,

 mi {f[Bķ,]C'[-pi,Pi]) 2dfci+i
 2 pi 2 cki

 > mi (/[Big] fi [~P¡, Pi]) mi ((- <jfci+i))
 2 Pi 2 pi

 > mļ (/[ďfc,]n[-p,-,p,]) (ur=fcl+i/[Ą]n[-p..p.])
 2pi 2pi

 _ mi (f[B' n [-p,-,p,])
 2 pi

 > 26

 for every ¿ £ N. However, the sequence converges to 0. Thus, there

 exists ¿o € N such that dk'+1 < S for i > i0. In particular,
 ki

 (7) m, (/[^fc.]n[-pf,p.]) > s fo[ . >
 2 p¡

 Now, notice that diameters of the rectangles Si = [- Pi,Pi] x [-bnk Jbnk ]
 converge to 0. We will use these rectangles to show that (0, 0) is not a strong
 dispersion point of F[A'. So consider F[A]n5,-. For every v G /[-Bfcjnf- p,-,p¿]
 and each x G Bk{ such that f(x) =vwe have

 (F[A] nSi)" = ( F[A]y n 6„fcj] da* n [-bnki,bnhi].

 Hence, by (ii), mi ((F[A| n 5,)") > 2 bnk.e2 for every v £ f[Bki ] D [-p¿,p,].
 Therefore, by (7) and Fubini Theorem,

 m2 (F[A] fi Si) > 26njk,e2mi ( f[Bki ] n [-p<,p,]) > 2bnk.e262pi = m2 (Si)6e2

 for all i > ¿o, i.e.,

 m2 (F[i4]n5¡) 1 J
 m2 (Si)

 Thus, (0, 0) is not a strong dispersion point of F[A'.
 This finishes the proof of Theorem 3.5. □
 Notice that the above proof can easily be modified to obtain the following

 local version of Theorem 3.5.

 Theorem 3.7 Let f : M - y M. Then F(x,y) = ( f(x),y ) is strongly density
 continuous at (a, 6) G M2 if and only iff is density continuous at a and a is
 a dispersion point of f~1({f(p)}). □
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 We will finish this section with the proof that there are no inclusion rela-
 tions between C(To,To ), ^(7^,7^) and C(T1,T1) as stated in the theorem
 below.

 Theorem 3.8 (a) C(T0iTo) nC(7#,7#) £ C(T52, Tļ);

 (b) C(To , 7õ) n C(Ts , Ts) <£ <TO,7#);

 (c) C(TZ,Tfr)nC(T1,n)tC(To,To).

 Proof, (a) It is justified by F: M 2 -> M 2 defined by F(xiy) = (x,x 4- y )
 from Example 3.3. It was proved there that F is not in C(Ts,T$). F is
 also evidently bi-Lipschitz, so it is continuous and, by Proposition 1.3, it is in
 w, m-

 (b) It is justified by F: M2 ->■ M2, F(x,y) = (a?, 2/3) , since it is evidently
 in C(ToiTo), F £ C(7#,7#) by Example 3.2 and F G C(T52,T52) by Theorem
 3.5, since f(x) = x and g(y) = y3 are density continuous homeomorphisms.

 (c) It is justified by F: M2 - > M2 defined by F(x,y) = (/(x),y), where
 f(x) = x -f h(x) and h is from Theorem 2.8.

 Since h and / are clearly discontinuous at 0 we have F £ C{To^To)- To
 prove that F G £(75,7^) notice first that / is density continuous: at points
 x ^ 0, since it is there piece wise linear on M ' {0}, and at 0, since / is
 the identity function on a set M ' A, for which 0 is a density point. Now,
 F G C(Ts,T$) follows from Theorem 3.5 if we notice that none of the slopes
 of the linear pieces of h equals -1, i.e., f~l{p) is at most countable for every
 PGM.

 To see that F G C(7^,7^) we have to consider two kinds of points. F
 is density continuous at points of M 2 ' (A x M) G Tjfr since it is the identity
 mapping on this set. F is continuous at points of A x M since at every point
 of this set F is either locally bi-Lipschitz (Proposition 1.3) or is a maximum
 (minimum) of two functions with this property (see Proposition 1.4). □
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