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 EXTREME PROBABILITY SUBMEASURES

 ON 3 POINTS

 1 Introduction

 Let (X,V) be a finite set and the algebra of all its subsets. The collection
 of probability submeasures S on (X^V) form a compact, convex set, and the
 question is to determine the extreme points. This problem is due to J. Roberts
 and is indirectly related to the Control Measure Problem of D. Maharam Stone
 (see [1] and [2] ). If X consists of two points, then it is easy to see that there
 are three extreme submeasures - the two point masses and the submeasure
 which is identically 1 (except of course on the empty set).

 In this note, we answer the question for three points and demonstrate a few
 lemmas which apply in the general case. In particular, for three points there
 are twelve extreme submeasures. The following table gives the twelve extreme
 submeasures and their values on the nonempty subsets of X = {1,2, 3}. Each
 row represents one of the submeasures. Each column represents one of the
 nonempty subsets of {1,2,3}. The values are read in the obvious way (e.g.,
 •713(23) = 0.5).
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 123 23 13 12 3 2 1

 ¿123: 1 111111
 ¿23: 1 111110
 ¿i3: 1 11110 1
 ¿12: 1 1110 11
 á3: 1 110 10 0

 ¿2: 1 10 10 10
 ¿1: 1 0 110 0 1
 t)9: 1 1 1 1 0.5 0.5 0.5

 7723: 1 1 0.5 0.5 0.5 0.5 0.5

 t]13: 1 0.5 1 0.5 0.5 0.5 0.5
 7712: 1 0.5 0.5 1 0.5 0.5 0.5
 1 1 0.5 0.5 0.5 0.5 0.5 0.5

 Section 2 contains results showing that the above twelve are extreme points.
 Section 3 contains results showing that convex combinations of the above
 twelve give all submeasures, hence implying that they are all the extreme
 points.

 We include in this section a general result and its proof which illustrates
 the geometric-polyhedral approach to the problem, which is different from the
 methods in the subsequent sections.

 Definition 1 A probability submeasure ß on (X, V) is a function on V satis-
 fying

 1. i. //(0) = 0 < fi{A) < 1 = n(X) (positive, probability)

 2 . ii. - fi{A) > 0 whenever AÇ B (monotonicity)

 3. iii. fi(A) + fi{B) - fi(A U B) > 0 (subadditivity)

 From the definition, one has the following general result and proof (for
 which we would like to thank Arthur Stone).

 Proposition 1 (A.H.Stone) The extreme probability submeasures , on a finite
 set, take only rational values .

 Proof. Consider the set S of probability submeasures fi on the set X of
 n points. Then S can be regarded as a subset of M 2 , with one coordinate
 corresponding to each subset of X. We cut down the dimension to 2n - 2 = Ar
 by omitting coordinates for 0 and X (of course ¿/(0) = 0 and ļi(X) = 1). It
 is then easy to see that S is the convex polyhedral subset of determined
 by the inequalities in the definition. Now the boundary of this set consists of
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 points where one or more of these inequalities become (s) equalities - neces-
 sarily linear. Any single such equality produces a face of codimension 1; two
 independent ones give a face of codimension 2; and so on. The extreme points,
 i.e., the vertices of the polyhedron S are precisely the points determined by
 k = 2n - 2 independent equalities (forming k independent linear equations) .
 Of course the other inequalities must also be satisfied. The coefficients in the
 resulting k linear equations take only the values 0, 1 and -1. For example,
 fi(A) = 0 has one coefficient 1; fi(B) - f. i(A ) = 0 has one 1 and one -1;
 fi(A) + ß(B) - fx(A U B) = 0 has two Ts and one -1. In each case, the co-
 efficients of the other coordinates (sets) are 0. The "right-hand sides" of the
 equations are 1 and (mostly) 0. What matters of course is that all the terms
 are integers. So the solutions to these simultaneous equations, by Cramer's
 Rule, are rational. □
 This approach suggests a rather brute force method (which could be com-

 puter implemented) for obtaining the extreme submeasures. For example, for
 n = 4, Ar = 24 - 2 = 14, list the basic inequalities, select 14 independent ones
 to convert to equalities and solve the resulting simultaneous equations. More
 realistically, this gives a method (again, computer implementable) to test if a
 given submeasure is actually an extreme point. (Check how many inequalities
 are actually equalities.) The number of inequalities as a function of n can be
 calculated and grows quite fast. First, one reduces the number of inequalities
 derived from the definition by showing (1) for monotonicity it is only necessary
 to work with sets which differ by one point, and (2) for subadditivity it is only
 necessary to work with inequalities for disjoint sets. Under these conditions,

 the number of inequalities for n points is 3 ~22 - ^ + n • (2n_1 - 1) .

 Section 2

 The symbols wiH be used to denote submeasures (even if they are
 actually measures). As a general notation, we will assume that /z is a convex
 combination of <j) and that is; fi = a • <f) + 6 • where a, b > 0 and a + 6 = 1.

 The following lemma is obvious.

 Lemma 2 If fi is a submeasure which only takes on the values 0 and 1, then
 ß is an extreme submeasure.

 Corollary 3 The seven submeasures 8j are all extreme.

 For reasons which will become apparent as we proceed, we subsume the
 above as
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 Lemma 4 If p(A) = 0, then the same property is true of both <f> and i.e.
 < j)(A ) = 0 = ip(A). If p(A) - 1, then the same property is true of both <f> and
 rp.

 We also use this to motivate the following

 Definition 2 p is extreme on the set A if whenever p is a convex combination
 of <f> and ip then <i>{A) = p(A) = tp(A).

 Lemma 5 Suppose A C B and p{A) = p(B). Then both <j> and ip satisfy the
 same relation <I>(A) = <t>(B)} tp(A) = tp(B)

 Proof. Using the monotonicity of submeasures the result is elementary from

 p(A) = a • <j>(A) + b • ý(A) < a • <j>{B) + b • ý(B) = p{B) = p(A)

 Corollary 6 This gives for each Tļa other than ī)q that if it is a convex com-
 bination rja = a -(f) + 6 • xl>, then both <ļ> and tp have the same 2-valued form.

 It is then simple to complete the proof that they are extreme.
 Proof that 7723 is extreme.

 Assume tj = 7723 = a • <j> + b • i¡). Then we have 77(2) = tj( 21) = 77(1) =
 7/(31) = 77(3) - 1/2 and as stated above <j) must take a single common value
 X on these sets, and ip must take a single common value y. If x > 1/2 then
 y < 1/2. But then ^(23) = 1 < ^(2) 4- V>(3) < 1/2 + 1/2.

 We can make this general.

 Lemma 7 Assume AjBjC are three different sets satisfying p(A) = p(B) =
 p(C) = p(AUB) = p(AUC) = ^p(BUC). If p is extreme on the set BUC,
 then it is extreme on the three sets and the other two unions.

 Lemma 8 Assume p(A U B) = p(A) + p(B). Then the same is true for <f>
 and ip.

 Proof.

 p(A) + p(B) = p(A U B)
 = a • <j)(A U B) + b - ip(A U B)

 <a.(^)+^)) + ft.(^)+^))

 □

 To see that rje is extreme requires a slightly different proof.
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 Proof that rje is extreme. Assume r} = r]e = a'<j) + b-ip. Then <f> and
 tp are 1 on all sets other than the singletons. We start with 1/2 = 77(1) =
 a - (f)(1) + b • ip( 1). If <^(1) > 1/2 then ip(l) < 1/2. Since ip is a submeasure, we
 have 1 = ip(12) < ip(l) + i>{2). Hence ip(2) >1/2 and similarly ^(3) > 1/2.
 But then using 1/2 = rj(2) = a-<j)(2) + b-4>(2) and 1/2 = 77(3) = a-<f)(3)+b'ip(3)
 we conclude that <¡>(2) <1/2 and <¿>(3) < 1/2. This is a contradiction.D
 We can make this into a general lemma.

 Lemma 9 Assume A , B, C are three different sets satisfying fi(AUB) = fi(AU
 C) = fi(B U C) = X and that the measures ß(A) = ļ. i(B ) = = x/2. If fi
 is extreme on the three pairwise unions, then ¡1 is extreme on the sets A, B,C .

 This completes everything needed to see that the above twelve are extreme.
 However, we would like to present a little more in this section which may have
 use in the more general case.

 Definition 3 Given the submeasure 'i on X we define the weak-extreme graph
 as follows. The vertices are the non-empty subsets of X. An edge exists be-
 tween the two sets A and B if either of the two conditions are satisfied.

 (i) AC B and fi(A) = fi(B) (or B C A etc.)

 (ii) A C B and fi{B) = fi(A) + fi(B'A) (or B the subset)

 Note that the graph is not a directed graph so we don't care if A is the
 subset or superset. The significance of (i) is that if A C B is not connected
 by property (i) then the size of A could be increased slightly without losing
 monotonicity (or the size of B decreased). The significance of (ii) is that
 if A C B is not connected by property (ii) then then the size of A could be
 decreased slightly without losing subadditivity (or the size of the B increased) .
 The above definition is why we did not omit the value of the submeasures

 on the full set X even though this was always 1. That is, /i is extreme on X
 and so we "connect" to X.

 Lemma 10 If fi is extreme on the sets A and B and either

 1. fi(A U B) = max(fjL(Ä) y fi(B))

 or

 2. fi(A U B) = fi(A) + fJi{B),

 then fx is extreme on A U B

 Proposition 11 If the w-e graph is disconnected , then fi is not an extreme
 submeasure
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 Proof. Let A be a connected subgraph not containing X. Then for e > 0
 chosen small enough

 _ ( n(B) if B<£A
 /M,±e _ - 1(1^)^) ifAeA

 are both probability submeasures.

 Section 3

 In this section, it is shown that convex combinations of the above twelve can
 give any desired submeasure. A submeasure is defined by its values on the six
 non-trivial subsets of X = {1,2,3}. So we are essentially working in a six-
 dimensional space and hence expect we will need at most seven of the above to
 get any desired submeasure. Thus this section is just a bit of "linear algebra" .
 The goal however, is to have an orderly way of presenting the proofs which
 should '"extend" to the general case.

 Throughout this section /¿ is an arbitrary submeasure which we show is a
 convex combination of the named extreme submeasures. We assign coefficients
 to the twelve submeasures as follows, and try to fit the resulting combination
 to 'i. Thus we think of the following columns as summing to fi.

 123 23 13 12 3 2 1

 <*123'¿123 <*123 <*123 <*123 <*123 <*123 <*123 <*123
 <*23 * ¿23 <223 <*23 <*23 <*23 <*23 <*23 0

 <*13 ' ¿13 <*13 <*13 <*13 <*13 <*13 0 ū'z
 <*12 *¿12 <*12 <*12 <*12 <*12 0 ai2 <*12
 <*3 * ¿3 <*3 <*3 <*3 0 <*3 0 0

 0>2 * S 2 02 <*2 0 0>2 0 Ū2 0
 a' • ¿i a' 0 ai a' 0 0 a'
 be • rj$ b$ b$ b$ b$ 0.56# 0.56# 0.56#

 623 • 7] 23 623 623 O.5623 O.5623 O.5623 0.5&23 0.5&23

 613 • ^13 613 0.56I3 613 0.56I3 0.56I3 O.5613 O.5613
 612 * ^712 612 O.5612 O.5612 612 O.5612 O.5612 O.5612
 bp • rjp bp 0.56p 0.56p 0.56p 0.56p 0.56p 0.56p
 ¡I 1 #23 Xis X12 Xs X2 X'

 For a fixed submeasure ¿z, each column can be summed, and by taking
 linear combinations of the summed columns we obtain the following relations.

 (i) ai = 1 - X23-0.56p-0.56i2-0.56i3
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 (ii) a2 = 1 - xi3-0.56p-0.56i2-0.5023

 (iii) a3 = 1 - £i2-0.56p-0.56i3-0.5623

 (iv) ai2 = x13 -f x23 - «3 - 1+0. 56p-0. 56^+0. 56i2

 (v) ai3 = x12 + x23 - x2 - 1+0. 56p-0. 56^+0. 56i3

 (vi) a23 = x12 + x13 - xi - 1+0.56p-0.56^+0.5623

 (vii) ai23 = I - ((*12 + Xi3 + x23) - («1 + x2 + z3)) - bp

 - ^+O.56i2+O.56i3+O.5623^+O.560

 For example, equation (i) can be obtained by subtracting the second column
 (for the set 23) from the first column (for the full set 123).

 The problem is to show that for different submeasures /i the coefficients a's,
 b' s can be chosen positive and to sum to one. First we define some auxiliary
 functions.

 (viii) Define s = (xì2 + xì3 + £23) ~ (^i + x2 + z3).

 (ix) Define $i2 = xi3 + x23- x3-l.

 (x) Define si3 = xi2 + x23 - x2 - l.

 (xi) Define s23 = x12 + x13 - x' - 1.

 Our orderly way of analyzing the cases is via the functions S{j and s. In the
 general case, there would be many more functions. The function s can be
 viewed as the difference between the sum of the size of the one-point sets and
 the sum of the size of the two point sets. It is easy to see that ß on n-points
 is a measure if and only if the sum of the size of the one point sets is 1 .

 In the sequel, we assume (without loss of generality) that «12 < «13 < «23-

 Lemma 12 0 < s < 3/2.

 Proof. Xij > Xi V i,j and so s > 0. To get the right-hand inequality, sum
 up the three inequalities X{j - X{ - Xj < 0 plus the three inequalities x, < 1
 and divide by 2.

 Lemma 13 < 1.

 Proof. For «12 this follows from £13 + £23 < 2 and x3 + 1 > 1.

 Lemma 14 s > 1 => Sij > 0.
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 Proof. 0 < x' + x2 - xi2 < (s - 1) + xi + x2 - xi2 = (xi2 + x'$ + X23 - «1 -
 X2 - X3 - 1) + Xl + X2 - X12 = *13 + X23 - x3 - I = S12

 CASES

 Case I. 1 < s < 3/2. In this case, give the coefficients the following values.

 bij = 0 and bp = 0, bg = 2(s - 1), ai23 = 0, a,- = 1 - Xjk, i ± j ^ k
 and fljj - s g j ļs 1 ļ - x ¿ f- Xj •

 It is straightforward to check that these are all positive and sum to one.
 Case Ha. s < 1 and 0 < S12 < «13 < S23

 bļj - Oj bg - 0) bp - - 0) flj - 1 Xjk 1 Q>ij ~ &ij and Û123 ~ 1 s

 Case lib. s < 1 and S12 < 0 < S13 < $23

 ¿13 = 0, 623 = 0, bp = 0, be = 0, 612 = -2si2, <*12 = 0, a's - s's
 and ÍZ23 - «23) al = 1 - ^23 + «12 = Xl3 - %3i a2 = I - X'3 + «12 =
 ^23 - X3i a3 = 1 - X12 and ai23 = 1 - s 4 si2 = ®i + x2 - «12

 Case Ile. s < 1 and S12 < «13 < 0. «23 can be either positive or negative since
 only the differences («23 - «13 and S13 - 512) are used.

 be - ¿13 - ¿23 = 0, 0.56p = - «13, O.5612 = «13 - S12 = xi2 4-
 £3 - ^13 - X2i 0,1 - X13 - 23, a2 = X23 - %3i 0-3 = X23 ~ X2,

 ai2 = 0 and ai3 = 0, 023 = S23 ~ $13 = £13 + x2 - x' - x23 , and
 a123 = 1 ~~ (al "I" a2 "I" O3 4 <223 + ¿12 4 ¿p) = #23 4 X' - 1 > 0

 This completes the proof that the above twelve submeasures constitute all
 the extreme submeasures for three points.

 Note added in proof: It has come to the attention of the authors that Komei
 Fukuda has written a program which calculates the extreme submeasures for
 n points.
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