Inga Libicka and Bożena Szkopińska, Institute of Mathematics, University of Lódź, ul. Banacha 22, 90-238 Lódź, Poland

ON THE MEASURABILITY OF EXTREME PARTIAL \mathcal{I} -APPROXIMATE DERIVATIVES

Abstract

In this paper we prove that the extreme partial derivatives of a function having the Baire property, have the Baire property too.

Let $\mathbb{R}(\mathbb{R}^2)$ denote the real line (the plane) and let \mathbb{N} the family of all positive integers. All topological notations are given with respect to the natural topology. We introduce the following notation:

 $\mathcal{I}(\mathcal{I}^2)$ - the σ -ideal of subsets of $\mathbb{R}(\mathbb{R}^2)$ of the first category,

 $\mathcal{S}(\mathcal{S}^2)$ - the σ -field of subsets of $\mathbb{R}(\mathbb{R}^2)$ having the Baire property.

We start with the definition of \mathcal{I} -density point which was introduced in [3].

Definition 1 [3] We shall say that 0 is a point of \mathcal{I} -density of a set $A \in S$ if and only if for each sequence of positive integers $\{n_m\}_{m \in \mathbb{N}}$, there exists a subsequence $\{n_{m_p}\}_{p \in \mathbb{N}}$ such that

$$\{x: \chi_{n_m, A\cap [-1,1]}(x) \not\to 1\} \in \mathcal{I}.$$

A point x_0 is a point of \mathcal{I} -density of a set $A \in S$ if and only if 0 is a point of \mathcal{I} -density of the set $A - x_0$. A point x_0 is a point \mathcal{I} -dispersion of a set $A \in S$ if and only if x_0 is a point of \mathcal{I} -density of the set $\mathbb{R} \setminus A$.

Definition 2 [1] Let $F : \mathbb{R} \to \mathbb{R}$ have the Baire property in a neighborhood of x_0 . The upper \mathcal{I} -approximate limit of F at x_0 (\mathcal{I} -lim $\sup_{x \to x_0} F(x)$) is the greatest lower bound of the set $\{y : \{x : F(x) > y\}$ has x_0 as an \mathcal{I} -dispersion point}. The lower \mathcal{I} - approximate limit, the right-hand and left-hand upper and lower \mathcal{I} -approximate limits are defined similarly. If \mathcal{I} -lim $\sup_{x \to x_0} F(x) = \mathcal{I}$ lim $\inf_{x \to x_0} F(x)$, their common value is called the \mathcal{I} -approximate limit of Fat x_0 and denoted by \mathcal{I} -lim $_{x \to x_0} F(x)$.

Key Words: Baire category, I-density point, extreme partial I-approximate derivatives. Mathematical Reviews subject classification: Primary: 26A24 Received by the editors April 8, 1993

Let $F : \mathbb{R}^2 \to \mathbb{R}$ and $(x_0, y_0) \in \mathbb{R}^2$. Put

$$U_{(x_0,y_0)}(x) = rac{F(x,y_0) - F(x_0,y_0)}{x-x_0} ext{ for } x \in \mathbb{R}, \, x
eq x_0.$$

Definition 3 [1] Let $F : \mathbb{R}^2 \to \mathbb{R}$ be any function defined in some neighborhood of $(x_0, y_0) \in \mathbb{R}^2$ and having the Baire property there in the direction of the x-axis. We define the upper \mathcal{I} -approximate partial right derivative of F at $(x_0, y_0) (D_{I-ap}^+ F_x(x_0, y_0))$ in the x direction as a corresponding extreme limit of $U_{(x_0, y_0)}(x)$ as x tends to x_0 from the right. The other extreme \mathcal{I} -approximate partial derivatives in the x direction are define similarly. If all of these derivatives are equal and finite, we call their common value the \mathcal{I} -approximate partial derivative of F at (x_0, y_0) and denote it by $\mathcal{I} - F'_x(x_0, y_0)$. In a similar way we can define the extreme \mathcal{I} -approximate derivative in the direction of the y-axis.

Lemma 4 [2] Let G be an open set of the real line; then 0 is an \mathcal{I} -dispersion point of G if and only if, for every $n \in \mathbb{N}$, there exist $k \in \mathbb{N}$ and a real number $\delta > 0$ such that, for any $h \in (0, \delta)$ and $i \in \{1, ...n\}$, there exist two numbers $j, j' \in \{1, ..., k\}$ such that

$$G \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) \cdot h, \ \left(\frac{i-1}{n} + \frac{j}{nk} \right) \cdot h \right) = \emptyset$$

and

$$G \cap \left(-\left(\frac{i-1}{n} + \frac{j'}{nk}\right) \cdot h, -\left(\frac{i-1}{n} + \frac{j'-1}{nk}\right) \cdot h \right) = \emptyset.$$

Lemma 5 Let $H \in S$. If 0 is an \mathcal{I} -dispersion point of H, then, for every $n \in \mathbb{N}$, there exist $k \in \mathbb{N}$ and a real number $\delta > 0$ such that, for any $h \in (0, \delta)$ and $i \in \{1, ..., k\}$, there exist two numbers $j, j' \in \{1, ..., k\}$ such that

$$H \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) \cdot h, \ \left(\frac{i-1}{n} + \frac{j}{nk} \right) \cdot h \right) \in \mathcal{I}$$
$$H \cap \left(- \left(\frac{i-1}{n} + \frac{j'}{nk} \right) \cdot h, \ - \left(\frac{i-1}{n} + \frac{j'-1}{nk} \right) \cdot h \right) \in \mathcal{I}.$$

and

PROOF. Let
$$H \in S$$
. Then there exist an open set G and two sets of the first category P_1, P_2 such that $H = (G \setminus P_1) \cup P_2$. If 0 is an \mathcal{I} -dispersion point of the set H, then 0 is an \mathcal{I} -dispersion point of the set G. Therefore, by Lemma 4, for every $n \in \mathbb{N}$, there exist $k \in \mathbb{N}$ and a real number $\delta > 0$ such that, for any $h \in (0, \delta)$ and $i \in \{1, ..., n\}$, there exist two numbers $j, j' \in \{1, ..., k\}$ such that

$$G \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) \cdot h, \ \left(\frac{i-1}{n} + \frac{j}{nk} \right) \cdot h \right) = \emptyset$$

and

$$G \cap \left(-\left(\frac{i-1}{n} + \frac{j'}{nk}\right) \cdot h, -\left(\frac{i-1}{n} + \frac{j'-1}{nk}\right) \cdot h \right) = \emptyset$$

We observe that, for each open interval (a, b), if $G \cap (a, b) = \emptyset$, then $H \cap (a, b) \subset P_2 \in \mathcal{I}$. Therefore, for every $n \in \mathbb{N}$, there exist $k \in \mathbb{N}$ and a real number $\delta > 0$ such that, for any $h \in (0, \delta)$ and $i \in \{1, ...n\}$ there exist two numbers $j, j' \in \{1, ..., k\}$ such that

$$H \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) \cdot h, \ \left(\frac{i-1}{n} + \frac{j}{nk} \right) \cdot h \right) \in \mathcal{I}$$

and

$$H \cap \left(-\left(\frac{i-1}{n}+\frac{j'}{nk}\right) \cdot h, -\left(\frac{i-1}{n}+\frac{j'-1}{nk}\right) \cdot h\right) \in \mathcal{I}.$$

Theorem 6 If a function $F : \mathbb{R}^2 \to \mathbb{R}$ has the Baire property, then the extreme *I*-approximate partial derivatives also have the Baire property.

PROOF. We shall only show that the function $D_{I-ap}^+ F_x$ has the Baire property. By our assumption, there exists a residual subset Q of \mathbb{R}^2 such that $F_{|Q}$ is a continuous function. It is sufficient to show that, for each $a \in \mathbb{R}$, a set

$$A = \{(x,y) \in Q: \ D^+_{\mathcal{I}-ap}F_x(x,y) < a\} \in \mathcal{S}^2.$$

We assume that $a \in \mathbb{R}$ and $A \notin \mathcal{I}^2$. Let $\{t_m\}_{m \in \mathbb{N}}$ be a increasing sequence of real numbers such that $\lim_{m\to\infty} t_m = a$.

Let $(x_0, y_0) \in \mathbb{R}^2$. We put $Q_{y_0} = \{x : (x, y_0) \in Q\}$ and

$$G_m(x_0, y_0) = \{x > x_0 : U_{(x_0, y_0)}(x) > t_m \text{ and } x \in Q_{y_0}\}.$$

By the continuity of the function $F_{|Q}$ we have that, for each $(x_0, y_0) \in Q$, the function $U_{(x_0,y_0)|Q_{y_0}}(x)$ is a continuous one at each point $x \neq x_0$ and therefore the set $G_m(x_0, y_0)$ is an open set relative to Q_{y_0} . Additionally, by Kuratowski-Ulam theorem we have that

 $V = \{y : Q_y \text{ is not a residual subset of } \mathbb{R}\} \in \mathcal{I}.$

Therefore a set $C = \{(x, y) \in Q : y \in V\} \subset \mathbb{R} \times V \in \mathcal{I}^2$ and, for each $(x, y) \in Q \setminus C, G_m(x, y) \in S$. For each $m \in \mathbb{N}$, let

 $A_m = \{(x, y) \in A \setminus C : x \text{ is a } \mathcal{I} \text{-dispersion point of the set } G_m(x, y)\}.$

Then $A \setminus C = \bigcup_{m \in \mathbb{N}} A_m$.

Let $m \in \mathbb{N}$. By Lemma 5 and since $G_m(x, y) \in S$, for any $(x, y) \in A_m$ and $n \in \mathbb{N}$, there exist $p, k \in \mathbb{N}$ such that, for any $0 < \delta < \frac{1}{p}$ and $i \in \{1, ..., n\}$, there exists $j \in \{1, ..., k\}$ such that $G_m(x, y) \cap I_{ijnk\delta}(x, y) \in \mathcal{I}$ where

$$I_{ijnk\delta}(x,y) = \left(\left(\frac{i-1}{n} + \frac{j-1}{n \cdot k} \right) \cdot \delta + x, \left(\frac{i-1}{n} + \frac{j}{n \cdot k} \right) \cdot \delta + x \right).$$

For any $n, k, p \in \mathbb{N}$ let

$$D_{mnkp} = \bigcap_{\delta \in \{0,\frac{1}{p}\}} \bigcap_{i \in \{1,\dots,n\}} \bigcup_{j \in \{1,\dots,k\}} \{(x,y) \in A_m : G_m(x,y) \cap I_{ijnk\delta}(x,y) \in \mathcal{I}\}.$$

Then, by the above, $A_m = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcup_{p \in \mathbb{N}} D_{mnkp}$. Let $n, m, k, p \in \mathbb{N}, \delta \in W_p, i \in \{1, ..., n\}$ and $j \in \{1, ..., k\}$. We put

$$Z = \{(x, y) \in A_m : G_m(x, y) \cap I_{ijnk\delta}(x, y) \in \mathcal{I}\}.$$

We shall show that Z is a closed set relative to $Q \setminus C$. Let $(x_0, y_0) \in ((Q \setminus C) \setminus Z)$. Then $G_m(x_0, y_0) \cap I_{ijnk\delta}(x_0, y_0) \notin \mathcal{I}$. Therefore there exists $x_1 \in G_m(x_0, y_0) \cap I_{ijnk\delta}(x_0, y_0) \cap Q_{y_0}$. Since the point $x_1 \in G_m(x_0, y_0)$, we have that $F(x_1, y_0) - F(x_0, y_0) > t_m \cdot t^*$ where $t^* = x_1 - x_0$. Let $\epsilon > 0$ be such that $F(x_1, y_0) - F(x_0, y_0) - 2 \cdot \epsilon > t_m \cdot t^*$. By the continuity of the function $F_{|Q}$ at (x_1, y_0) and since $(x_1, y_0) \in Q$, we have that there exists $\eta_1 > 0$ such that if $(x, y) \in (K((x_1, y_0), \eta_1) \cap Q)$, then $|F(x, y) - F(x_1, y_0)| < \epsilon$. By the continuity of the function $F_{|Q}$ in (x_0, y_0) , there exists $\eta_0 > 0$ such that if $(x, y) \in K((x_0, y_0), \eta_0) \cap Q$, then $|F(x, y) - F(x_0, y_0)| < \epsilon$. Let $\eta = \min\{\eta_1, \eta_0\}$ such that

$$x_1 \in \left(rac{(i-1)k+j-1}{nk}\delta + x_0 + \eta, rac{(i-1)k+j}{nk}\delta + x_0 + \eta
ight)$$

and

$$x_1 \in \left(rac{(i-1)k+j-1}{nk}\delta + x_0 - \eta, rac{(i-1)k+j}{nk}\delta + x_0 - \eta
ight)$$

We observe that if $(x, y) \in K((x_0, y_0), \eta_1) \cap (Q \setminus C)$, then there exists an open interval (a, b) such that

 $((a,b)\cap Q_y)\times\{y\}\subset K((x_1,y_0),\eta)\cap (I_{ijnk\delta}(x,y)\times\{y\}).$

Let $x' \in (a, b) \cap Q_y$ such that $x' - x < t^*$. Then

 $F(x',y) - F(x,y) > t_m \cdot t^* > t_m \cdot (x'-x).$

Therefore there exists $x' \in G_m(x, y) \cap I_{ijnk\delta}(x, y) \cap Q_y$. Since the set $G_m(x, y)$ is an open set in Q_y , we have that $G_m(x, y) \cap I_{ijnk\delta}(x, y) \notin \mathcal{I}$, so $(x, y) \notin \mathcal{I}$.

We showed that $(Q \setminus C) \setminus Z$ is an open set in $Q \setminus C$, so Z is a closed set in $Q \setminus C$. Hence D_{mnkp} is also a closed set in $Q \setminus C$. Since $C \in \mathcal{I}^2$ we have that $D_{mnkp} \in S^2$. Therefore, for each $m \in \mathbb{N}$, $A_m \in S^2$ and $A \in S^2$. Thus the proof of the theorem is completed.

References

- E. Lazarow, W. Wilczynski, *I-Approximate Derivatives, Radovi Matem*aticki, 5 (1989), p. 15-27.
- [2] E. Lazarow, On the Baire class of *I*-approximate derivatives, Proc. Amer. Math. Soc. 100 (1987-88), p. 669-674.
- [3] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A category analogue of the density topology, Fund. Math. 125 (1985), p. 167-173.