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 ON A GENERALIZED DOMINATED

 CONVERGENCE THEOREM FOR THE AP

 INTEGRAL

 Abstract

 We prove a Harnack extension and a form of the generalized domi-
 nated convergence theorem for the AP integrad.

 1 Introduction

 The AP integral, or more precisely, the approximately continuous Perron in-
 tegral was defined in Burkill [1] and its Riemann-type definition was given in
 [2]. As was pointed out by Liao [4], [8], the property ACG*aj> in [2] doesn't
 describe the primitive of an AP integrable function. A correct version was
 obtained in [4] . In this note we shall give a Harnack extension and a form of
 the generalized dominated convergence theorem for the AP integral.

 Throughout all functions and sets will be assumed to be Lebesgue measur-
 able. We recall the following definitions and results.

 approximate neighborhood: An approximate neighborhood of x G [a, b] is
 a measurable set Dx C [a, b] containing x and having density 1 at x.

 AFC of E: Let E C [a, b] and for every x £ E choose an approximate neigh-
 borhood, Sx C [a, 6], of x. Put S = {S* : x G E} and let [u, v] be a
 subinterval of [a, 6]. If there exists an x G E D [ti, v] such that u, v G
 we call x an associated point of [w, v]. The set of all intervals having an
 associated point x G E is called an approximate full cover, or AFC, of
 E. An AFC will be denoted by A.
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 A-partial division on E: If A is an AFC of E C [a, 6], we call a finite set
 of nonoverlapping intervals G A, i = 1,2 , ...,n together with
 associated points z,- a A-partial division on E ì denoted by {([ti», v,]; £t) :
 i = 1,2, .. .,n} or simply {([«,-,

 n

 A-division on E: If .Ujií», D E , we call {([ti¿, v»]; a:,-) : ¿ = 1, 2, € . . , n} a
 A-division on E.

 ASL: We say that a function F satisfies the approximate strong Lusin condi-
 tion, or simply ASL , on a subset X of [a, 6] if for every set E of measure
 zero and for every e > 0 there exists an AFC A of X such that for
 any A partial-division D on E fi X we have ( D ) ^ |-F(u, v)| < e where
 F(u,v) = F(v)-F(u).

 U ASL: A sequence {Fn} of functions is said to satisfy the uniformly approx-
 imately strong Lusin condition, or {Fn} G U ASL for short, if the AFC
 A in the definition of ASL is independent of n.

 ACG*p: A function F is said to satisfy ACG*ap on E, or F G ACG*ap(E), if
 oo

 there exists a sequence {Xn} such that E = U Xk and F G AC*(Xk)
 k = l

 for each Ar, i.e. for every e > 0 there exist an AFC A and rj > 0 such
 that for any A-partial division {([i¿¿, v*]; xi) : i = 1,2, ...,n} on Xk^

 k k

 whenever - u¡) < rj , we have l^(v») ~~ < €-
 ¿=1 ¿-i

 UACG*p: We say {Fn} G U ACG*ap(E) if for each k the AFC A and 7] > 0
 in the definition of AC*p(Xk) are independent of n.

 °°

 ACG: A function F is said to be ACG on E} or F G ACG(E), if E = U Xk
 k = l

 such that F G AC (Xi ř) for each i.e. for every e > 0 there exits
 77 > 0 such that whenever {[tx, v]} is a finite or infinite sequence of non-
 overlapping intervals with uyv G Xk satisfying ^2(v - u) < 77 we have
 £|F(u,v)| < e.

 (ACG): A function is said to be (ACG) on E, or F G (ACG)(E)} if F G
 ACG(E) and each Xk in the definition of ACG(E) is closed.

 UACG(E): A sequence { Fn } of functions is said to be UACG on E, or {Fn} G

 UACG(E), if E = U Xk with {Fn} G UAC(Xk) for each fc, i.e. the
 k = 1

 77 > 0 in the definition of AC(Xk) are independent of n.
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 A function / is said to be AP integrable to A on [a, 6] if for every e > 0
 there is an AFC A of [a, 6] such that for every A-division D = {([u, v];£)} °f

 [a, b] we have '(D) ^ f{£){v - u) - A' < c. We write A = /.
 We also recall that the Henstock lemma holds for the AP integral: If / is

 AP integrable on [a, 6] with primitive F , then for every e > 0 there is an AFC
 A of [a, 6] such that for every A-partial division v*]î0) on Ia > b] we have
 (. D ) ¿ I f(£){v - u) - F(u , v)| < c, where F(u , v) = F(v) - F(u).
 In [4, Proposition 3.12] Liao and Chew proved that if / is AP integrable

 on [a, 6] with primitive F , then F satisfies ASL on [a, 6].
 For more details on the above definitions and results, see [2], [3, Section

 22], [4], [5], [6, Chapter 7.8], [7], [8], [9]. In what follows we write ( D ) J2p
 denote the sum over D such that condition P holds.

 |S| will denote the Lebesgue measure of a Lebesgue measurable set S.

 2 Some Results

 Theorem 2.1 (Harnack extension) Let X be a closed set in [a, 6] with H
 oo

 the set of all points of density in X . Set (a,b)'X = U Suppose the
 k = l

 following conditions are satisfied .

 (%) f is AP integrable on X (i.e. f'x is AP integrable on [a, 6], where xx
 is the characteristic function of X) and on each of the intervals [ak , bk ] .

 (ii) The series £ j/^ /1 converges.

 (Hi) For given e > 0 there exists an AFC A of X ' H such that for any
 A-partial division D = {([i/, v];£)} on X ' H we have

 £ I / Á < 6 and (D) J2 í f <e-
 v6(aklbk) ak u£(aktbk) u

 Then f is AP integrable on [a, 6] with J * f = fi f'x + £¡£=1 /•

 Proof. For simplicity we may suppose that f(ak) = f{bk) = 0 for all k. By
 condition (i) / is AP integrable on [a^, bk] for each k. Given e > 0 there exists
 an AFC A k of [a*, bk] such that for any A k partial-division Dk = {([u, v];f)}
 on [ak , bk] we have

 (i) w E f'<w ■
 We may suppose that for each ([i¿, v];Ç) G A k we have
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 (I) [ti, v] C ( akybk ) when £ G (akìbk)

 (II) (£, v] C {akì bk) when £ = ak

 (III) [u,£) C {ak,bk) when £ = bk.

 Now define an AFC A of [a, 6] as follows:

 (i)' A = Ak on each [ak) bk]

 (ii)' By condition (ii) we may choose a positive integer N so that

 S l/a* flfc /I I < e' an<^ when ([ti, v];£) G A with k=N+ 1 ' flfc I

 £ G X ' {ai,6i, . . .,aAr,6Ar}, we have [ti, v] fl ( U [<**» &*]) = 0-

 (iii)' If aj / 6/ for all 1 < j, I < N with j ^ Z, we choose the same N as in (ii)',

 and we have [tx,£) fl (^[a*, bk]^j = 0 when £ = a,-, z = 1, 2, . . . , N and

 (£, v]n (ujJĻja*, ó*]) = 0 when £ = 6¿, i = 1, 2, . . . , N. If £ = aj = 6; for
 some 1 < j, I < N with j ^ /, then we choose [u, v] so that ([ui v]; £) G A/.

 (iv)' u, v G X if £ G H. This is possible since H is the set of all points of
 density in X .

 Note that we have defined an AFC A of [a, 6] so that if £ G X and u or
 v G (a*) bk) for some Ar > TV, then £ £ X ' H.

 Let D be a A-di vision on [a, 6] . Decompose D into D' , D2, -D3, . . . , Dn ,
 and Do, where ([u,t;];£) G Dk if £ G [a*, 6*] for some k = 1,2,..., TV,

 ([«■"];£) €Dxif£eXc {01,61,02,62, . . .,aN,bN} and ([u, t>];£) £ D0 if£ €
 OO

 U ( akìbk ). Then we have
 k=N+ lv

 00 rt>k

 (D) E{/(*) - /(i)^(o}(" - «) - E / /
 fc=i

 < £>*) E -«)-/" /I + (öo) E |/(0(« -«)-/" /I
 fc = ļ •/« I I «/u I

 /»òfc ļ rv I

 + (Dx) E Ju / /+P*) E i*70* / /+(*>*) 1 E -e(ak.bk) Ju -e("k.i>t) i*70* 1 [«*.ö*]c[u,^i J«k
 k>N k>N k>N

 N o° 00 I I

 <Eôî+ E õk+í + {+ E / A by (1) and (iii),
 k = l k=N+ 1 /ř=i'r+l r afc I

 <4e by our choice of N.
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 Thus / - fxx is AP integrable on [a, 6] and so is /. □
 It can be shown that Theorem 2.1 is indeed a consequence of the controlled

 convergence theorem given in [4, Theorem 4.2].

 Definition 2.2 Let F : [a, 6] - y M and let X be a closed subset [a, 6]. F is
 W(X) if and only if for each c,d G X with c < d and (c, d) fl X non-empty ,
 given e > 0 there exists an AFC A of (X C I [c, d') ' H' such that for any
 A-partial division D = {([w, v];£)} on {X ^ [c> ' H' we ^ ave

 (D) £ 'F(v)-F(ck)'<eand(D) £ 'F(dk) - F(u)' < e
 v£(ck,dk) u€(cfc,dfc)

 where H' is the set of all points of density of ([c, d] fi X) and (c, d) ' X =
 °° ,

 U (Cfc,dfc). ,
 AC = 1

 OO

 Theorem 2.3 Leí X be a closed subset o/[a,6] (a, 6) 'X = U (0^,6^).
 k = '

 Suppose that f is AP integrable on [a, 6] with its primitive F being AC(X).
 Then F is W{X).

 Proof. Since F G AC(X ), given e > 0 there exists rj > 0 such that whenever
 { [tí, v] } is a finite or infinite sequence of non-overlapping intervals with u, v G
 X satisfying

 ^2(v - u) < T) we have ^|F(u,v)| < (1)
 By the Lebesgue density theorem (see [6]) 'X ' H' = 0. So we may choose an
 open set G such that G D X ' H and 'G' < 77. Since / is AP integrable on
 [a, 6], its primitive F satisfies ASL on [a, 6]. Given e > 0 there exists an AFC
 A of X ' H such that for any A-partial division D = {([u, v]; O) on X ' H we
 have

 (£>)£|F(«,t;)|<|. (2)
 We may modify A, if necessary, so that [u, v] C G whenever £ G X ' H . For
 any A-partial division D - {([tí, v];£)} on X ' H we have

 Ipv / ūk I E Ipv / E vxzyi*k,vk) ūk v£(akybk) t ve(akìbk) t

 <5 + 5 = c' by ^ and(^-

 Similarly, we can prove that ( D ) ^ J^k U f ' < e. □ ue(ak,bk) U '
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 Corollary 2.4 ([5, Lemma 3.3]) Iff is AP integrable on [a, 6] with its prim-
 itive F being AC(X) where X is a closed subset o/[a, 6], then f'x is AP inte-

 grabie on [a,b] and £ f'x = /'/-EfcLi tat f where (a,b)'X = Jj^(ak,bk).

 Proof. By Theorem 2.3 F G W(X). Put g = / - f'x and note that for
 each Ar, g is AP integrable on [a/c, bk] with f ^ g = f for each s G [a*, 6*].
 Let H be the set of all points of density of X. Then given e > 0 there exists
 an AFC A of X ' H such that for any A-partial division D = {([ u , u];£)} on
 X ' H we have

 V» E 'f ūk «U (D) E If ūk /|<e v€(aktbk) ūk v£(akìbk) ūk

 and
 pbk pbk

 (D) E Ju / 9 = (D) £ Ju f < e. ue(ak)bk) Ju U€(akìbk) Ju
 Hence g satisfies all the conditions of Theorem 2.1. □

 Corollary 2.5 Assume the hypothesis in Corollary 2.Ļ Then f'x is Lebesgue
 integrable on [a, 6].

 Proof. It suffices to prove that the primitive function G of fxx is of bounded
 variation on [a, b ]. For any division a = xq < x' < X2 < • • • < xp = b of [a, 6]
 if Xi £ X, X{ must be in (a/c&k) for a certain k and replacing each Xi by xj-,

 if necessary, we have fxx = fxx w^h x' G X for i - 1, . . . ,p. By

 Corollary 2.4 fxx = / - £r=i M H [ar|_i, x|]). Thus

 ± Jx r *-1 ^ =± f; <± f; f » = 1 Jx *-1 ť=l ¿ = 1 /c = l

 for some finite constant M . More precisely M = sup ^ 'F(dk) - F(c*)|, where
 k

 the supremum is over all finite or infinite sequence { [ck , dk' } of non-overlapping
 intervals with Ck,dk G X for all k. Note that M is finite because F is AC(X).
 So F is VB(X). Consequently the total variation of G on [a, 6] is finite. □

 Lemma 2.6 ([4, Proposition 3.12]) If F satisfies AS L in [a, 6] with F'ap =
 g almost everywhere in [a, 6], then g is AP integrable on [a, 6] with primitive
 F.
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 We remark that the converse of Lemma 2.6 is valid.

 Lemma 2.7 Let {fn} be a sequence of AP integrable functions on [a, 6] with
 primitives {i^n} and let X a closed subset o/[a,6]. If {Fn} G UAÇ(X), then
 given e > 0 there exists tj > 0, independent of ni such that whenever E is a
 measurable subset of X satisfying 'E] < rj we have JE |/„| < e for all n.

 Proof. The proof is similar to that of Lemma 12.2 of [7].

 Lemma 2.8 Let {fn} be a sequence of AP integrable functions on [a, 6] with
 ri 00

 primitives {i^n} ri and let X be a closed subset o/[a, 6] with (a, b)'X = ^(ajt, 6^).
 Then {Fn} G UAC(X) if and only if the following conditions are satisfied .

 (i) For every e > 0 there exists rj > 0, independent of n, such that if E is a
 measurable subset of X satisfying 'E' < rj, then fE |/n| < e for all n.

 oo I b
 (ii) The series / ak b * fn converges uniformly in n. k= i 1 ak

 (Hi) Fn G W(X) for each n.

 Proof. (=>-). This follows from Lemma 2.7, the definition of { Fn } G
 UAC(X) and Theorem 2.3.

 (<=). By (i) given e > 0 there exists 77 > 0, independent of n, such that
 whenever E is a measurable subset of X satisfying 'E' < rj we have

 ^l/n|<! for all n. (1)
 By (ii) there exists a positive integer N = N(e) such that

 00 I rhk e
 H / /" < ó e for a" "•

 k=N+ 1 rak

 Define S = ^ minj^, bx - aŁ , 6a - a2, . . . , bN - aN } . Then for every finite or
 infinite sequence of non-overlapping intervals {[tí, v]} with u, v G X satisfying
 ]T)(v - u) < S we have

 I fv °°^
 =Y! / fv f"*x + £ fnX[u v] by condition (iii) and Theorem 2.1 I Ju k = 1 Jak

 fv 00 rbk 00 çbk

 <J2 Ju fv l/"X*l+£ Ja* / /»*[„,„] - 2 £ Ja* / çbk f byw Ju k = l Ja* 2 k=N+ 1 Ja*
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 since |((uM)nx)| = £|(Mnx)| < S, and (tí, v)n(ak , bk) either con-
 tains the whole interval (ajt , 6^) or is empty with each (a^ , 6^) appearing only
 once. Furthermore for each [tí, v], (v - u) < min {77, bl- al , b2 - a2, . . .,bN - a^}
 and u, v G X. Therefore (ti, v) fl (a^, bk) = 0 for A: = 1, 2, . . . , N. Consequently
 by (2), < e for all n and hence {Fn} E UAC(X). □

 3 The Generalized Dominated Convergence Theorem

 In this section we shall state and prove the generalized dominated convergence
 theorem for the AP integral and show that it is the best possible in some sense.
 We need some Lemmas.

 Lemma 3.1 ([5, Theorem 3.3], [9, Theorem 4.3]) Let {/n} be a sequence
 of AP integrable functions on [a, 6] with primitives {-Fn}- Suppose {fn} con-
 verges to a function f almost everywhere on [a, 6]. The following conditions
 (A) and (B) are equivalent.

 (A) {Fn} eUACG*ap([a,b])

 (B) (1) {Fn} satisfies UASL on [a, 6].
 (2) For every e > 0 there exists a closed set E Ç [a, b] with |[a, 6] ' E' <

 e such that {Fn} G U AC (E).

 Furthermore if (A) or ( B ) hold , then f is AP integrable on [a, 6] with

 pX pX

 lim / /„ = / / for X G [a, 6],
 n->°° Ja Ja

 Lemma 3.2 ([5, Lemma 5.2]) If{F„) G U ACG(E), then there exist closed
 OO

 sets E', Ei, . . . , Er, . . . such that E' Ç Ei Ç . . . , E = U^Er UN with |iV| = 0
 and {Fn} G UAC(Er), r= 1,2,... .

 Theorem 3.3 Let {fn} be a sequence of AP integrable functions on [a, 6] with
 primitives {Fn}. Suppose the following conditions are satisfied.

 (i) fn{x) - ► f(x) for almost all x in [a, 6] as n - y oo.
 OO

 (ii) [a, 6] = U Xk with each Xk closed and for each k, Fn G W(Xk) for
 k - i

 each n.

 (iii) For each k = 1,2, . . . there exists functions gk,hk such that gk,hk are
 each Lebesgue integrable on Xk and for almost all x G Xk we have

 9k(x) < fn(x) < hk(x) for all n.
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 (iv) For each A: = 1,2,..., write ( a,b)'Xk = U d'*'). 3 Then the series j = l 3
 oo dik)

 SJLi oo fc(i) /n converges uniformly in n.

 (v) Fn converges pointwise to a function F on [a, 6] and {-Fn} satisfies UASL
 on [a, 6].

 Then f is AP integrable on [a, 6] with primitive F.

 Proof. By the Baire category theorem there is a closed interval I contained in
 Xj for some j. By (iii) and the dominated convergence theorem, / is Lebesgue
 integrable on I with primitive F and ( L ) fj fn - y (L) f as n - y oo. A point
 X is said to be regular if there is an interval Ix containing x such that / is AP
 integrable on every subinterval of Ix with primitive F and we have just shown
 that the set of all regular points is non-empty.

 Let Q be the set of all non-regular points. We claim that Q is empty.
 Suppose not. In view of the Cauchy extension [2, Theorem 15] for the AP

 00 / '

 integral, Q is perfect and Q = .U^Q / nX¿). ' By the Baire category theorem
 again there is an interval (5, t) such that (s, t) fi Q = ( s , t) fl Xq for some q and
 both sets are non-empty. Let [c, d' be the smallest closed interval containing
 (s,ť) C'Xq. Note that gq(x) < fn(x) < hq(x) for all n for almost all x in Xq
 and each gq) hq is Lebesgue integrable on Xq. Write X = [c, d' fl Xq. By the
 dominated convergence theorem / is Lebesgue integrable on X and

 {L) Í fn -»• {L) f f as n ->• oo (1)
 Jx Jx

 OO

 Write (c, d) ' X = U (ck.dk). Note that / is AP integrable on each [u,v] C
 k = l

 {ck.dk) with primitive F. By condition (iii) for each fc, given e > 0 there
 exists 7]k > 0 such that whenever E is a measurable subset of Xk satisfying
 1^1 < Vk we have fE 'fn' < e for all n. By conditions (ii) and (iv) and by
 Lemma 2.8, {i^n} € UAC(Xk) and so F G ( ACG)[a,b' . Hence Fap' exists for
 almost all x in [a, 6] (see [7, page 21]). By condition (v) F satisfies ASL on
 [a, 6]. By Lemma 2.6 the function g defined on [a, 6] by

 _ J F'ap(x) if Fap{x) exists and is finite.
 Ì 0, otherwise.

 is AP integrable on [a, 6] with primitive F. Thus F is approximately contin-
 uous on [a, 6]. By the Cauchy extension / is AP integrable on each of the
 intervals [ck.dk] and X is perfect. Since g is AP integrable on [a, b] with its
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 primitive F being AC{X), by Theorem 2.3 F G W(X). Hence by Theorem
 2.1 / is AP integrable on [c, d] with primitive F, a contradiction. □
 We shall now give the generalized dominated convergence theorem. The
 proof follows from Theorem 3.6 below and Lemma 3.1.

 Theorem 3.4 (generalized dominated convergence theorem) Let {fn}
 be a sequence of AP integrable functions on [a, 6] with primitives {Fn}. Sup-
 pose the following conditions are satisfied.

 (i) fn -> / almost everywhere in [a, 6] as n - y oo.
 oo oo

 (ii) [a, 6] = NU U Xk, where N = [a, 6]' U Xk with each Xk closed, |iV| = 0
 k=l k=l

 and for each k, Fn G W(Xk) for each n.

 (Hi) For each k = 1,2,... there exists functions gk, hk such that gk, hk
 are each Lebesgue integrable on Xk and for almost all x in Xk we have
 9k(x) < fn{x) < hk{x) for all n.

 (iv) For each k = 1,2,..., write (a, b)'Xk = U {cf' df^). Then the series
 j- i

 oo ¿(k)
 f (k) fn converges uniformly in n.

 (v) Fn converges pointwise to F on [a , 6] with {Fn} satisfies U AS L on [a, 6].

 Then f is AP integrable on [a, 6] and limn-+oo f* fn = f* /•

 Theorem 3.5 If {fn} is <* sequence of AP integrable functions on [a, 6] with
 primitives {Fn} being UACG*ap([a, 6]) and fn converges almost everywhere to

 a function f on [a, 6], then there exists a subsequence {/n^} of {fn} satisfying
 (i), (ii), (in), (iv) and (v) of Theorem 3.Ļ

 Proof. By Lemma 3.1 for every e > 0 there exists a closed set E Ç [a, 6]
 with I [a, b]'È'<€ such that {Fn}e UAC{E). Hence {Fn} G UACG(Y) for
 some subset Y of [a, 6], where | [a, b] ' Y | = 0. By Lemma 3.2 there exist closed

 oo

 sets Xi , Xi , . . . , Xr , . . . such that Xi Ç X2 Ç ••• C Xr Ç š Y = UlrU
 r=l

 AT0, where 'No' = 0, and {Fn} G UAC(Xr)ì r = 1,2,

 condition (ii) of Theorem 3.4 holds. By Lemma 2.8, condition (iv) of Theorem
 3.4 follows from the fact that {Fn} G U AC{Xr), r = 1,2, - By Lemma 2.7

 {Fn>/c}n>1 is equi-absolutely continuous for each Ar, where Fn^(x) = f* fnXXk

 for each x G [a, 6]. By the Vitali convergence theorem |/nXxfc ~~ fm^xk
 0 as n, m 00 for each k.
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 Set k = 1. There exists a subsequence {/n1^} of {/„} such that the se-

 ries hi(x) = £"=1 fn+i(x)xXl(x) - fn'x)xXi(x) converges for almost all

 X in [a,b] and f[1){x)xXi {x) ~ M*) < fļ1){x)xXi{x) < f[1){x-)xXl M +
 h'(x) for almost all x in X' and for all n. Note that h' is Lebesgue in-
 tegrable on [a, 6]. Now consider k = 2, and the sequence {fn^} in place
 of {/n}- We obtain a subsequence {ffl} of {/n1^} such that the series

 h2{x) = fn+i(x)xXi{x) - f^2)(x)xX:¡ converges for almost all x in

 [a, 6] and f[2){x)xX3 (*) - h2{x) < fi2)(x)xx (x) < f[2){x)xX2 (a:) + h2{x) for
 almost all x in Xi and for all n. Continuing tnis process we get a subsequence

 {/n1^} °f {fn} such that for each fc, gk(x) < fn*'x) < hk{x) for almost
 all x in Xk and hk Lebesgue integrable on Xk ; that is, condition (iii) of

 Theorem 3.4 holds for the sequence {f^}. Since {Fn} G U ACG*ap[a, 6], by
 Lemma 3.1, {i^n} satisfies UASL on [a, 6]. Hence condition (v) of Theorem
 3.4 is satisfied. □

 Theorem 3.6 Let {fn} be a sequence of AP integrable functions on [a, 6] with
 primitives {Fn } satisfying conditions (i), (ii), (iii), (iv) and (v) of Theorem
 3.1 Then {Fn' e U AC G^fab]).

 Proof. As in the proof of Theorem 3.3, { Fn } G UAC(Xk) for each k and

 so {Fn} G U ACG(ö^Xk). By Lemma 3.2 for every e > 0 there exists a
 closed set E Ç [a, 6] with |[a, 6]'i£| < e such that {Fn} G UAC(E). By
 condition (v) of Theorem 3.4 { Fn } satisfies UASL on [a, 6]. By Lemma 3.1
 {Fn}eUACG:p[aib'. □
 We remark that Theorem 3.4 can't be proved by using the category argu-

 ment as in the proof of Theorem 3.3. However it follows as a consequence of
 Theorem 3.6 and Lemma 3.1.

 We shall give an example to show that Theorem 3.4 is indeed a genuine
 generalization of the dominated convergence theorem.

 Example 3.7 Let

 _ Ja:2sin(?r)' when 0 < a: < 1.
 Ì 0, otherwise.

 Define /n(z) = F'(x) if ¿ < x < 1 and fn{x) = 0 otherwise. Then each fn is
 AP integrable on [0, 1] with primitive Fni say. Put Xk = 1]> k = 1,2,...
 and N = {0}. It is easy to verify that {/„} satisfy conditions (i), (ii), (iii), (iv)



 88 Tuo-Yeong Lee

 and (v) of Theorem 3.4. However fn is not dominated by any AP integrable
 functions on the left or on the right.
 I would like to thank my supervisor Professor Lee Peng-Yee for his advice.
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