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 Abstract

 In this note we prove a controlled convergence theorem for the AP
 integral by using a new version of generalized absolutely continuous
 functions.

 1 Introduction

 The approximately continuous Perron integral was first defined by Burkill in
 1931. (See [2].) A Riemann-type definition of this integral can be given. (See
 [1, 4, 6].) A descriptive definition can also be given by characterizing the
 primitive of the integral in terms of a kind of generalized absolutely contin-
 uous functions. (See [1, 6, 9].) Recently Lee has defined another version of
 generalized absolutely continuous functions, which gives a descriptive charac-
 terization of the Henstock integral (See [6, page 129; 7].) A similar descrip-
 tive characterization of the approximately continuous Perron integral can be
 given. (See [3].) Recently, Liao and Sarkhel have independently pointed out
 to Bullen by correspondence that the definition of generalized absolutely con-
 tinuous functions given in [1, Definition 9, page 246] does not characterize the
 approximately continuous Perron integral. The definition used in the charac-
 terization is too strong. Hence the controlled convergence theorem given in
 [10] or [6, page 144] for the AP integral is no longer general enough. In this
 note, we shall prove a controlled convergence theorem for the AP integral by
 using a new version of generalized absolutely continuous functions. The main
 idea of the proof is similar to that of the corresponding convergence theorem
 for the Henstock integral. (See [6, Theorem 21.3].) However, the proofs of
 Lemmas 4, 6 and 7 are made simpler.
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 2 Preliminaries

 Let x G [a, b] and let Ux be a measurable subset with [a, 6] with x G Ux and
 of density 1 at x. In fact, we have defined a set- valued function from [a, 6]
 into {Ux'x G [a, fr]}- Let A^ř/*}) be the collection of all interval-point pairs
 ([ui v],x) with u,v G Ux and u < x < v. The collection A ({Ux}) is called an
 approximate full cover (AFC, in short) of [a, 6]. (See [l;6,page 137].)

 Let Ai = Ai ({Í7¿}), A3 = A 2({£/*}) be two AFC's of [a, 6]. Then A2 is
 said to be finer than Ai, denoted by A2 < Ai, if for each x G [a, 6], U% C Uļ.

 Let A = A ({Ux}) be a given AFC of [a, 6]. Then it is known that for
 i = 1, 2, . . . , n there exists ([x,-_i, x,], £,) G A, such that a = xo < x' < • • • <
 xn = b. (See [6, page 137; 4, page 57].) The collection {([xt_i, £,],&), i =
 1, 2, . . . , n) is called a A-partition of [a, 6].

 We denote a A-partition by {([u,v],£)} or {(^jx)} m which [ti,v] or I
 represents a typical interval [x,-_i,x,-], and £ its associated point (D)
 denotes the sum over the partition D.

 Let D' = {(/, x)}, Di = {(J, y)} be two A-partitions. Then £)2 is said to
 be finer then D' , denoted by D2 < D' , if for each J in £>2 , there exists I in Di
 such that J C I. Also, D''Ü2 denotes the collection of (/, x) such that I is a
 component interval of J'E2 and (J, x) G D' where is the union of all in-
 tervals in Z)2. Roughly speaking, D''D2 is D' with some missing subintervals
 and the missing part are those intervals from £>2. Obviously, (Z}i'.D2) 'I' =
 (A) E m - {d2) e |/| and (DADj) E TO = (A) ETO - (^) E TO
 where I = [u, v ] and F([u} v]) = F(v) - F(u) .

 Let A be an AFC of [a, 6]. Let DC A. Then D is said to be a partial A-
 partition of [a, b] if {/; (/, x) G 0} is a collection of nonoverlapping subintervals
 of [a, 6].

 A real- valued function F defined on [a, 6] is said to be AC**(X), where
 X C [a, 6], if for every e > 0, there exist an AFC A of [a, 6], and 77 > 0 such that
 for any two partial A-partitions D' , D2 of [a, 6] with the associated points in X
 and D2 < Di satisfying ( Di ' D2) ¿ , 'I' < rj, we have '(Di ' D2) J2 ^COI < €>-
 Here D2 may be void.

 In the above definition if we only consider one partial A-partition D' and

 D2 is void, then F is said to be AC*p{X). Clearly, AC*p[X) is weaker than
 AClļ(X). We remark that we use ÀC**(X), instead of ACļp(X), in the
 controlled convergence theorem. The idea of AC**(X) is crucial. It is used in
 Lemma 4(*) and Lemma 5(**).

 A sequence {Fn} is said to be uniformly AC*ļ{X) if Fn is AC*ļ(X) but
 uniformly in n, i.e., rj > 0 and A in the above definition with F replaced by
 Fn is independent of n.

 À real- valued function F defined on [a, 6] is said to be ACG**p if [a, b] =
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 so that F is AC** (Xi) for each i. Also, ACG*ap can be similarly
 defined. A sequence {Fn} is said to be uniformly ACG**p if {Fn} is uniformly
 AC** (Xi) for each i.

 A real- valued function / is said to be AP integrable to A on [a, 6] if for every
 e > 0, there is an AFC A of [a, 6] such that for any A-partition D = {([tí, v], £)}
 of [a, 6] we have

 ■|(d)£/(0(«-«)-¿|<£.
 Theorem 1 A function f is AP integrable on [a, 6] if and only if there exists
 an ACG*p function F such that the approximate derivative F'ap(x) = f(x)
 almost everywhere in [a, 6].

 For a proof see [3, page 160].

 Theorem 2 If f is AP integrable on [a, 6] with primitive F, then F is ACG**p.

 Proof. It is known that if / is AP integrable on [a, 6], then / is measurable
 on [a, 6]. Let X = {x]'f(x)' < N}. Let fx(x) = f(x) when x G X and
 0 otherwise. Then fx is measurable and bounded. Hence fx is McShane
 integrable over [a, 6], see [6, page 108]. In other words for every e > 0, there
 exists <$(x) > 0 such that for every i-fine McShane partition D - {(/, x)}, we
 have (D) J2 ' Fx (I) - fx(x) 'I'' < £, where Fx is the primitive of fx . Recall
 that a partition D = {(/, x)} is said to be a i-fine McShane partition if [a, 6] is
 the union of intervals /, I C (x - í(x), x-j-i(x)) where x need not belong to I.
 On the other hand there exists an AFC A such that (D) J2 ' F (I) - f(x)'I'' < e
 whenever D = {(/,x)} is a A-partition of [a, 6].

 Let Ul = Ux H (x - i(x),x + i(x)), where Ux is given as in A. Let
 A1 = A^i/j} be the approximate full cover induced by { U ¿}. Now take any
 two partial A^partitions D',Di with associated points in X and Di < D'
 such that (D' '£>2) Kl ^ V- Note that [tí, v] is taken from D''Ü2 and we use
 the associated point in D'. Therefore D''D2 is a i-fine McShane partition.
 Then we have

 |(ZM£>2)£>(/)| < (D1)£|F(/)-/(*)|/|| +
 {D1)J2'Fx(I)-fx{x)'I'' +
 (D2)^2'F(I)-f(x)'I'' +
 (D2)^|Fx(/)-/x(x)|/|| +
 (D1'D2)y£'Fx(I)-fx(x)'I'' +
 (D1'Di)1E'fx(*)'I''

 < Nrj.
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 Thus F is AC*;{X). Hence F is ACG*a*p. □

 3 Controlled Convergence Theorem

 For n = 1, 2, • • • let fn be an AP integrable functions on [a, 6] with primitive
 Fn . In this section we shall consider the following three conditions :

 (i) {fn} converges to / almost everywhere on [a, 6], as n - > oo,

 (ii) {Fn} is uniformly ACG*aļ on [a, 6] and

 (iii) {Fn} converges to F on [a, 6], as n - ► oo.

 Theorem 3 Let conditions (i) and (ii) hold. Then f is AP integrable on
 [a, 6], and lim^oo /* /„ = /a6 /.

 Before we prove this theorem, we need the following lemmas.

 Lemma 1 Let the condition (ii) hold. Then for each x, there exists Mx such
 that 'Fn (x) I < Mx for all n.

 Proof. If { Fn } is uniformly ACG*ap on [a, 6], then {Fn} is equi-approximately
 continuous on [a, 6]. For each x G [a, b] there exists a measurable set Ux with
 density 1 at x such that 'Fn(y) - Fn(x)' < 1 for all n and all y G Ux. Let
 A = A {Ux} be the approximate full cover induced by {Ux}. Let w G [a, b].
 Then there exists a A-partition of [a, w'. Note that Fn(a) = 0 for all n. Hence
 there exists Mw such that |Fn(it;)| < Mw for all n. □

 Lemma 2 Let condition (ii) hold. Then {Fn} is uniformly VBG on [a, b',
 i.e. there exist a sequence {Vļ} ofsets with [a, 6] = U,-Yi and a sequence {M,}
 of positive integers such that ( D ) 'Fn(u .«)i< Mi for all n and all partial
 partitions D = { [t/, v]} of [a, b] with ií, v in Y{.

 Proof. Let {Fn} be uniformly AC*p{X). Then there exist an AFC A of
 [a, 6] and rj > 0 such that for any partial A-partition D = {([it, v],0) [a>
 with £ G X and ( D ) 'v - u' < 77, we have (D) ^2 ' Fn(ii, t>)| < 1 for all n.
 (We remark that in the definition of AC*p(X), we use '(D) ^ F(u, v)| < e.
 However D is a partial A-partition¿. Hence we have {D)J2'F{uiv)' < 2e.)
 Let Ux be given as in A. Choose ¿(z) with 1 > J(x) > 0 such that for
 0 < t < i(x) we have 'UX C'[x}x + t]' > t/2 and 'UX H [x - t, x]' > t/2. Here
 'A' denotes the outer measure of A. Let Ei = (x;¿(x) > i} fi X for those
 positive integers i with j < rj. Let Eij = E{ fi [a + *j^(6 - a), a + i(b - a)]
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 for j - 1, 2, • • • , i. Let ar, z G Eij with x < z. Then z - x < j < S(x). Hence
 I Ux D [x, z] ' > (z - x)/2 and 'UZ fi [ar, z]| > (z - ar)/2. It follows that

 'z-x' + 'ux nuzn [x,z' I > I ux n [x,z' | + 'uz n [x,z]'
 > 'z - x'.

 Hence there exists y G Ux D U z D [x, z]. Consequently,

 (D)£|F„(z,z)| < (D) {E |í;(z,y)|+£|F„(í/,z)l}

 for all partial partitions D - {[ar, z]} with a:, z G Eij and all n . Note that X is
 the union of all Eij and {Fn} is uniformly ACG*aļ. Hence {Fn} is uniformly
 VBG. □

 Lemma 3 Let condition (ii) hold. Then there exists a subsequence {Fm*} of
 {Fn} such that {Fm} converges on [a, 6].

 Proof. In view of Lemmas 1 and 2, if {Fn} is uniformly AC*p(X)i then
 apply Helley's theorem (See [5, page 16].) and we obtain a subsequence of
 {Fn} which converges on X. Next, apply the diagonal process and the result
 follows. □

 We remark that, instead of proving Theorem 3, it is sufficient to prove The-
 orem 4 In fact, if only conditions (i) and (ii) are satisfied, then by Lemma 3 and
 Theorem 4, for each subsequence {/m} of {/n}, there exists a subsubsequence

 {fnij } such that limj_>oo f* fnij = fa f- Hence lim^oo /„/n = /„/•

 Theorem 4 Let {fn} be a sequence of AP integrable functions on [a, 6] satis-
 fying (i), (ii) and (Hi). Then f is AP integrable on [a, 6] and lim^oo fn =

 Slf-

 First, we shall prove the following lemmas. Let / be a AP integrable
 function on [a, 6] and X Ç [a, 6]. Define fx(x) = f(x) when x G X and
 fx{x) = 0, otherwise. Let Fx be its primitive if fx is AP integrable on [a, 6].

 Lemma 4 Let f be AP integrable on [a, 6] with primitive F. If F is AC**(X),
 where X is a closed subset o/[a,6], then fx is Lebesgue integrable on [a, 6].

 Proof. Since F is ACļļ(X), we can define H& = s'ipD(D) ^ F (I) and H =
 infA#A, where the supremum is over all partial A-partitions D = {(/,ar)}
 with x £ X and the union of I in D containing X. Let e > 0. Choose A
 such that 0 < H& - H < e. Next, choose an open set G D X such that the
 outer measure 'G' X' < 77, where 77 comes from the definition of AC**(X )
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 with given £ > 0. We may choose A finer than the AFC Ao given in the
 definition of AC**(X ) and such that I C G when (/, x) G A and x G X.
 Then choose a fixed partial A-partition Do = {(/, x)} with x G X such that
 í/a - s < (Do)^2F(I) < H&. Since / is AP integrable on [a, 6], there is
 an AFC Ai such that for any Ai-partition D = {(/, x)} of [a, 6], we have
 (£>)]C |/(*)|/| - -F(/)| < £• We may choose Ai < Ao such that every Ai-
 partition is finer than Do and I fl X = 0 when its associated point x £ X.
 Let D = {(/, #)} be any Ai-partition of [a, 6]. Let D' - {(/, x) G D; x G
 X}. Note that the union of intervals I in Di covers X. Thus (Do) l^l -
 (£>i)£l7l < rj. Then

 '(D)J2{fx(*)'I'-H}' < (X?i) {/(®)|/| - ^(/»1 +

 (D0)J£m-HA' +

 |(D0) £ F(I) - (Di) ¿2 m I + |Äa - H'
 <£ + £ + £ + £.

 Hence fx is AP integrable. Denote the primitive of fx by Fx- In view of

 |(£>)£Fx(/)| < '(D)Y,{Fx(I)-fx(*)'I'}' +

 |(D) £ {F(I) - fx(x)'I'}' + |(D) £ F(/)| ,

 Fx is AC**(X). Note that we may choose an AFC A such that IC'X = 0 when
 (/, x) G A with its associated point x ļ X. Thus Fx {I) = 0. Consequently,
 Fx is AC**[a}b'. It is known that there exists a A-partition of [ti,v] for any
 [' u)v ] C [a , 6] . Therefore Fx is absolutely continuous on [a, 6]. Hence fx is
 Lebesgue integrable on [a, 6]. □

 Lemma 5 Let {/n} be a sequence of AP integrable functions on [a, b] with
 primitives {Fn} and {/«,*} a sequence of AP integrable functions on [a, b] with
 primitives {Fn>x} where fn,x{x) = fn(x) when x G X and zero otherwise. If
 {Fn} is uniformly AC**(X), where X is closed , then for every £ > 0, there
 exists an AFC A, independent of n, such that for any partial A-partition
 D = {(/,x)} of [a, 6] with x eX, we have '(D)Y^{Fntx{I) ~ ^n(/)}| < e for
 all n.

 Proof. Since { Fn } is AC**(X) uniformly, for every e > 0, there exist an AFC
 A and rj > 0, both independent of n, such that the rest of the condition for
 AC*ļ(X) holds. For each n, there exists an AFC An with An < A such that
 for any An-partition D = {(/, x)} of [a,. 6], we have (D) I Fn{I) - fn{x)'I'' <
 £ and (D) E I Fn,x(I) - fn,x(x)'I'' < £.
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 We may assume that IC'X = 0 when its associated point x £ X and I C G
 if X G X, where G D X, |G'X| < 77 and G is open. Let D be any partial
 A-partition of [a, 6] with associated points in X. Construct An -partition of
 each I in D and denote the total partition by D' . Split D' into D2 and D3 so
 that D2 contains the intervals with associated points in X and D3 otherwise.
 Note that ( D ' D2) Ul = (^3) X] U' < 1- Then for all n

 |(£>)^{Fn,x(/)-F„(/)}| =

 < }| + |(03)£{ }|
 < '(D2)J2{Fn,x(I)-fn,x(x)(I)}' +

 (D2)J2ifn(x)'I'- Fn(I)}' +

 < e + e + 0+|(D'D2)£F„(/)|
 < c - I- c - I- 0 - I- c Ū

 Lemma 6 If the conditions in Lemma 5 are satisfied, then { FU)x } is uni-
 formly absolutely continuous on [a, 6].

 Proof. By Lemma 5 {Fnļx} is uniformly AC**(X). Hence {Fnļx} is uni-
 formly AC*ļ on [a, 6]. Thus {Fn)x} is uniformly absolutely continuous. □

 Lemma 7 If the conditions in Lemma 5 are satisfied , and, in addition, {/„}
 converges to f almost everywhere on [a,b', then fx is Lebesgue integrable on
 [a, 6] and for every e > 0, there is a positive integer N such that for any partial
 partition D = {/} o/[a,6], we have '{D)^2 {Fn)x{I) - Fx{I)}' < s whenever
 n > N .

 Proof. The assertion follows from Lemma 6 and Vitali's convergence theorem
 for Lebesgue integrals. □

 Lemma 8 If the conditions in Lemma 7 are satisfied, and, in addition, Fn
 converges to F on [a, 6], then for every e > 0 there exists an AFC A such that
 for any partial A-partition D = {(/, z)} of [a, 6] with x G X , we have

 '(D)^{FX(I)-F(l)}'<e.
 Proof. The assertion follows from Lemmas 5 and 7. □
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 Lemma 9 Let {fn} be a sequence of AP integrable functions on [a, b' satis-
 fying condition (ii). Then the following approximately Lusin condition holds:
 for every set Z C [a, 6] of measure zero and for every e > 0, there exists an
 AFC A of [a, 6] such that for any partial A- partition D = {(/, x)} of [a, b]
 with X G Z, we have '(D) ^ Fn(I)' < e for all n.

 Proof. Let {Fn} be uniformly AC** (Xi), where [a, 6] = U¿X¿. Let Z c [a, b]
 with 'Z' = 0. Let Si = Z fi X¿. Then |S¿| = 0. Let e > 0 and Gì an open
 set such that Si C G i and |G¿| < r¡i where t]í comes from the definition of
 AC*ļ(Xi) for the given e2~l. Let A* be the corresponding AFC. We may
 assume that [i¿,v] C Gì when its associated point x G Si . Let Uļ be the
 density 1 set at x in A Let Ux = Uxx if x G X'Xi- i, i = 1,2, • • • , where
 Xo = 0. Let A be the approximate full cover induced by { Ux }. Then for any
 partial A-partition D = {(/, x)} of [a, b] with x G Z, we have |(D) ^
 Eie2-ł=e. □

 Now we shall prove Theorem 4.

 Proof of Theorem 4 Let {Fn} be uniformly AC*ļ(Xi), where [a, 6]. =
 U iZ'Xi. We may assume that Xn C Xn+' for all n. Let Y¿ be a closed subset
 of Xi such that |Z| = 0 where Z = [a, 6]' Y¿. Let e > 0. First, by Lemma
 7, there exists an integer n = n(z, j) such that for any partial partition D = {/}
 of [a, 6], we have |(£>) {^n,y»C0 - Fyí(I)}' < e2~'l~j. We may assume for
 each i that {n(i,j)} is a subsequence of {n(i - 1 , j)}. For each x G there
 exists m(x) = n(j, j) for some j > i such that |/m(x)(x) - /(x)| < £. We
 may assume that /n(#) converges to f(x) pointwise for each x G [a, 6] and
 /n(z) = /(z) = 0 for all n and all x e Z.

 There exists an AFC An such that for any partial An-partition D =
 {(/, x)} of [a, 6], we have ( D ) ^2 I Fn(I) - fn(x) 'I'' < s2~n. By Lemmas 5, 8
 and 9, there exists an AFC A, independent of n, such that for any partial A-
 partition D = {(/, x)} of [a, 6] with x G y¿, we have |(J9) {Fn)yť (I) - Fn(I)}'
 < e2~x for all n, and '(D)^2{Fyí(I) ~ -F(-0}| < z2~%. Furthermore, for any
 partial A-partition D = {(/, x)} of [a, b] with x G Z, we have |(Z}) ^ Fn(I) | <
 e for all n and < s. We may assume that Ux C where

 Ux and are as in A and Am(a.) respectively. Hence if (/, x) G A, then
 (/, x) G A^aj) .
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 Let D = {(/, x)} be any A-partition of [a, 6]. Let Di be the subset of D
 such that X E Z and Di = D ' Di- Let Wi = Y¿ ' Y¿_ i and Yo = 0. Then

 |(D)£/(*)|/|-F(J)| < (D1)J£{f(x)'I'-fm(x)(x)'I'}' +

 (D1),£{Fm{x)(I)-fm{x)(x)'I'}' +

 (°i)E E {Fm(x)(I)-Fm{x)iY,(I)} +
 i xčWi

 (°i)E E {^(^W-ív.W} +
 i rreVT,

 (^E E +
 ť

 |(d2)^F(/)|
 oo oo

 < e(6-a) + ^£2-n + ^e2-' +
 n = l ¿=1

 oo oo oo

 EE£2"'"'+Ee2"'+£
 t=l j=l i= 1

 < £(6 - ci + 5).

 Hence / is AP integrable on [a, 6] and lim^oo /n = /flÒ /• Note that in the
 above

 (^)E E -**(/)} =
 » x£'Vi

 (^)EE E "**(/)}.
 * j m(x)=n(j,j)txeWi

 If m(x) = n(j,j) and x G W,-, then j > i. Hence n(j,j) = n(i, ^0")) for some
 k(j). Therefore, the above sum is less than YiîLi ¿j^=i □

 We notice that the method of proof above relies very little on the properties
 of density sets. It is therefore natural to surmise that the results should also
 work for a more general system. Indeed, this is being worked out, and if it
 warrants publication, will appear elsewhere.

 We remark that the following integral is defined by R. Gordon [4].

 A function / is said to be Gordon integrable to A on [a, b] if there exists
 A = A({ř7jr}) such that for every e > 0, there is a positive function <J(x) on
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 [a, 6] such that for any A^partition D = { ( [u , i>] , £ ) } we have

 I (U)53/(ť)(w-u)-i4 < e,

 where A1 = A1^^}) and Ul = Ux D (x - S(x),x + i(x)).
 It is obvious that if / is Gordon-integrable on [a, 6], then / is AP integrable

 and their integrals coincide. Surprisingly, the converse is also true, though the
 proof is rather involved, see [8].

 References

 [1] P. S. Bullen, The Burkill approximately continuous integral , J. Austral.
 Math. Soc. (series A) 35 (1983), 236-253.

 [2] J. C. Burkill, The approximately continuous Perron integral , Math. Z. 34
 (1931), 270-278.

 [3] R. A. Gordon, The inversion of approximate and dyadic derivatives using
 an extension of the Henstock integral , Real Analysis Exch 16 (1990-91)
 154-168.

 [4] R. Henstock, The general theory of integration , Oxford University Press,
 1991.

 [5] R. Henstock, Lectures on the theory of integration , World Scientific, 1988.

 [6] Lee Peng Yee, Lanzhou Lectures on Henstock integration , World Scientific
 1989.

 [7] Lee Peng Yee, On ACG* functions , Real Analysis Exchange 15 (1989-
 90), 754-759.

 [8] Liao Kecheng, Chew Tuan-Seng, The descriptive definitions and proper-
 ties of the AP integral and their application to the problem of controlled
 convergence , 1992, submitted for publication.

 [9] J. Ridder, Über die gegenseitigen Beziehungen verschiedener approximativ
 stetiger Denjoy-Perron Integralei Fund. Math. 22 (1934), 136-162.

 [10] D. Soeparna, The controlled convergence theorem for the approximately
 continuous integral of Burkill , Proc. Analysis Conf. Singapore 1986,
 North-Holland 1988, 63-68.


	Contents
	p. 67
	p. 68
	p. 69
	p. 70
	p. 71
	p. 72
	p. 73
	p. 74
	p. 75
	p. 76

	Issue Table of Contents
	Real Analysis Exchange, Vol. 20, No. 1 (1994-95) pp. 1-371
	Front Matter
	EDITORIAL MESSAGES [pp. 1-1]
	Tadeusz Świa̹tkowski - OBITUARY [pp. 2-5]
	CONFERENCE ANNOUNCEMENTS [pp. 6-9]
	CONFERENCE REPORTS
	REPORT ON THE SUMMER SYMPOSIUM IN REAL ANALYSIS XVIII, UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VIRGINIA JUNE 22-25, 1994 [pp. 10-13]
	Carathéodory's outer measures: 80 years [pp. 14-17]
	DISTORTION THEORY FOR FUNCTIONS IN A ZYGMUND SPACE Λ [pp. 18-19]
	PACKING CONICS IN THE PLANE [pp. 20-21]
	ORDINARY AND STRONG DENSITY CONTINUOUS FUNCTIONS ON THE PLANE [pp. 22-24]
	MEASURE PRESERVING CONTINUOUS SMOOTHING OF FRACTIONAL DIMENSIONAL SETS [pp. 25-25]
	SMOOTHING Λ-SEQUENCES [pp. 26-27]
	ω-LIMIT SETS FOR CERTAIN CLASSES OF FUNCTIONS [pp. 28-30]
	ω-LIMIT SETS AND CONTINUOUS FUNCTIONS WITH CONTROLLED GROWTH [pp. 31-32]
	Ap-WEIGHTS AND RELATED TOPICS [pp. 33-35]
	LIMITS AND SERIES OF EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 36-36]
	BOUNDED HARMONIC VARIATION AND THE GARSIA-SAWYER CLASS [pp. 37-38]
	ON SOME PROBLEMS OF FRACTIONAL DERIVATIVES [pp. 39-40]
	INFINITE CONFORMAL ITERATED FUNCTIONS SYSTEMS AND MEASURABILITY OF MEASURE AND DIMENSION FUNCTIONS [pp. 41-42]
	THE MULTIFRACTAL SPECTRUM OF RIEMANN'S FUNCTION [pp. 43-44]
	RANDOM WALKS AND GENERALIZED RIESZ PRODUCTS [pp. 45-46]
	LIMITS UNDER THE INTEGRAL SIGN [pp. 47-47]
	LIMITING CASES OF THE SOBOLEV IMBEDDING THEOREM [pp. 48-49]
	ON VECTOR-VALUED HENSTOCK AND DENJOY INTEGRALS [pp. 50-50]
	NEW INTEGRALS AND THE GAUSS–GREEN THEOREM WITH SINGULARITIES [pp. 51-54]
	HAUSDORFF AND PACKING MEASURES OF SOME SELF-AFFINE SETS [pp. 55-57]
	COMPLETENESS IN TOTALLY ORDERED ABELIAN GROUPS [pp. 58-58]
	ON CONVERGENCE OF FOURIER SERIES IN THE HAUSDORFF METRIC [pp. 59-60]
	POSITIVITY OF THE HAUSDORFF MEASURE FOR RANDOM SELF–SIMILAR FRACTALS [pp. 61-61]
	MULTIFRACTAL MEASURES [pp. 62-62]
	ON VARIOUS POROSITY NOTIONS IN THE LITERATURE [pp. 63-65]
	A SET IN THE PLANE WITH PECULIAR MEASURE-THEORETIC PROPERTIES CONSTRUCTED BY VITUŠKIN, IVANOV AND MELNIKOV [pp. 66-66]

	RESEARCH ARTICLES
	ON CONVERGENCE THEOREMS FOR AP INTEGRALS [pp. 67-76]
	ON A GENERALIZED DOMINATED CONVERGENCE THEOREM FOR THE AP INTEGRAL [pp. 77-88]
	ON THE MEASURABILITY OF EXTREME PARTIAL I-APPROXIMATE DERIVATIVES [pp. 89-93]
	EXTREME PROBABILITY SUBMEASURES ON 3 POINTS [pp. 94-101]
	Density continuous transformations on ℝ² [pp. 102-118]
	A CONVERGENCE THEOREM FOR GENERALIZED RIEMANN INTEGRALS [pp. 119-124]
	THE STRUCTURE OF MINIMAL ATTRACTION CENTERS OF TRAJECTORIES OF CONTINUOUS MAPS OF THE INTERVAL [pp. 125-133]
	Λ-VARIATION AND BAIRE CATEGORY [pp. 134-139]
	FUNCTIONS THAT HAVE NO FIRST ORDER DERIVATIVE MIGHT HAVE FRACTIONAL DERIVATIVES OF ALL ORDERS LESS THAN ONE [pp. 140-157]
	DIMENSION OF SETS OF NUMBERS WITH MULTIPLE REPRESENTATIONS [pp. 158-162]
	DENSITY TOPOLOGIES FOR PRODUCTS OF σ-IDEALS [pp. 163-177]
	ON THE TRANSFORMATIONS OF MEASURABLE SETS AND SETS WITH THE BAIRE PROPERTY [pp. 178-182]
	LIMITS AND SUMS OF EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 183-191]
	APPROXIMATE CORE TOPOLOGIES [pp. 192-203]
	MAXIMAL ADDITIVE AND MAXIMAL MULTIPLICATIVE FAMILY FOR THE CLASS OF SIMPLY CONTINUOUS FUNCTIONS [pp. 204-211]
	MULTIPLIERS FOR SOME GENERALIZED RIEMANN INTEGRALS IN THE REAL LINE [pp. 212-218]
	POINTS OF NON-DIFFERENTIABILITY OF TYPICAL LIPSCHITZ FUNCTIONS [pp. 219-226]
	THE EXTENDING OF DARBOUX FUNCTIONS WITH FINITE VARIATION [pp. 227-243]
	ON THE SUMS OF DARBOUX UPPER SEMICONTINUOUS QUASI-CONTINUOUS FUNCTIONS [pp. 244-249]
	INEQUALITIES OF MINKOWSKI'S TYPE [pp. 250-255]
	FINE VARIATION AND FRACTAL MEASURES [pp. 256-280]
	CARDINAL INVARIANTS CONCERNING FUNCTIONS WHOSE PRODUCT IS ALMOST CONTINUOUS [pp. 281-285]

	INROADS
	ON SCORZA DRAGONI'S PROPERTY FOR THE DENSITY TOPOLOGY [pp. 286-290]
	A PECULIAR SET IN THE PLANE CONSTRUCTED BY VITUŠKIN, IVANOV AND MELNIKOV [pp. 291-312]
	THE SHORTEST ENCLOSURE OF THREE CONNECTED AREAS IN ℝ² [pp. 313-335]
	A NOTE ON MAJOR AND MINOR FUNCTION FOR THE PERRON INTEGRAL [pp. 336-339]
	PATH INTEGRAL: AN INVERSION OF PATH DERIVATIVES [pp. 340-346]
	AN ELEMENTARY PROOF OF THE BOREL ISOMORPHISM THEOREM [pp. 347-349]
	ON ITERATIONS OF DARBOUX FUNCTIONS [pp. 350-355]
	ON DARBOUX BAIRE ONE FUNCTIONS [pp. 356-358]
	DESCRIPTIVE MAPPING PROPERTIES OF TYPICAL CONTINUOUS FUNCTIONS [pp. 359-362]
	KURZWEIL-HENSTOCK ABSOLUTE INTEGRABLE MEANS McSHANE INTEGRABLE [pp. 363-366]
	EVERY BOUNDED FUNCTION IS THE SUM OF THREE ALMOST CONTINUOUS BOUNDED FUNCTIONS [pp. 367-369]

	QUERIES
	A QUERY CONCERNING SARD'S THEOREM FOR POINTS OF NON-DIFFERENTIABILITY [pp. 370-371]

	Back Matter



