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 ON VARIOUS POROSITY NOTIONS IN

 THE LITERATURE

 A nomenclature for some porosity notions currently appearing in the litera-
 ture is introduced. Using this nomenclature we show that most of the cr-ideals
 generated by these porosity notions are distinct in M.

 Let (X, d) be a metric space, E Ç Xy x £ X, and S > 0. We define

 7 (E,xy6) = sup{2¿' : S' > 0 and 3 x' G X such that B(x,)S') Ç B(x,6)
 and B(x,i S') fi [E U {x}] = 0}.

 (If no such x' exists, we let 7 = 0.) Letting

 p(E , x) = lim sup
 6-+0 0

 we say that E is porous ( a-porous ) if p(E , x) > 0 ( p(E , x) > a) for all x G E.
 In applications in convex geometry "for all x G En is frequently replaced by
 "for all x G X" . As this is equivalent to requiring that the closure of E be
 porous, we call this notion closure porous (cp). A (T-porous set is a countable
 union of porous sets, and likewise for other variants of porosity. The following
 diagram illustrates some of the relationships among these classes of sets for
 X = M. (a is any fixed number satisfying 0 < a < 1.)

 subset of null T0
 * , v ^ Frink (1933) ¡ Zajíček (1976) v V (1933) ¡

 a-a-cp - ^ <7-cp Ist cat, null
 ^ ^ Foran/Humke (1980-81) y'.

 Humke/Ve8sey (1982-83) T' Zajíček (1976)
 I <r-a-porous = (7-poroušļ

 Zajíček (1976)
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 Remarks:

 a. Frink's example [6] is in R2. In 1958 S. Marcus [9] gave examples in Rn,
 n > 1.

 b. The collection of subsets of T0 null (i.e. Lebesgue measure zero) sets is
 equal to the cr-ideal generated by the Jordan measure zero sets.

 Observe that E is a-porous if and only if given any 0 < a' < a and any
 X G E, there is a sequence ín ' 0 such that 7 {E,x,8n) > a'8n for each n.
 This has the form "Vx 3 sequence." Interchanging the order of the quantifiers
 yields the logically stronger "3 sequence Vx " notion that we will call globally
 porous. (We mention that "globally porous" is sometimes used in the literature
 to denote what we are calling a-cp.) Specifically, we say that a set E is a-
 gp if and only if for each 0 < a' < a there is a sequence Sn ' 0 such that
 7 (E,x,Sn) > ct'8n for each n and for each £ E E.

 V
 Reniarks (continued):

 c. Global porosity is to porosity as uniform continuity is to continuity.

 d. If E is a-gp, then E is a-cp.

 e. There exists a closed symmetrically 1-porous set in R that cannot be
 expressed as a countable union of a-gp sets, (a is allowed to vary.)

 f. An H set in the theory of trigonometric series is bilaterally a-gp for some
 a > 0. (See the proof that H sets have no points of contraction on p.
 384 of [3].)

 g. Variations of the notion of global porosity appear in [15], [12], and [7].
 In [12] Petukhov shows that for any 0 < a' < a < 1, there is an a'-gp
 set in R that is not <r-a-gp. (The proof actually shows that the set is
 not ¿T-a-cp.)

 h. Global versions of "very porous" (porosity using liminf rather than
 lim sup in the definition) are used in [13], [4], [11], [2], and [10]. We
 note that such sets are both totally porous (in the sense of [1]) and su-
 perporous, and include (for X = R) all symmetric Cantor sets having
 constant dissection ratios. (Hence not every gp set is an H set.)
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