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 LIMITING CASES OF THE SOBOLEV

 IMBEDDING THEOREM

 The talk is based on the joint work with Professor D. E. Edmunds (Univer-
 sity of Sussex, England) and Dr. B. Opic (Mathematical Institute in Prague,
 Czech Republic), papers [2], [3] and [4].

 We provide estimates for an appropriate norm of the convolution of a func-
 tion in a Lorentz space with one in a generalized Lorentz-Zygmund space. As
 a corollary it is shown that the Riesz potential of a function in an appropriate
 generalized Lorentz-Zygmund space satisfies a 'double exponential' integra-
 bility condition. The results extend those of Brézis-Wainger [1] on the convo-
 lution of functions in Lorentz spaces which lead to exponential integrability.

 To be more precise we show one application, a refinement of the limiting
 case of the Sobolev imbedding theorem. It has been known that the Sobolev
 space W1,n(i2) (where íí C Mn is a bounded domain with a sufficiently smooth
 boundary, n > 2) is (continuously) imbedded into the Lebesgue space L9(íí)
 (we write W1,n(íí) Lq(Cl)) with q G [n) oo) but is not imbedded into L°°(Çl).
 In 1967 N. S. Trudinger [6] proved the imbedding

 (1) Wl*n{0)

 where L$(Q) is the Orlicz space with the Young function $(t) = e'ř'n/(n - 1.
 It is known (see e.g. [5]) that the imbedding cannot be improved, i.e. taking

 $p(t) = e^lřln/(n ł) - 1 with ß > nul/Si'1^ (where denotes the surface
 of the unit sphere in Mn) one can show that there exists a sequence {/n}
 of functions with norms ||/n||tvi.»(n) < 1 such that lim fn$ß{'fn') = oo.

 n- foo

 This immediately implies that the imbedding (1) is not compact and that any
 imbedding iy1,n(fì) L^Q) with <p(t) which increases strictly more rapidly
 than $(t) cannot hold. A natural question appears: What is the substitution
 for the space L$(il) in the imbedding of the type (1) when we replace the space
 W1,n(Q) by some smaller one? (Recall that the assumption / G W1,n+e(Q),
 e > 0, implies that / is bounded on ÎÎ and a.e. equivalent with a function
 continuous on Í2, i.e. W1,n+£(Q) «->• Cß(fi). So the space cannot be much
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 smaller.) Our results enable to derive (for the sake of simplicity we restrict
 ourselves to a special case) the imbedding

 (W1,ł(Q) has the norm H/Htyi,*^) = (||/IU*(n) + E with
 the Young functions 'P, <p having the behaviors

 tf(ť) « |ť|n(l + log |<|)"-1, t->oo,

 ip(t) « expexp(/?|ť|n^n-1^), t - y oo, ß > 0 sufficiently small.

 Similar sharpness results as for (1) are obtained for this case, too.
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