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 RANDOM WALKS AND GENERALIZED
 RIES Z PRODUCTS

 The main subjects of this paper are tail <r-algebras of a random walk and
 the spectra of dynamical systems related to them.

 1. Tail <7-algebras. Let (íí,Z?, P) be a probabilistic space, M a metric
 space and fn : fì - » M, n = 0,1,2,..., measurable mappings. For any positive
 integer n denote by Bn a <r-algebra of B generated, first, by all sets fkl(D)
 (D is open in M and k > n) and, second, by all sets having a P - measure
 equal to 0. A cr- algebra #taii (corresponding to the sequence {/n}) is defined
 by Btaii = fi kBk-

 Example. If {fn} are independent random elements of M, then Z?taii is
 trivial (i.e., it consists of only measurable sets E C iî with P(E) equal to
 either 0 or 1). (A. Kolomogorov)

 2. The tail ¿r-algebra of a random walk. Now take M = M9 and
 consider independent random elements </>k : Í2 - ► M9, k = 0,1,

 corresponding distributions are denoted by nki k = 0,1,.... The sequence
 fk = <j) o +

 are interested in the corresponding tail cr-algebra ßtaii- To pose the problem
 more definitely we define now the notion of a tail dynamical system.

 Suppose that the measure fio is equivalent to the Lebesgue measure t on
 M9 and fik with Ar > 0 is supported by a Borei subset Yk C M9. So we can
 put Q = Rq X Y' X y2 X . . . and fk{v) = yo +

 u = (yo, î/i, . . .) G £lā For any t G M9 define the transformation w ut by

 W = (2/0, 2/1 , - - ) {yo + t,yi,...) d= U)t.

 Clearly, these transformations preserve Bn for all n. Thus, they preserve
 the <r-algebra ßtaii as well. We obtained the probabilistic space (Œ, #taii> Aaii)
 on which the additive group M acts. (Ptaii denotes the restriction of the mea-
 sure P to ßtaii ) This is by definition a tail dynamical system; clearly, the
 measure Ptaii is quasi-invariant under these transformations. Following the
 classical canons we consider the Hilbert space 7/taii = ¿2(^5 #taii> Aaii) and
 the group of unitary operators defined by

 (1) (Utf)(w) = f enlutem".
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 The problem is to determine the spectral type of this group. We are able
 to settle this problem under some rather restrictive conditions; these are the
 following:

 A) Suppose Yk is finite for any k > 0.

 B) Put Lk = maxjt/! - y2 : 2/1 G Ykì y2 G Yk } and lk = min{t/i - 2/2 : 2/1 G
 Ykì 2/2 G Ykì 2/1/2/2}. Then we suppose that

 lk = L' + . . . Lk- 1 - Mo, Vfc > 0

 for some Mo.

 Assuming that these conditions A) and B) are satisfied, we define for any
 positive integer m the formal infinite product

 2
 00

 (2) iC(A) = II E V^(0)eť(yiA) >
 k=m y£Yk

 where A G M9 and (2/, A) denotes the standard product in M9. It can be
 easily shown that under conditions A) and B) this product converges to some
 measure rm in the sense of distribution theory. Clearly, 71 ^ 7*2 ^ . . . , and
 we denote by r the measure defined as r = YlltLi €kTk where ek > 0 and ek
 rapidly tends to 0; thus, r is determined up to equivalence. Consider now the
 group of unitary operators

 (3) (Vtf)( A) = e'C-WW, / € L2(R «, r), t € M5.

 Theorem 1 There exists a unitary operator K : %taii t) satisfying
 the equality

 K~1UtK = Vt, Vť € M9

 (Thus the groups (1) and (3) are unitarily equivalent.)
 3. The noncommutative case. Take G to be the group

 i i1 a c) ] <0=1 0 1 b |,a,6,c€lR>.
 I ' 0 0 1 / J

 Similar considerations lead to noncommutative versions of products (2). This
 provides examples of tail dynamical systems with "time" G having singular
 spectra (in the dual G ).
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