Franciszek Prus-Wiśniowski, Instytut Matematyki, Uniwersytet Szczeciński, ul.Wielkopolska 15, 70-451 Szczecin, Poland

Current address: Department of Mathematics, Syracuse University, 215 Carnegie Hall, Syracuse, NY 13210-1150 (email: wisniows@math.syr.edu)

BOUNDED HARMONIC VARIATION AND THE GARSIA-SAWYER CLASS

Waterman's Test [3, Thm.1] includes all other tests that yield Dirichlet-Jordan conclusions. In particular, $GS \subset HBV$ where GS denotes the Garsia-Sawyer class defined in [1] first, and next extended to the non-continuous case by C. Goffman and D.Waterman [3, pp.109-111]. Unlike HBV, GS is not a linear space. Since Λ -variation furnishes a natural norm $||f||_{\Lambda} = |f(0)| + V_{\Lambda}(f)$ that makes ΛBV a Banach space, the question of whether or not the closure of GS in $|| ||_{H}$ -norm is the whole space HBV was of some interest [5, Problem 3].

While investigating Cesàro summability of Fourier series, D. Waterman found it useful to define the class of functions continuous in Λ -variation (ΛBV_c) by $f \in \Lambda BV_c$ if and only if $\lim_n V_{\Lambda_{(n)}}(f) = 0$ [4]. Although $\Lambda BV_c \subset \Lambda BV$, the question about the exact relationship between ΛBV_c and ΛBV was around for almost 20 years, and there were a number of partially successful attempts to answer it. In 1978 R. Fleissner and J. Foran showed that ΛBV_c might be a proper subclass of ΛBV . A sufficient condition for ΛBV_c to be a proper subset of ΛBV was given by a A. I. Sablin, in 1985. In the same year in China, G. Shao published a sufficient condition for the two classes to be equal. Two years later, Sablin announced another sufficient condition for the equality $\Lambda BV = \Lambda BV_c$. Eventually, it turned out that

Theorem 1 $\Lambda BV = \Lambda BV_c$ if and only if $\limsup_n \frac{\sum_{i=1}^{2n} \frac{1}{\lambda_i}}{\sum_{i=1}^{n-1} \frac{1}{\lambda_i}} < 2$.

In order to explain the numerous nice properties that functions continuous in Λ -variation enjoy, we need a new definition.

Definition 1 A function f is said to be Λ -absolutely continuous (in symbols $f \in \Lambda AC$) if for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$\sum_{i} \frac{|b_{i} - a_{i}|}{\lambda_{i}} < \delta \qquad \Rightarrow \qquad \sum_{i} \frac{|f(b_{i}) - f(a_{i})|}{\lambda_{i}} < \epsilon$$

for every collection $\{[a_i, b_i]\}$ of nonoverlapping intervals.

Theorem 2 If $\lambda_i \to \infty$, then $\Lambda AC = C \cap \Lambda BV_c$.

Theorem 3 [2] $(\Lambda AC, || ||_{\Lambda})$ is separable. The set of piecewise linear continuous functions is dense there.

Definition 2 A regulated function f is said to have identical points of discontinuity with a regulated function g in case f(t+) = f(t) iff g(t+) = g(t), and f(t-) + f(t) iff g(t-) = g(t) for every $t \in [0, 1]$.

If h is a strictly increasing function has identical points of discontinuity with a regulated function \underline{f} , then the function $f \circ h^{-1}$ possesses a unique continuous extension to $\overline{h([0,1])}$ that we will again denote by $f \circ h^{-1}$, and that can be further extended to a continuous function $\overline{f \circ h^{-1}}$ on the entire interval [h(0), h(1)] by requiring that it is linear on the closure of each interval complementary to $\overline{h([0,1])}$.

Theorem 4 Let $\lambda_i \to \infty$, f be a regulated function and let h be any strictly monotone function having the same points of discountinuity as f. Then $f \in \Lambda BV_c$ if and only if $f \circ h^{-1} \in \Lambda AC$.

This theorem combined with the previous result on separability of $(\Lambda AC, || ||_{\Lambda})$ easily furnishes the following fact.

Theorem 5 BV is a dense subset of $(\Lambda BV_c, || ||_{\Lambda})$ if $\lambda_i \to \infty$.

Since $BV \subset GS$, we get by Theorem 1

Corollary 1 The Garsia-Sawyer class is a dense subset of $(HBV, || ||_H)$.

References

- A. M. Garsia and S. Sawyer, On some classes of continuous functions with convergent Fourier series, J. of Math. and Mech. 13 (1964) 586-601.
- [2] F.Prus-Wiśniowski, λ-variation and Hausdorff distance, Math. Nachr. 158 (1992) 283-297.
- [3] D.Waterman, On convergence of Fourier series of functions of generalized bounded variation, Studia Math. 44 (1972) 107-117.
- [4] D.Waterman, On the summability of Fourier series of functions of Λ bounded variation, Studia Math. 55 (1976) 87-95.
- [5] D.Waterman, Λ-bounded variation: recent results and unsolved problems, Real Anal. Exch. 4(1978-79) 69-75.