Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487

LIMITS AND SERIES OF EXTENDABLE CONNECTIVITY FUNCTIONS

A function from the unit interval I into $\mathbb R$ is Darboux if it maps connected sets to connected sets. A function $G:X\to\mathbb R$, where X is I or $I\times I$, is called a connectivity function if whenever C is a connected subset of X, then the graph of the restriction $G|C:C\to\mathbb R$ is a connected subset of $X\times\mathbb R$. A connectivity function $g:I\to\mathbb R$ is said to be extendable if there exists a connectivity function $G:I\times I\to\mathbb R$ for which G(x,0)=g(x) when $0\le x\le 1$. The idea of g-negligible sets is useful. Given an extendable connectivity function $g:I\to I$, we say that a subset M of I is g-negligible if g may be redefined on M arbitrarily with values in I and still remain an extendable connectivity function.

For an arbitrary function $f: I \to I$, it is shown that

$$f = \lim_{n \to \infty} f_n$$
 and $f = \sum_{n=1}^{\infty} g_n$

for some extendable connectivity functions $f_n: I \to I$ and $g_n: I \to \mathbb{R}$. An example is constructed of a sequence of extendable connectivity functions whose uniform limit is not Darboux. These results answer some questions of Richard Gibson.