Franciszek Prus-Wiśniowski, Instytut Matematyki, Uniwersytet Szczeciński, ul.Wielkopolska 15, 70-451 Szczecin, Poland
Current address: Department of Mathematics, Syracuse University, Syracuse, NY 13210-1150
Daniel Waterman, Department of Mathematics, Syracuse University, Syracuse, NY 13210-1150

SMOOTHING Λ-SEQUENCES

In a recent investigation concerning bounded Λ-variation as a gap Tauberian condition, a question about $\Lambda B V$ spaces arose which has not been previously considered.

We quickly recapitulate the essential facts about these spaces: Let $\Lambda=$ $\left\{\lambda_{n}\right\}$ be a nondecreasing sequence of positive real numbers such that

$$
\sum \frac{1}{\lambda_{n}}=\infty
$$

A function f defined on an interval (finite or infinite) is of Λ-bounded variation if $\sum\left|f\left(b_{n}\right)-f\left(a_{n}\right)\right| / \lambda_{n}$ converges for every sequence of nonoverlapping intervals $\left\{\left[a_{n}, b_{n}\right]\right\}$. The class of such functions is known as $\Lambda B V$. It may be shown that such functions are regulated, i.e., right and left limits exist at each point. We generally assume that $\lambda_{n} \nearrow \infty$, for otherwise, $\Lambda B V=B V$.

In the study of the Tauberian theorem we referred to, it seemed necessary to make the assumption that

$$
\lim \sup \lambda_{n+1} / \lambda_{n}<\infty
$$

A question which arises naturally is
Question 1 Given a class $\Lambda B V$ for which $\lim \sup \lambda_{n+1} / \lambda_{n}=\infty$, is there a $\Gamma=\left\{\gamma_{n}\right\}$, with limsup $\gamma_{n+1} / \gamma_{n}<\infty$, such that $\Gamma B V=\Lambda B V$?

When $\Gamma B V=\Lambda B V$, we shall say that the sequences Γ and Λ are equivalent.
After we answered this question affirmatively, the next to come to mind was,

Question 2 For any given Λ is there $a \Gamma$ equivalent to Λ such that $\lim \gamma_{n+1} / \gamma_{n}=1$?

A sequence is called smooth if $\lim \gamma_{n+1} / \gamma_{n}=1$.
Question 2 was also answered affirmatively. The method employed for Question 1 consisted of altering a subsequence of Λ to form the desired Γ. The method employed for Question 2 is an amplification of the original argument. This method, although direct, is relatively complicated. Another question, which also has an affirmative answer is

Question 3 Is there a computationally simple method by which one can obtain a smooth Γ equivalent to a given Λ ?

