Franciszek Prus-Wiśniowski, Instytut Matematyki, Uniwersytet Szczeciński, ul.Wielkopolska 15, 70-451 Szczecin, Poland

Current address: Department of Mathematics, Syracuse University, Syracuse, NY 13210-1150

Daniel Waterman, Department of Mathematics, Syracuse University, Syracuse, NY 13210-1150

SMOOTHING Λ -SEQUENCES

In a recent investigation concerning bounded Λ -variation as a gap Tauberian condition, a question about ΛBV spaces arose which has not been previously considered.

We quickly recapitulate the essential facts about these spaces: Let $\Lambda = \{\lambda_n\}$ be a nondecreasing sequence of positive real numbers such that

$$\sum \frac{1}{\lambda_n} = \infty.$$

A function f defined on an interval (finite or infinite) is of Λ -bounded variation if $\sum |f(b_n) - f(a_n)|/\lambda_n$ converges for every sequence of nonoverlapping intervals $\{[a_n, b_n]\}$. The class of such functions is known as ΛBV . It may be shown that such functions are regulated, i.e., right and left limits exist at each point. We generally assume that $\lambda_n \nearrow \infty$, for otherwise, $\Lambda BV = BV$.

In the study of the Tauberian theorem we referred to, it seemed necessary to make the assumption that

$$\limsup \lambda_{n+1}/\lambda_n < \infty.$$

A question which arises naturally is

Question 1 Given a class ΛBV for which $\limsup \lambda_{n+1}/\lambda_n = \infty$, is there a $\Gamma = \{\gamma_n\}$, with $\limsup \gamma_{n+1}/\gamma_n < \infty$, such that $\Gamma BV = \Lambda BV$?

When $\Gamma BV = \Lambda BV$, we shall say that the sequences Γ and Λ are equivalent.

After we answered this question affirmatively, the next to come to mind was,

Question 2 For any given Λ is there a Γ equivalent to Λ such that $\lim \gamma_{n+1}/\gamma_n = 1$?

A sequence is called *smooth* if $\lim \gamma_{n+1}/\gamma_n = 1$.

Question 2 was also answered affirmatively. The method employed for Question 1 consisted of altering a subsequence of Λ to form the desired Γ . The method employed for Question 2 is an amplification of the original argument. This method, although direct, is relatively complicated. Another question, which also has an affirmative answer is

Question 3 Is there a computationally simple method by which one can obtain a smooth Γ equivalent to a given Λ ?