Real Analysis Exchange Vol. 20(1), 1994/95, pp. 22-24

Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310. (e-mail: kcies@wvnvms.wvnet.edu)

ORDINARY AND STRONG DENSITY CONTINUOUS FUNCTIONS ON THE PLANE

This note is a summary of my lecture presented at the Eighteen Symposium on Real Analysis on June 1994. The proofs and more details on what follows can be found in [1] and [2]. The definitions of ordinary density and strong density topologies on the plane can be also found in [3] or [4].

The results presented below concern transformations from \mathbb{R}^2 into \mathbb{R} and from \mathbb{R}^2 into \mathbb{R}^2 continuous with respect to different density topologies on the domain and range. We will consider *density (strong density) continuous* function $F: \mathbb{R}^2 \to \mathbb{R}$, i.e., continuous functions with the domain equipped with ordinary (strong) density topology and the range with one-dimensional density topology. The function $F: \mathbb{R}^2 \to \mathbb{R}^2$ studied below are *density (strong density) continuous*, i.e., continuous with respect to ordinary (strong) density topology on the domain and the range. We examine the relations between the (strong) density continuity of $f: \mathbb{R}^2 \to \mathbb{R}$ and of its sections $f(\cdot, y), f(x, \cdot)$. Similar question is considered for transformations $F = (f,g): \mathbb{R}^2 \to \mathbb{R}^2$ and their coordinate functions f and g. We also discuss when the complex analytic functions are strongly and ordinarily density continuous.

Results concerning functions from \mathbb{R}^2 into \mathbb{R} :

Proposition 1 [1] Let $h: \mathbb{R} \to \mathbb{R}$ and define $f: \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = h(y). The following conditions are equivalent.

- (a) h is density continuous.
- (b) f is density continuous.
- (c) f is strongly density continuous.

Proposition 2 [1] If $f: \mathbb{R}^2 \to \mathbb{R}$ is strongly density continuous then it is ordinarily density continuous.

Example 1 [1] There exists ordinary continuous $f : \mathbb{R}^2 \to \mathbb{R}$ with density continuous sections $f(x_0, \cdot)$ and $f(\cdot, y_0)$ for all $x_0, y_0 \in \mathbb{R}$ which is not ordinarily density continuous.

Example 2 [1] There exists continuous and ordinarily density continuous $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f(\cdot, 0)$ is not density continuous.

Theorem 1 [1] If $f : \mathbb{R}^2 \to \mathbb{R}$ is strongly density continuous then its sections $f(x_0, \cdot)$ and $f(\cdot, y_0)$ are density continuous for all $x_0, y_0 \in \mathbb{R}$.

Results concerning transformations from \mathbb{R}^2 into \mathbb{R}^2 :

Proposition 3 [1] Locally bi-Lipschitz transformations $F : \mathbb{R}^2 \to \mathbb{R}^2$ are ordinarily density continuous.

Theorem 2 [1] Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ with F(x, y) = (f(x, y), g(x, y)).

- (a) If F is strongly density continuous then f and g are also strongly density continuous.
- (b) If F is density continuous then f and g are density continuous.

Example 3 [1] Transformation $F : \mathbb{R}^2 \to \mathbb{R}^2$, $F(x, y) = (x, y^3)$, is not density continuous, while its coordinate functions f(x) = x and $g(y) = y^3$ are density continuous.

Example 4 [1] Transformation $F : \mathbb{R}^2 \to \mathbb{R}^2$, F(x, y) = (x, x + y), is not strongly density continuous, while its coordinate functions f(x, y) = x and g(x, y) = x + y are strongly density continuous.

Corollary 1 [1] There exists a bi-Lipschitz transformations from \mathbb{R}^2 into \mathbb{R}^2 which is not strongly density continuous.

Theorem 3 [1] Let $f, g: \mathbb{R} \to \mathbb{R}$ and define transformation $H: \mathbb{R}^2 \to \mathbb{R}^2$ by H(x, y) = (f(x), g(y)). If H is not constant then H is strongly density continuous if and only if functions f and g are density continuous and $m_1(f^{-1}(p)) = m_1(g^{-1}(p)) = 0$ for every $p \in \mathbb{R}$.

Complex analytic functions:

Theorem 4 [2] Every analytic function is ordinarily density continuous.

Theorem 5 [2] A non-constant analytic function F is strongly density continuous at z if and only if $F^{(n)}(z)$ is either real or imaginary number, where $n = \min\{k > 0: F^{(k)}(z) \neq 0\}.$

Theorem 6 [2] An analytic function F is strongly density continuous on its domain if and only if F(z) = a + bz where $a, b \in \mathbb{R}^2 = \mathbb{C}$ and b is either real or imaginary number.

References

- [1] Krzysztof Ciesielski, Władysław Wilczyński, Density continuous transformations on \mathbb{R}^2 , preprint.
- [2] Krzysztof Ciesielski, Ordinary and strong density continuity of complex analytic functions, preprint.
- [3] C. Goffman, C.J. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-506.
- [4] Jaroslav Lukeš, Jan Malý, Luděk Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics 1189, Springer-Verlag 1986.