Loren D. Pitt, Department of Mathematics, University of Virginia, Charlottesville, VA 22903 *

DISTORTION THEORY FOR FUNCTIONS IN A ZYGMUND SPACE Λ^*

The Zygmund space Λ^* consists of continuous real valued functions f of period 1 with $\|\Delta_{2,h}f\|_{\infty} = O(h)$ as $h \downarrow 0$, where $\Delta_{2,h}f(x) = \frac{1}{2}[f(x+h) + f(x-h)] - f(x)$. For f in Λ^* the best possible uniform modulus of continuity is $O(\delta \log(1/\delta))$. Examples of nowhere differentiable functions in Λ^* are the Weierstrass function $w(x) = \Sigma 2^{-k} \cos(2\pi 2^k x)$ and the related Kahane function $k(x) = \Sigma 2^{-k} S(2^k x)$, where S(x) is the piecewise linear function with nodes at n/4, $\sin(n\pi/2)/4$.

Three distinct questions were discussed concerning nondifferentiable functions f in Λ^* .

Q1. Is the image of Lebesgue measure $\mu_f(A) = |\{x: f(x) \in A\}|$ a singular measure?

The answer is unknown even for the Weierstrass function w(x), but μ_f is singular when $||\Delta_{2,h}f||_{\infty} = o(h)$, and for general nondifferentiable f in Λ^* , $\mu_{f+\beta x}$ is singular for a.a. β . See [1] and [3]. The proofs rest on the fact that $||f-f_n||_{\infty} = O(2^{-n})$, where $f_n(x)$ is the piecewise linear function with nodes at $\{(k2^{-n}, f(k2^{-n}))\}$.

Q2. Is there a generic local modulus of continuity $w_0(\delta)$ which is smaller than $\delta \log(1/\delta)$, and which is satisfied for a.a. x?

The answer is yes with $w_0(\delta) = \delta \sqrt{\log(1/\delta) \log \log \log(1/\delta)}$. The derivation depends on the rate of growth of the sequence $\{f'_n(x)\}$ of derivatives of the function $f_n(x)$ mentioned in Q1. The key is that $\{f'_n(x)\}$ is a martingale sequence on [0, 1], and the result follows from the martingale law of the iterated logarithm (LIL). See [1] and [4].

Q3. In analogy with multi-fractal decompositions, is it possible to analyze the set of exceptional points where the LIL fails for $\{f'_n(x)\}$.

The answer is yes. Refined information such as dimensions and integral tests are available for both slow points and fast points. See [2].

^{*}Research supported by NSF grant DMS-9003073 and ONR grant N00014-90-J-1639.

References

- J. M. Anderson and L. D. Pitt, Probabilistic behavior of functions in the Zygmund spaces Λ* and λ*, Proc. London Math. Soc. [3] 59 (1989), 558-592.
- [2] J. M. Anderson and L. D. Pitt, Points of exceptional behavior for nondifferentiable functions in Λ^* , in preparation.
- [3] J. M. Anderson, J. Horowitz, and L. D. Pitt, On the existence of local times: a geometric study, J. Theoret. Probab. 4 (1991), 563-603.
- [4] N. G. Makarov, Probability methods in the theory of conformal mappings, Leningrad Math. J. 1 (1990), 1-56.