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 ON HBV AND THE GARSIA-SAWYER

 CLASS

 We consider continuous functions with domain [a, b] and range [c, d]. Such a

 function / is said to be in the Garsia-Sawyer Class (GS) if J^log+(rif(y))dy
 is finite, where rif(y) is the Banach indicatrix of /. Garsia and Sawyer [2]
 showed that functions in GS have uniformly convergent Fourier series. Let
 <£ = {<£n} be a sequence of convex functions with the following properties:

 i) <£n • [0, oo) - > [0, oo) for n = 1, 2, . . . ;

 ii) Pni 0) = 0 and (fn(x) >0 for x > 0, n = 1, 2, . . . ;

 iii) </?n+ i(x) < tpn(x) for x > 0, n = 1, 2, ... ;

 iv) E£Li^n(z) = 00 for x > 0.

 We have said [3] that / is of ^-Bounded Variation ($BV) if there is a
 positive constant c so that ^ tpn (c | f(bn) - f(an) |) is finite for any collection
 {[an,6n]} of non-overlapping subintervals of [a, 6] (and this is equivalent to
 requiring such sums to be uniformly bounded). By making appropriate choices
 of the functions tpn, we may obtain many of the spaces of generalized bounded
 variation that have been studied. In particular, if ipn(x) = x/n , we have the
 functions of Harmonic Bounded Variation (HBV), introduced by Waterman
 [4] (in this case we may take c = 1 above). Waterman showed that continuous
 functions in HBV have uniformly convergent Fourier series, and moreover [5]
 that GS Ç HBV. HBV is pivotal in this context, since if $BV properly contains
 HBV, there is a continuous function in $BV whose Fourier series diverges at a
 point. But GS is not closed under addition, so GS is not the same as HBV (an
 illustration of this fact may be found in [1]). The full story of the relationship
 between GS and HBV is not yet known. Here we establish a result relating to
 the way GS is distributed through HBV.
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 Theorem 1 If $BV is properly contained in HBV, there are

 i) a function in GS that is not in $BV;

 ii) a function in HBV'$BV that is not in GS.

 PROOF, i) If $BV is properly contained in HBV, there is a sequence {an}
 so that ^n(c^n) = for any c > 0 while Y^=i an/n < oo. We
 may assume that ct2n-i = &2n and ot2n+i < Q2n,n = 1,2, - Let ßn =
 û^2n-i = = 1, 2,

 through the points (0, 0), (1,0), (l/2n,0), and (3/2 n+1,/3n), for n = 1,2, . . . ,
 and has no corners other than at these points. Then / G HBV on [0, 1], as
 Y ~2an/u < oo, and we obtain the supremum of the sums ^ | f(bn) - f{an) | /n
 by choosing intervals {[an, 6n]} in such a way that 'f(bn) - /(an)| = OLn. But
 / ^ $>BV, since the same choice of {[an,6n]} yields, for any c > 0, the sum
 £>n(can) = oo.

 We now show that / G GS. The range of / is [0,/?i], and Uf(y) is a step
 function whose value changes only when y = ß2,ßsi

 we have n/(y) = 2 n (we need not be concerned with the values of n/ on the
 (countable) set 0, /?i , /?2, • • • )• Thus

 /■Ä rß i * ^
 / log+(n/(2/))dy= lim / log+(n/(y)) dy = lim V ^ log(2n)(/3n-/3„+1).

 Applying summation by parts to the last expression, we obtain:

 k

 ^log(2n)(/3„ -/3n+i)
 71=1

 fc+l

 = ßi log(2) - ßk+' log(2(fc + 1)) + JI Ai(l°g(2n) - log(2(n - 1)))
 n= 2

 Now /Jfclog (fc) < Vn ^ Sn= 'ßnln, which sums are uniformly
 bounded since / G HBV (these sums are obtained with the proper choice of
 intervals in the definition of HBV). Thus ßk+i log(2(fc + 1)) is bounded. By
 the Mean Value Theorem, we have

 fc+ 1 k+ 1

 ]P/3n(log(2 n) - log(2(n - 1))) = ^/3n/£n
 n=2 n=2

 where 2 (n - 1) < £„ < 2n. But then Y^ßn/U < T^ßn/i^n - 1)),
 which sums are also uniformly bounded. It follows that / G GS.
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 ii) Let g be any function in HBV'GS (for instance, the one constructed
 in [1]). Clearly, g cannot be monotone, so there exist a* ^ 6* G [a, 6] with
 g(a*) = g(b*). We construct a function g * as follows. Let g*(x) = g(x) for
 X G [a, a*] U [6*, b). On the interval [a*, (a* + 6*) /2], the values of g* will be
 those of g on all of [a*, &*], and on [(a* + 6*)/2, 6*j, we let g*{x) = g(a*). Then
 g* G HBV, and since ng(y) = ng+(y) for all y except possibly y = p(a*), we
 have g* ļ GS. Furthermore, as long as we maintain continuity, we may alter
 the values of g* on [(a* + 6*)/2, 6*] in any manner at all without negating the
 latter fact.

 Now we will do just that. With / as in the first half of the proof, let

 /*(x) = { ^ ~ )) *"2*" <x<b*
 [ 0 otherwise

 Then /* G HBV'$BV. Since f*^g* G HBV, we have /* +g* G HBV. Since
 / ^ $BV, we have /* + g* £ $BV (the sums that demonstrate that / ^ $BV
 are obtainable from /* +g* with the appropriate choice of intervals). Finally, it
 follows from the comment at the end of the previous paragraph that f* +g* £
 GS. □
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