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A POTENTIAL THEORETIC PROOF OF AN
INEQUALITY OF C. D. CUTLER AND L.
OLSEN

Abstract

We present a potential theoretic proof of the following inequality
of C. D. Cutler and L. Olsen [C. D. Cutler & L. Olsen, A Variational
Principle for the Hausdorff Dimension of Fractal Sets, Math. Scand.
(to appear)]: If E is a Borel subset of R?, then

dimE < sup R(u)
HEP(E)

where dim F denotes the Hausdorff dimension of E, P(E) denotes the
family of Borel probability measures supported by F, and R(u) denotes
the lower Rényi dimension of the measure .

1. Definitions and Statement of Result.

Let X be a separable metric space, E C X and s > 0. Then the s-dimensional
Hausdorff measure H*(E) of E is defined by

>0

[e o]
H*(FE) = sup inf{Z(diam E))*|ECUR|E,;, diam E; <§ forallieN}.
é i=1

The Hausdorff dimension dim F of E is defined by

dim E = inf{s > 0 | H*(E) < oo} = sup{s > 0| H*(E) > 0}.
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The s-dimensional packing measure P*(E) of E is defined in two stages. For
z € X and r > 0, D(z,r) denotes the closed ball in X with center z and
radius r. Now put

[o o]
P(E) = infsup{)_(diam D(z:,:))° | (D(zi,7s))ien
i=1
is a pairwise disjoint family, z; € E , r; < 6}.

Then P*(E) = infpcuwe B Yooy P°(E;) . The packing dimension Dim E of E
is defined by

Dim E = inf{s > 0| P°(E) < oo} =sup{s >0 | P°(E) > 0}.

It is well-known that dim E < Dim E for all E C R¢.
We will now define the Rényi dimension. Let P(X) denote the family of
Borel probability measures on X. Fix pu € P(X) and write

he(u) = inf{—>_ u(E:)logu(E;) | (Ei)ien
=1

is a Borel partition of X, diam E; < r}

for r > 0. The upper and lower Rényi dimensions of u are then defined by
R(p) = lim Sup, o —%'gﬂrz and R(u) = liminf,\ o -—’;;—é‘;z respectively, cf.[0].
Cutler & Olsen [0] proved the following two inequalities.

Theorem 1 ([0, Proposition 5]) Let E C R%. Then the following asser-
tions hold:

i) If E is a Borel set, then dim E < sup,cp(py B(1) -

ii) If E is a bounded Borel set, then sup R(u) < Dim E.
LEP(E)

The proof of Theorem 1, part i), in [0] is based on a characterization (due
to Tricot [0, Theorem 1, p. 62]) of dim E in terms of “local dimensions” of
measures supported by E. In this note we present a potential theoretic proof
of the inequality in Theorem 1, part i).

2. Proof.

For € R% and r > 0, B(z,r) denotes the Euclidean ball in R¢ with center
z and radius 7. Let u € P(R?) and t > 0. We define the t-potential ®;(u;z)
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of u at a point z € R% by ®;(u;z) = fﬂrlyﬂydu(y) where || - || denotes
the Euclidean norm in R¢. Next we define the t-energy I;(u) of u by I(u) =
J ®:(p; z) du(z) . The reader is referred to [0] for a discussion of the t-potential
and the t-energy.

‘We will need the following two results in order to prove Theorem 1, part

i).

Theorem 2 (Frostman) Let E be a Souslin subset of R:. If0 <t <dimE,
then there exists a measure p € P(R?) with support in E such that I;(u) < oco.

Proof. See [0, Corollary 6.6). O

Lemma 1 Let u € P(R?), E be a Borel subset of R? and A,t > 0. If
log u(B(z,7)) < A +tlogr

for allz € E and r > 0, then R(p) > u(E)t

Remark. Lemma 1 represents a slight generalization of [0, Lemma 2], and the
proof is similar to the proof of [0, Lemma 2]. However, we include the proof
here for sake of completeness.

Proof. Choose 19 > 0 such that tlogr + A< O0for0<r <7mo. Let 0 <7 <
min(rg,1) and (E;); be a partition of R? with diam E; < r for all i. Write
I={i| E;NnE #0}. Fori € I choose a point z; € E; N E and observe that
E; C B(z;,r). Hence

(1) log u(E;) < logpu(B(zi, 7)) <tlogr+ A foriel.

It follows from (1) that

1\

=" u(E:)log u(E;) = w(E:)log u(Ei) > = u(Ei)(tlogr + A)
3 i€l i€l

—(UserB:)(tlogr + A) > —u(E)(tlogr + A)

Since the partition (E;); was arbitrary this inequality implies that

hr(pu) > —p(E)(tlogr + A) for 0 < r < min(ro,1).

Hence R(p) = liminf,~ o ——':;;‘:) >tu(E). O

We are now ready to give a potential theoretic proof of Theorem 1, part

i).
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Potential theoretic proof of Theorem 1, part i). We may clearly assume that
dimE > 0. Now fix 0 <t < dimF and € > 0. It follows from Theorem 2
that there exists a measure p € P(E) satisfying [ ®;(u; z) du(z) = L(u) < oo.
Hence

(2) / "_113_:1;"_‘ du(y) = ®4(u;z) < oo for p—aa. reRe.
Forn € N write E, = {z e R? | [ W du(y) < n}. Clearly E, / UpnEn,

and pu(UnEr) = 1 by (2). We can thus choose an integer N € N satisfying
u(ENn) > 1 — €. Next observe that all z € Ex and r > 0 satisfy,

1 1
N > / —— du(y) > / o d
EETRa i M e L)

] L du(y) = p(Bz,r)rt.
B

@n) T’

v

Hence tlogr + log N > log u(B(z,r)) for z € Ex and r > 0. An application
of Lemma 1 now yields

sup R(v) > R(u) > w(En)t > (1 —¢)t
veEP(E)

which completes the proof since t < dim F and € > 0 were arbitrary. O
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