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 RECTANGULAR AND ITERATED

 CONVERGENCE OF MULTIPLE

 TRIGONOMETRIC SERIES

 Abstract

 In this paper we present a proof of SH. T. Tetunashvili that shows
 that a multiple trigonometric series that converges rectangularly every-
 where actually converges iteratively everywhere to the same function.
 This method then solves a uniqueness problem, namely, that if a multi-
 ple trigonometric series converges rectangularly everywhere to zero, then
 all the coefficients are zero. We give a detailed proof in two dimensions.
 The result for higher dimensions may then be obtained inductively using
 the same proof.

 The purpose of this article is to explain how a technique used by SH. T.
 Tetunashvili [5] gives a short easy proof of a uniqueness problem for multiple
 trigonometric series, namely, that if a multiple trigonometric series converges
 rectangularly everywhere to zero, then all the coefficients are zero. We give a
 detailed proof in two dimensions. This case contains the essential ideas and
 it will then be easy for the reader to see how to induct to higher dimensions.
 Although Tetunashvili worked in a more general setting, by reducing the prob-
 lem to that of a multiple trig series that converges rectangularly everywhere
 to a finite function, we get the nice result that the series actually has iterated
 convergence everywhere to the same function, thus making uniqueness of the
 coefficients an easy matter by one-dimensional uniqueness. We also make the
 observation that iterated convergence everywhere is equivalent to a weakened
 form of rectangular convergence everywhere.
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 1. Definitions and Notation

 Let Z be the integers and Zq the non-negative integers. We consider multiple
 trig series in d dimensions (d>2) of the form

 (1) T(X) = £aMeiMX

 where M = (mi,... ,m</) e Zd , X = (a:i,...,Xd) € [0,2^1^ lrf, MX means M X
 and the sum is over some collection of values of M. For K = (fci, kd) G Zģ
 we use ļ I i<"|| to denote min¿{fc¿}. By rectangular convergence we mean what is
 usually called unrestricted rectangular convergence and is defined as follows.
 The rectangular partial sums are of the form

 (2) SK(X) =
 mi = - ki md = - kd

 and the series in (1) converges unrestricted rectangularly to the function f(X )
 if limy/q^oo Sk(X) = f(X). Related notions of convergence can be obtained
 as follows. If, in (2), we require that be bounded and we get the
 same limit for every bound, then we have restricted rectangular convergence.
 By making all ki equal we get square convergence. Obviously, rectangular
 convergence implies restricted rectangular convergence which implies square
 convergence. If

 oo oo

 (3) E
 mi =- oo rrid = - oo

 oo

 converges when the d infinite sums are iterated from right to left (where ^
 777, { - - OO

 ki

 means lim^-^ )> then we say that the sum converges iteratively. Nu-
 Tīli =

 merous examples that compare these and other methods of convergence can
 be found in Ash- Weiland [2].

 2. History

 The proof of uniqueness in one dimension is due to Cantor [3] in 1870. In
 1972, Ash and Welland [2] proved uniqueness in dimension two. However, their
 proof used results of V. Shapiro on spherical Abel summability in dimension
 two and did not generalize to higher dimensions. In 1993, Ash, Kreiling and
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 Rinne [1] answered the uniqueness question in higher dimensions. The general
 approach of their paper was to show that if a trig series converges rectangularly
 everywhere to 0, we can show that the second formal integral of that series
 has a certain generalized derivative that is also 0, and that this is strong
 enough to force all the coefficients to be zero. The work of Tetunashvili, which
 appeared in English translation in 1992, avoids the complicated calculations
 in [1] by inductively converting the problem to an application of the known
 one-dimensional uniqueness. It is this argument which we will explain in the
 next section.

 3. Main Results

 We first include a proof of uniqueness for iterated convergence since it is short
 and shows clearly how the one-dimensional uniqueness enters the picture.

 oo oo

 Theorem 1 If ^
 771 1 = - OO 771 J = - OO

 to zero, then all coefficients are zero .

 Proof. The case d=l is Cantor's Theorem. Suppose the theorem holds in
 oo oo

 dimension d-1 and ^
 771 1 = - OO Tīlfļ - - OO

 For x¿ fixed, we have

 oo oo oo oo oo

 E

 771 1 = - OO 77ld_ i = - OO TU d = - OO 7Tli = - OO 771^-1= - OO

 OO

 where M' = (mi, ...,md_i), X' = (xi, ...,Xd-i) and bM' = J2 aMeim,iXd.
 m d = - oo

 OO OO . , ,
 Then

 mi=-00 77ld_ 1= - oo
 oo

 are zero by hypothesis. Since x<¿ was arbitrary J2 a>MZ%mdXd is zero for all
 77ld = - OO

 Xd • By Cantor's Theorem, all a m are zero.D
 Starting with techniques developed by R Cohen in his thesis [4] to estimate

 the rate of increase of the coefficients of a multiple trigonometric series under
 certain types of convergence, Ash and Welland [2] proved the following lemma.

 Lemma 2 If the multiple trig señes T(X) = converges rectangu-
 larly everywhere, then, for each x¿ and for each (mi, ..., all sums of

 kd

 the form aMC%rndXd are bounded.
 md = -kd
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 The next theorem, although not explicitly stated in [5], is a direct con-
 sequence of the work there and the proof we give is essentially that of Tetu-
 nashvili, made simpler by the assumption of convergence everywhere.

 Theorem 3 Suppose a 2-dimensional trig series ^2 amn^ny+mx^ converges
 rectangularly everywhere to the finite function /(x,y). Then the corresponding

 oo oo

 iterated series amne^n3/+mx) converges everywhere to /(x, y).
 m=-oo n= - oo

 Proof. Let T(x,y) = ^ amne^ny+mx^ be a 2-dimensional trig series which
 converges rectangularly everywhere to the function f(x,y). The rectangular

 k j

 sums will be written Skj{x , y) = Ī2 amne^n2/+mx). Fix y and for each
 m= - k n=-j

 j

 m consider sums of the form ^ amnemy, bounded over all j by Lemma 2.
 n=-j

 For this same fixed y, let {j?} be a subsequence of the natural numbers so
 fi

 that lim^oo ^2 a0n£%ny exists and call this limit &o- We proceed inductively.
 n=-j?

 Suppose b-i and {j[} = {j~1} have been chosen for 0 < / < m - 1. Let
 i

 {j?} = ih m} a subsequence of {j™ i } so that lim¿_>oo amne™y and
 n=-jtm

 ¿rm
 lim^oo û_mnemy exist and call these limits bm and 6_m respectively.

 n=-j~m
 oo

 We now show that for each y, T(x) = ^ bmeimx converges to /(x, y). Fix
 m=- oo

 X and let e > 0. Pick K large enough so that ||(fc, j)|| > K implies Skj(x,y) is
 within e/2 of /(x,y). Let k > K and pick j to be a sufficiently large term of

 j

 the sequence {jj?} so that bm - amne tny < e/2'ml+3 for -k<m<k.
 n=-j

 Then

 k

 £ bmeimx - f(x,y) <
 m= - k

 k j

 Y, (6m - E <Weiny)eimx + 'Skj(x,y) - f(x,y)' <
 m= - k n=-j

 k

 e/2lml+3 + e/2 < c,
 m= - k
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 as desired.

 Since we now have convergence of T(x), the coefficients 6m are unique. This
 of course says that only one choice existed for òo- Thus, we get the convergent

 oo

 series ^ aoneiny = 60 • Observe, however, that by changing the starting
 7l = - OO

 m value, from 0 to any integer we choose, in the inductive construction of
 00

 the 6m, ^2 amneiny converges for every m and we may replace bm with
 n=- 00

 00

 cimn^ny to get iterated convergence of the original series to /(x, y ) for
 n= - 00

 this y. Since y was arbitrary, the theorem is proved. □

 Uniqueness of coefficients now follows since rectangular convergence every-
 where to zero becomes iterated convergence everywhere to zero.

 We should state the corresponding theorem from Tetunashvili [5] as it
 is given there to give the reader an idea of the more general setting used.
 We use $ = denote a general sequence of bounded real functions
 defined on [0,1], and use T1 = represent the trigonometric system
 on [0,1] ordered to start with constant 1 and then alternate cosines and sines
 of decreasing periods. Td is then the d-fold trig system. A measurable subset

 00

 A of [0,1] is in class U($) if convergence of JZ QiVifa) to zero on A implies
 ¿=0

 all coefficients are zero. Then U(Td~l x $) is defined inductively by i? E
 U(Td~l x «) if E = {(xi,...,xd) €. x<1 € A and E(Xd) G UiT*'1)} where
 A G [/($) and ¿5(Xd) = {(xi, ...,x<¿-i) : (xi, ...,x<¿_i,x<i) G E}. Let be
 d-dimensional Lebesgue measure. The theorem proved in Tetunashvili [5] is
 the following.

 Theorem 4 Suppose given a set E G U{Td~l x $),z.e.,i£ = {(xi, ...,Xd) :
 G A and E(Xd) G U(Td~1)}, A G U($), and a finite-valued function

 ffai on [0, l]d. In addition suppose that for each x¿ G A the function
 /(xi, ...,Xd_i,Xd) is ßd- 1 -measurable on [0,l]d_1. If

 oo 00 d- 1

 E-E n tnj{Xj)tpni{xd) = fix u-,xd)
 n 1=0 TL ¿=0 j=l

 for (xi,...,x<¿) € E, then for each ini,..., rid- 1) € Zjf'1

 OO

 ^ ^ ,Tid_i ,71^ fad) fad) ^ OO? %d G -A,
 nd = 0
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 and for any fixed € A

 OO OO d- 1

 E - £ (^d) ļļ trij ixj) - f{x 1> •••»
 m=0 rid_i=0 j=l

 /or (xi,...,xd_i) € E{xd).

 Note that the first sum above is rectangular d-dimensional and the last
 sum is rectangular ( d - l)-dimensional, having been already summed inside
 on the d-th coordinate.

 4. Remarks

 It seems that iterated convergence is actually equivalent to a weakened form
 of rectangular convergence. We use dimension two to illustrate and will call
 this half-rectangular convergence. A two-dimensional trig series converges
 half-rect angularly if, for each X = (x,y), there is a non-decreasing function
 gx - Z o - * Zo so that limn/q^oo Skj{X) exists everywhere with the restriction
 j > 9x{k). For example, if every gx is the identity map then the rectangular
 partial sums used are "longer" in the j direction than the k direction. One
 can then still get the desired version of Lemma 2 and get iteration in the

 OO OO

 J2 S direction. Conversely, if a two-dimensional trig series has iterated
 m=- oo n=- oo

 OO oo

 convergence in the ^ ^ direction, it is easy to come up with the gx
 m= - oo n= - oo

 to make ^ S dmne^ny^mx>} close to ^ ( ^2 o,mnetny)elTnx , thereby
 m= - k n=-j m= - k n= - oo

 forcing half-rectangular convergence.
 We use an example communicated to the author by J. Marshall Ash. It is

 oo

 easy to see that the series %/msin(m:r)(cosm(y) - cos3m(y)) converges
 m= - oo

 for all X and y since it is essentially geometric in cos(y) unless |cos(y)| = 1 in
 which case the sum is trivially zero. The powers of cos (y) can be expanded
 using terms involving cos (ny) where 0 <n< 3m. When this series is then con-

 oo oo

 verted to exponential form we get the iterated series o,mne^ny+rnx^
 m= - oo n= - oo

 where amn = 0 if |n| > 3|m|. This is then half-rectangular convergence us-
 ing gx{™>) = 3m. An estimate of the coefficients shows that amo does not
 approach zero as m increases, so the series cannot be iterated in the reverse
 order.
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