REPAIRING THE PROOF OF A CLASSICAL DIFFERENTIATION RESULT

Throughout E will denote a Lebesgue measurable subset of \mathbb{R} and f : $\mathbb{R} \rightarrow \mathbb{R}$, a measurable function. Theorem 4.30 on page 78 of Volume 2 of Zygmund's book [6] asserts that if $f(x+h)-2 f(x)+f(x-h)=O\left(h^{2}\right)$ for every $x \in E$, then f has a second Peano derivative almost everywhere in E. A more general assertion by Marcinkiewicz and Zygmund states that if f is k Riemann bounded on E, then it is k times Peano differentiable almost everywhere on E. (See Theorem 1, [2].) Superseding both of these results is a statement by Ash which claims that if f is generalized bounded of order k, then f is k times Peano differentiable everywhere in E. (See Theorem 1 in [1].) The proof of each of these assertions as well as the proof of Lemma 1, page 24 in [3] assumes certain sets to be measurable. Specifically in the case of Theorem 4.30 in [6] the sets in question are the sets

$$
E_{j}=\left\{x \in E:\left|\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}\right|<j \text { for all } 0<|h|<\frac{1}{j}\right\}
$$

for $j \in \mathbb{N}$. However, as was pointed out by Stein and Zygmund in [4], measurability of these sets is not automatic. On the other hand as a consequence of the conclusions of the assertions, the function f must be continuous a.e. on E and from that fact the measurability of the sets, E_{j}, follows easily.

In this paper we present a technique for fixing the proofs of all of these theorems. The procedure doesn't prove the measurability of the sets, E_{j}, but rather avoids the measurability question entirely. It turns out that our method is similar to that used by Stein and Zygmund in [4] but their work doesn't include what is done here nor is their result a consequence of ours. Since each of the mentioned results follows from the work of Ash in [1], we repair the

Mathematical Reviews subject classification: 26A21, 26A48 and 26A51
Received by the editors December 1, 1993
proofs of Lemmas 2 and 3 of that article. In fact Theorems 3 and 2 of this paper are exactly the same as Lemmas 2 and 3 in [1].

Before proving these two theorems we point out that the measurability of the function f alone doesn't imply measurability of sets E_{j}. We gratefully acknowledge the help of Professors Krzysztof Ciesielski and Chris Freiling with this example.

Example 1 There is a measurable function for which the corresponding set E_{2} is not measurable.

First choose two numbers $a \in\left(0, \frac{1}{2}\right)$ and $\delta>0$ such that $a+\delta<\frac{1}{2}$ and $(a-2 \delta)^{2} \geq \frac{1}{8}$. (For example $a=\frac{7}{16}$ and $\delta=\frac{1}{32}$ will suffice.) By transfinite induction one can construct a set $S \subset\left[\frac{1}{2}-\delta, \frac{1}{2}+\delta\right]$ of measure 0 such that $\frac{(S+S)}{2}$ is not measurable. (See [5]. In the preliminary version, the details appears on page 136.) Let $f=\frac{1}{4} \chi_{(S-a) \cup(S+a)}$, where χ_{E} denotes the characteristic function of E. Since S has measure $0, f$ is measurable. If $x \in \frac{(S+S)}{2}$, then $x=\frac{s_{1}+s_{2}}{2}$ where $s_{1}, s_{2} \in S$ with $s_{1} \leq s_{2}$. Let $h=x-s_{1}+a=s_{2}-x+a$. Then $x-h \in S-a$ and $x+h \in S+a$. Since $a+\delta<\frac{1}{2}$, it follows that $\left|\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}\right| \geq 2$. On the other hand if $x \in\left[\frac{1}{2}-\delta, \frac{1}{2}+\delta\right]$, and if there is an $h>0$ with either $x-h \in S-a$ or $x+h \in S+a$ but not both, then since $(a-2 \delta)^{2} \geq \frac{1}{8}$, it can be seen that $\left|\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}\right|<2$. It follows that

$$
\begin{aligned}
\left\{x \in\left[\frac{1}{2}-\delta, \frac{1}{2}+\delta\right]: \mid f(x+h)-\right. & \left.2 f(x)+f(x-h) \mid \geq 2 \text { for some } 0<h<\frac{1}{2}\right\} \\
= & \frac{(S+S)}{2}
\end{aligned}
$$

Since $\frac{(S+S)}{2}$ is not measurable, it can easily be concluded that E_{2} is not measurable.

In what follows the Lebesgue outer measure of a set B is denoted by $m^{*}(B)$ or $m(B)$ if B is measurable.

Lemma 1 Let 0 be a point of outer density of E, let $\alpha, \beta \in \mathbb{R}$ with $\beta \neq 0$ and let $\epsilon>0$. For each $u>0$ set $B_{u}=\{v \in[u, 2 u]: \alpha u+\beta v \in E\}$. Then there is $a \delta>0$ such that if $0<u<\delta$, then $m^{*}\left(B_{u}\right)>u(1-\epsilon)$.

Proof: Let G be a G_{δ} cover of E. Then

$$
m^{*}\left(B_{u}\right)=\int_{u}^{2 u} \chi_{G}(\alpha u+\beta v) d v=\frac{1}{\beta} \int_{(\alpha+\beta) u}^{(\alpha+2 \beta) u} \chi_{G}(s) d s
$$

Since 0 is a point of density of G,

$$
\lim _{u \rightarrow 0} \int_{(\alpha+\beta) u}^{(\alpha+2 \beta) u} \chi_{G}(s) d s=\frac{1}{\beta}[(\alpha+2 \beta) u-(\alpha+\beta) u]=u .
$$

Hence the desired $\delta>0$ exists.
Conforming with the notation used in [1], let $n \in \mathbb{N}$, let $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ be a set of distinct numbers and let $\left\{A_{0}, A_{1}, \ldots, A_{n}\right\} \subset \mathbb{R}$. There are conditions relating these two sets of numbers, but they play no role here other than to be able to assume that say $a_{0} \neq 0$ and $A_{0} \neq 0$.

Theorem 2 Suppose $\left|\sum_{i=0}^{n} A_{i} f\left(x+a_{i} t\right)\right|=O(1)$ for all $x \in E$. Then f is bounded in a neighborhood of almost every point $x \in E$.

Proof: For each $j \in \mathbb{N}$ let

$$
E_{j}=\left\{x \in E:\left|\sum_{i=0}^{n} A_{i} f\left(x+a_{i} t\right)\right|<j \text { for all } 0<|t|<\frac{1}{j}\right\}
$$

and $F_{j}=\{x \in \mathbb{R}:|f(x)|<j\}$. Since $\cup_{j \in \mathbb{N}}\left(E_{j} \cap F_{j}\right)=E$, it suffices to show that f is bounded on some neighborhood of every point of outer density of $E_{j} \cap F_{j}$. Assume 0 is a point of outer density of $E_{j} \cap F_{j}$. Let $u>0$. Set $B=\left\{v \in[u, 2 u]: v \in E_{j} \cap F_{j}\right\}$ and for $i=1,2, \ldots, n$ let $C_{i}=\{v \in$ $\left.[u, 2 u]: v+a_{i} \frac{u-v}{a_{0}} \in F_{j}\right\}$. The set B need not be measurable, but since f is measurable, each C_{i} is measurable. Also 0 is a point of outer density of B and a point of density of each C_{i}. By Lemma 1 there is $0<\delta<\frac{\left|a_{0}\right|}{j}$ such that if $0<u<\delta$, then $m^{*}(B)>\frac{u}{2}$ and $m\left(C_{i}\right)>u\left(1-\frac{1}{2 n}\right)$ for each $i=1,2, \ldots, n$. Set $C=\cap_{i=1}^{n} C_{i}$. Then $m(C)>\frac{u}{2}$. Let $0<u<\delta$. Then

$$
\begin{gathered}
\frac{u}{2}<m^{*}(B) \leq m^{*}(B \cap C)+m^{*}(B \backslash C) \leq \\
\leq m^{*}(B \cap C)+m([u, 2 u] \backslash C) \leq m^{*}(B \cap C)+\frac{u}{2}
\end{gathered}
$$

Thus $0<m^{*}(B \cap C)$. Let $v \in B \cap C$. Then

$$
\begin{equation*}
\left|\sum_{i=0}^{n} A_{i} f\left(v+a_{i} t\right)\right|<j \text { for all } 0<|t|<\frac{1}{j} . \tag{1}
\end{equation*}
$$

Choose $t=\frac{u-v}{a_{0}}$. Then $|t|<\frac{1}{j}$ and (1) becomes

$$
\begin{equation*}
\left|A_{0} f(u)+\sum_{i=1}^{n} A_{i} f\left(v+a_{i} t\right)\right|<j . \tag{2}
\end{equation*}
$$

Since for each $i=1,2, \ldots, n$ we have $v \in C_{i}$, from (2) it follows that $|f(u)|<$ $\frac{j+j \sum_{i=1}^{n}\left|A_{i}\right|}{\left|A_{0}\right|}$. Therefore f is bounded in a right hand neighborhood of 0 . Similarly f is bounded in a left hand neighborhood of 0 .
Theorem 3 (The sliding lemma) Let $\alpha \geq 0$. Suppose $\sum_{i=0}^{n} A_{i} f\left(x+a_{i} t\right)=$ $O\left(t^{\alpha}\right)$ for all $x \in E$. Let $a \in \mathbb{R}$. Then $\sum_{i=0}^{n} A_{i} f\left(x+\left(a_{i}-a\right) t\right)=O\left(t^{\alpha}\right)$ for almost every $x \in E$.

If " O " is replaced by " o " in the hypothesis and in the conclusion, then the resulting assertion is also true.

Proof: For each $j \in \mathbb{N}$ let

$$
E_{j}=\left\{x \in E:\left|\sum_{i=0}^{n} A_{i} f\left(x+a_{i} t\right)\right| \leq j|t|^{\alpha} \text { if }|t|<\frac{1}{j}\right\}
$$

Since $E=\cup_{j \in \mathbb{N}} E_{j}$, to prove the theorem it suffices to prove

$$
\sum_{i=0}^{n} A_{i} f\left(x+\left(a_{i}-a\right) t\right)=O\left(t^{\alpha}\right)
$$

for every point of outer density one of E_{j}. To simplify the notation, suppose 0 is a point of outer density of E_{j}. Let $t \in\left(0, \frac{1}{2 j}\right)$. (The case $t \in\left(-\frac{1}{2 j}, 0\right)$ is proved similarly.) Let $B_{i}^{*}=\left\{v \in[t, 2 t]:\left(a_{i}-a\right) t-a_{0} v \in E_{j}\right\}$ and let $C_{i}^{*}=\left\{v \in[t, 2 t]:-a t+\left(a_{i}-a_{0}\right) v \in E_{j}\right\}$. Set

$$
\begin{aligned}
B_{i} & =\left\{v \in[t, 2 t]:\left|\sum_{k=0}^{n} A_{k} f\left(\left[\left(a_{i}-a\right) t-a_{0} v\right]+a_{k} v\right)\right| \leq j 2^{\alpha}|t|^{\alpha}\right\} \\
C_{i} & =\left\{v \in[t, 2 t]:\left|\sum_{k=0}^{n} A_{k} f\left(\left[-a t+\left(a_{i}-a_{0}\right) v\right]+a_{k} t\right)\right| \leq j 2^{\alpha}|t|^{\alpha}\right\} .
\end{aligned}
$$

Note that B_{i} and C_{i} are measurable sets. Let $0<\epsilon<\frac{1}{2 n+1}$. By Lemma 1 there is $0<\delta<\frac{1}{2 j}$ such that $t<\delta$ implies $m^{*}\left(B_{i}^{*}\right)>t(1-\epsilon)$ and $m^{*}\left(C_{i}^{*}\right)>t(1-\epsilon)$. Using that $v<\frac{1}{j}$ it follows that $B_{i}^{*} \subset B_{i}$. Similarly but using that $t<\frac{1}{j}$ it is easy to show that $C_{i}^{*} \subset C_{i}$. Thus $m\left(B_{i}\right)>t(1-\epsilon)$ and $m\left(C_{i}\right)>t(1-\epsilon)$. Therefore

$$
m\left(\cap_{i=0}^{n}\left(B_{i} \cap C_{i}\right)\right)>t(1-(2 n+1) \epsilon)>0 .
$$

Let $v \in \cap_{i}\left(B_{i} \cap C_{i}\right)$. Then

$$
\left|A_{0} \sum_{i=0}^{n} A_{i} f\left(\left(a_{i}-a\right) t\right)\right|=\left|A_{0} \sum_{i=0}^{n} A_{i} f\left(\left[-a t+\left(a_{0}-a_{0}\right) v\right]+a_{i} t\right)\right|=
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\sum_{k=0}^{n} A_{k} \sum_{i=0}^{n} A_{i} f\left(\left[-a t+\left(a_{k}-a_{0}\right) v\right]+a_{i} t\right)- \\
\sum_{k=1}^{n} A_{k} \sum_{i=0}^{n} A_{i} f\left(\left[-a t+\left(a_{k}-a_{0}\right) v\right]+a_{i} t\right) \mid \leq \\
\left|\sum_{i=0}^{n} A_{i} \sum_{k=0}^{n} A_{k} f\left(\left[-a t+\left(a_{k}-a_{0}\right) v\right]+a_{i} t\right)\right|+ \\
\left|\sum_{i=1}^{n} A_{i} \sum_{k=0}^{n} A_{k} f\left(\left[-a t+\left(a_{i}-a_{0}\right) v\right]+a_{k} t\right)\right|= \\
\left|\sum_{i=0}^{n} A_{i} \sum_{k=0}^{n} A_{k} f\left(\left[\left(a_{i}-a\right) t-a_{0} v\right]+a_{k} v\right)\right|+ \\
\left|\sum_{i=1}^{n} A_{i} \sum_{k=0}^{n} A_{k} f\left(\left[-a t+\left(a_{i}-a_{0}\right) v\right]+a_{k} t\right)\right| \leq \\
2^{\alpha+1} j|t|^{\alpha} \sum_{i=0}^{n}\left|A_{i}\right|=M_{1}|t|^{\alpha} .
\end{array}\right.
\end{aligned}
$$

Dividing by $\left|A_{0}\right|$, we have $\left|\sum_{i=0}^{n} A_{i} f\left(\left(a_{i}-a\right) t\right)\right| \leq M|t|^{\alpha}$ where the constant M depends on α, j, the numbers $A_{i}, i=1,2, \ldots, n$ but not on t.

The o case is proved in a very similar manner.

References

[1] J. M. Ash, Generalizations of the Riemann derivative, Trans. Amer. Soc., 126 (1967) 181-199.
[2] J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1-43.
[3] C. J. Neugebauer, Symmetric, continuous and smooth functions, Duke Math. J., 31 (1964), 23-32.
[4] E. M. Stein and A. Zygmund, Smoothness and differentiability of functions, Annals of the University of Sciences, Budapest, III-IV (1960-61), 295-307.
[5] B. S. Thomson, Symmetric properties of Real Functions, Marcel Dekker, New York, 1994.
[6] A. Zygmund, Trigonometric series Cambridge University Press, London and New York, 1959

