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 REPAIRING THE PROOF OF A CLASSICAL

 DIFFERENTIATION RESULT

 Throughout 25 will denote a Lebesgue measurable subset of IR and / :
 R - ► M, a measurable function. Theorem 4.30 on page 78 of Volume 2 of
 Zygmund's book [6] asserts that if f(x + h) - 2 f(x) + f{x - h) = 0(h 2) for
 every x € 25, then / has a second Peano derivative almost everywhere in
 E. A more general assertion by Marcinkiewicz and Zygmund states that if /
 is k Riemann bounded on 25, then it is k times Peano different iable almost
 everywhere on E. (See Theorem 1, [2].) Superseding both of these results is
 a statement by Ash which claims that if f ģ's generalized bounded of order fc,
 then f is k times Peano differentiate everywhere in E. (See Theorem 1 in
 [1].) The proof of each of these assertions as well as the proof of Lemma 1,
 page 24 in [3] assumes certain sets to be measurable. Specifically in the case
 of Theorem 4.30 in [6] the sets in question are the sets

 £j = {x6£:|/(X + '')-2/^'-f/(l-'')|<jforall0<|>,|<}}
 for j G N. However, as was pointed out by Stein and Zygmund in [4], measur-
 ability of these sets is not automatic. On the other hand as a consequence of
 the conclusions of the assertions, the function f must be continuous a.e. on E
 and from that fact the measurability of the sets, Ej , follows easily.

 In this paper we present a technique for fixing the proofs of all of these
 theorems. The procedure doesn't prove the measurability of the sets, Ej , but
 rather avoids the measurability question entirely. It turns out that our method
 is similar to that used by Stein and Zygmund in [4] but their work doesn't
 include what is done here nor is their result a consequence of ours. Since each
 of the mentioned results follows from the work of Ash in [1], we repair the
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 proofs of Lemmas 2 and 3 of that article. In fact Theorems 3 and 2 of this
 paper are exactly the same as Lemmas 2 and 3 in [1].
 Before proving these two theorems we point out that the measurability

 of the function / alone doesn't imply measurability of sets Ej. We gratefully
 acknowledge the help of Professors Krzysztof Ciesielski and Chris Freiling with
 this example.

 Example 1 There is a measurable function for which the corresponding set
 E2 is not measurable.

 First choose two numbers a G (0, ¿) and 6 > 0 such that a + 6 < ' and
 (a - 2 6)2 > (For example a = ^ and <5 = ~ will suffice.) By transfinite
 induction one can construct a set S C [' - 6 , |+<5] of measure 0 such that
 is not measurable. (See [5]. In the preliminary version, the details appears
 on page 136.) Let / = ^X(S-a)u(S+a)> where xe denotes the characteristic
 function of E. Since S has measure 0, / is measurable. If x G then

 x = ^ S 2 where Si, 52 G 5 with s' < $2- Let h = x - si + a = s2 - x + a.
 Then x - h € S - a and x 4- h G S + a. Since a + <5 < it follows that

 f(x + h) - 2/^) + f(x - hļ ^ 2 ^ other hand if x G [^ - <5, ' +<5], and
 if there is an h > 0 with either x - h G S - aoxx + h€ 5+ a but not both, then

 since (a - 2 <5)2 > §, it can be seen that ^(x ^ - ^2^ + ~ < ^ ^
 follows that

 {x G [' - <5, ' + 6] : I f(x + h) - 2/(x) + f(x - h)' > 2 for some 0 < h < '}

 (S + S)
 2

 Since ^2^ *s not measurable, it can easily be concluded that E2 is not mea-
 surable.

 In what follows the Lebesgue outer measure of a set B is denoted by m*(B)
 or m(B) if B is measurable.

 Lemma 1 Let 0 be a point of outer density of E , let a, ß G M with /3^0 and
 let e > 0. For each u > 0 set Bu = {v G [w, 2 u] : au 4- ßv G E}. Then there is
 a S > 0 such that ifO < u < 6, then m*(Bu) > u( 1 - e).

 PROOF: Let G be a G¿ cover of E. Then

 r2u ļ n(a-'-2ß)u
 m* {Bu) = / xg(om + ßv) dv = - ļ / xG(s) ds.

 J u P J ( a+ß)u
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 Since 0 is a point of density of G,

 r(a+2ß)u ļ
 lim / Xg(s) ds = -[(a + 2/3) w - (a + ß)u' = u.

 J(a+ß)u ß
 Hence the desired 6 > 0 exists. □

 Conforming with the notation used in [1], let n G N, let {ao, a' , . . . , an} be
 a set of distinct numbers and let {^4o, . . . , An} cl. There are conditions
 relating these two sets of numbers, but they play no role here other than to
 be able to assume that say ao ^ 0 and A0 0.

 Theorem 2 Suppose Aif(x 4- a¿£)| = 0( 1) for all x G E. Then f is
 bounded in a neighborhood of almost every point x G E.

 Proof: For each je N let

 Ej = ļx G E : ^2 Aif(x 4- a¿í) < j for all 0 < |i| < 4 1
 and Fj = {x G M : |/(x)| < j}. Since U jen(Ej n Fj) = E , it suffices to
 show that / is bounded on some neighborhood of every point of outer density
 of Ej n Fj. Assume 0 is a point of outer density of Ej D Fj. Let u > 0.
 Set B = {t; G [u, 2t¿] : v G Ej D Fj} and for i = 1,2 , . . . , n let C¿ = {v G
 [i¿, 2t¿] : v -h a¿~^ € i^}. The set B need not be measurable, but since / is
 measurable, each C¿ is measurable. Also 0 is a point of outer density of B and

 a point of density of each By Lemma 1 there is 0 < 6 < ^ such that if
 0 < u < <5, then m*(B) > | and ra(C¿) > u(l - for each i = 1, 2, . . . , n.
 Set C = nf=1C¿. Then m(C) > '. Let 0 < u < 6. Then

 I < m*(B) < m*(B nC) + m*{B 'C) <

 < m*{Br'C)+m{[u,2u)'C) < m'(BnC) +
 Zi

 Thus 0 < m*(B n C). Let üGBííC. Then
 n

 y] Aif(v + a¿¿) < j for all 0 < |t| < 4. (1)
 i=0

 Choose t = - - -. Then |£| < 4 and (1) becomes
 ao 3

 n

 A0f{u) + '^/Aif(v + ait) <j. (2)
 i= 1
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 Since for each i = 1, 2, . . . , n we have v 6 Cu from (2) it follows that |/(u)| <
 j+j i^I

 ilarly / is bounded in a left hand neighborhood of 0. □

 Theorem 3 (The sliding lemma) Let a > 0. Suppose Aif(x + a^) =
 0{ta) for all X G E. Let a G M. Then Y^=o ^if (x + ( ai ~~ = 0(ia) for
 almost every x G E.

 If "O " is replaced by uo " in the hypothesis and in the conclusion , then the
 resulting assertion is also true.

 Proof: For each j G N let

 n

 Ej = {x€E: ^ M* if lťl < }}•
 i=0

 Since E = U to prove the theorem it suffices to prove
 n

 ^2 Ai f{x + (Oi - a)ť) = 0(ť*)
 1=0

 for every point of outer density one of Ej. To simplify the notation, suppose

 0 is a point of outer density of Ej. Let t G (0, ^). (The case t G (- j-,0)
 is proved similarly.) Let B * = {v € [t,2 1' : (a¿ - a)t - ûqv G Ej} and let
 C* = {u G [t, 2t] : - at + (d^ - ûo)f ^

 n

 Bi = {u e [ť, 2t] : ^2Akf([(ai-a)t-aov} + akv) < j2a't'a}
 k= 0

 n

 Q = {v e [í, 2t] : ^ Akf([-at + (a, - a0)u] + akt) < j2a't'a}.
 k=0

 Note that Bi and C¿ are measurable sets. Let 0 < e < 2¿+i- By Lemma 1 there
 is 0 < <5 < ^ such that t <8 implies ra*(i?*) > t( 1 - e) and m*(C*) > t(l - e).

 Using that v < j it follows that B* C Bi. Similarly but using that t < j it
 is easy to show that C '* C C¿. Thus m(Bi) > t( 1 - e) and m(C¿) > ¿(1 - e).
 Therefore

 ra(nJ1L0(jBi fi Ci)) > ¿(1 - (2 n + l)e) > 0.

 Let v G n¿(B¿ fi C¿). Then

 n n

 Ao^Aj/((a¿ - a)t) = Ao j4j/([-ať + (oo - ao)v] + ají) =
 2=0 i=0
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 n n

 53 Ak 53 Aif{[-at + ( ak - a0)u] + a¿í) -
 Jfc=0 ¿=o

 n n

 ^2Ak^2Aif([-at + (ak-ao)v}+ait) <
 k= 1 »=0

 n n

 Ai 53 Akf{[-at + ( ak - o0)u] + a¿í) +
 i= 0 fc=0

 n n

 53 ^ 53 ^fc/([-oť + (a¿ - ao)v] + ajfeí) =
 i=l fc=o

 n n

 53 ^4» 53 ([(a* ~ a)ť ~ o°v] + a*v) +
 ¿=o k= o

 n n

 53 ^ 53 ^fc/([- + (°t -o°H +akt) <
 ¿=1 k= 0

 2a+1j't'"J2'Ai' = Ml't'a.
 2=0

 Dividing by |j4o|, we have E£-0 ~ a)0l ^ M|i|a where the constant
 M depends on a, j, the numbers i = 1, 2, . . . , n but not on t.

 The o case is proved in a very similar manner. □
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