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 AN OPEN SET WITH INTERMEDIATE

 YET SMOOTH MEASURE

 Abstract

 Let A(A) denote the Lebesgue measure of A and let A (A, I) denote
 the relative measure A (A fi /)/A(J).

 We construct two disjoint open sets A, B C [0, 1] each having mea-
 sure 1/2 such that lim^-o A(A, (z, x + h)) - A (A, (s - h,x)) = 0 (in
 fact uniformly in x). This says that the cumulative measure function
 F(x) = À (A H (0,z)) is "uniformly smooth", meaning that F(x H- h) -
 2 F(x) + F(x - h) = o(h) (uniformly in x).

 Our construction turns out to be both a modification and combination of

 ideas of J. P. Kahane and G. Piranian which appear in [5], where a proof of
 the existence of a uniformly smooth Cantor function is outlined.

 The present question arose in connection with the following density theo-
 rem of O'Malley:

 Theorem 1 (O'Malley [3]) If A is a nonempty and bounded Fa - set with
 right density one at each of its points , then there is a point in the complement
 of A where A has left density one.

 O'Malley raised the question as to whether the restriction to Fa- sets was
 necessary and a prize of $60 was offered (see [4]). The question was answered
 in [1] where it was shown that the theorem held for G^-sets but failed for
 Fa¿- sets (and the prize was immediately paid!).

 To answer O'Malley's question, a bounded set A was constructed so that
 for each x, A has left density one at x implies that A has right density one at x.
 The ^¿-counterexample to O'Malley's Theorem is then created by adjoining
 to A all the points at which A has left density one. The question was naturally
 raised as to whether the set A could be modified to work for densities other
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 than one, and the $60 was re-invested. The example we create here answers
 that question.

 If we adjoin to our set A all of the points at which A has lower left density
 at least /3, then the new set has upper (in fact lower) right density at least
 ß at all of its points but at no point in the complement does it have lower
 left density at least ß. This shows that the first inequality in the following
 theorem must remain strict.

 Theorem 2 (Maly, Preiss, Zaijek [2]) If A is a measurable , nonempty , and
 bounded set with upper right density > ß at each of its points ( ß € (0, 1)), then
 there is a point in the complement of A for which A has lower left density > ß.

 The example we create is also related to monotonicity questions involving
 preponderant symmetric derivatives. For example, if we let

 AB(x) = {/i > 0|x - /i G A , X -ł- h E B}

 then AB(x ) will always turn out to have upper density <1/2 about h = 0.
 This naturally raises some questions. Therefore, following tradition we will
 (after some profit taking) reinvest the money as follows:

 Question 1 ($10) Are there disjoint open sets A and B (perhaps the present
 ones) which are contained in (0}1) such that AöB has measure one and such
 that for each x , AB(x) has upper density stńctly less than 1/2?

 Question 2 ($10) Same as above with upper density <1/4?

 Question 3 $10) Same as above with upper density < some number which
 is < 1/4?

 Question 4 ($10) Is there a continuous function which is not monotone such
 that for each x, the set {h > 0 'f(x 4- h) < f(x - h)} always has upper density
 less than 1/2?

 Question 5 ($10) Is there a continuous function which is not constant such
 that for each x, the set {h > 0| f{x + h) f(x - h)} always has upper density
 less than 1/2?

 We now proceed with the construction. We will use a non-increasing se-
 quence {<5n} = {1/4, 1/4, ..., 1/8, 1/8, ...1/16, 1/16, The length of the
 constant subsequences is to be decided later. Note that for each n,

 (1) ^n+l = Ö n OI" ^n/2-
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 We will use the sequence to construct open sets A, B C [0,1]. We first
 define a function / which maps each open interval of the form (a/ 4n, (a-hl)/4n)
 (where a is an integer in [- 1, 4n] and n is a natural number which we call the
 "stage" of the interval) to a binary rational between 0 and 1. If a = -1 or
 a = 4n then the interval is not in [0,1]. In this case, we map the interval to
 the number 1/2. For intervals in (0,1) we proceed in stages as follows:
 Stage 0: The only interval for n = 0 is (0,1). We let / map (0,l)to 1/2.
 Stage ri + 1 : Assume the intervals at stage n have been assigned. We
 partition each "parent" interval (a/4n, (a + l)/4n), 0 < a < 4n - 1 into four
 equally sized intervals I < J < K < L. The intervals (a - l)/4n,a/4n),
 (a/4n, (a + l)/4n), and (a + l)/4n, (a + 2)/4n) will have been already assigned.
 Call their values p, tu, q respectively. If m = 0 or 1 then all of the four subin-
 tervals J, J, K , L, also get the value 7nē Otherwise, each of the subintervals
 gets one of the values m, m - <5n, or m -f 6n as follows:

 - If m - 6n > p then /(/) = m - 6n and f(J) = m + 6n.
 - If m + 6n < p then /(/) = m + 6n and f(J) = m - 6n.
 - Otherwise (ie. p G [7n-<5n,7n + <5n]), then except as noted below, /(/) =

 /(J) = m.

 Similarly;

 - If 7Ti - 6n > q then f(K ) = m - 6n and f(L) = m + 6n.
 - If 77i + 6n < q then f(K) = m + 6n and f(L) = m - 6n.
 - Otherwise (ie. q G [m - <5n, 77i+<5n]), then except as noted below, f(K) =

 f{L) = m.

 However;

 If both p and q are in [m - 6ni m -h 6n' then instead of making /(/) =
 /(J) = f(K) = f(L) = 77i, we let /(/) = f(L) = m - 6n and f(J) =
 f(K) = m + 6n.

 Note then, that in all cases;

 At least one of the subintervals gets the value m - 6n and at least
 one gets the value m + 6n and the average of all four of them is
 exactly m. (2)

 This completes the definition of /.
 Let d(n) denote the maximum difference of the function / on two neigh-
 boring intervals, both of the same size l/4n. Then d(0) = 0, d(l) = 26q , and
 d(n + 1) < max{2<5n, d(n) - 26n , <5n}. The last estimate comes from con-
 sidering the three cases 1) where the intervals came from the same "parent"
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 interval at stage n or came from different "parents" whose function values
 differed by < 2 6n and 2) came from different parents at stage n which differed
 by more than 2 6n and 3) the intervals share 0 or 1 as a common border point
 (in this case, the interval outside of [0,1] is mapped to 1/2 and the one inside
 of [0,1] is mapped to either 1/2 or 1/2 + 6n or 1/2 - <5n). By using property
 (1) inductively, we can then simplify the estimate:

 (3) d(n + 1) < 26n

 We now define the set An to be the union of all intervals which were
 assigned to 1 at some stage < n and let Bn be the union of all intervals
 assigned to 0 at stage < n. Finally, let A = U An and B = UBn.
 If the sequence {<5n} took on a constant value 6 for all n > N then by (*)

 we would have that for any n > N and any interval I of stage n which is not
 in B, there is a subinterval J of stage m < n + 1/6 such that /(J) = 1. Then
 '(Am H I) > I J' > |/| X (1/4)1/6. Thus the measure of the complement of
 An U Bn approaches 0 (in a geometric fashion) as n - ► oo.
 We would like however that our sequence {<5n} - > 0. Therefore, for each p,

 we let 6n take on the constant value 1/2P long enough so that at the stage n
 where it switches to 1/2P+1 we have A (An U Bn) > 1 - 1/2P. This still forces
 A(j4UjB) = l.
 Next, we show that the function / calculates the relative measure of A.

 Proposition 1 For each interval I of the form (a/ 4n, (a + l)/4n) where a is
 an integer in [0,4n - 1] and n is a natural number , /(/) = A {A, I).

 PROOF. Given such an interval I and an e > 0, choose a stage n such that
 A (An U 1 3n, I) > 1 - e. Then by (2), f(I) is the average of / on the stage n
 subintervals of I. Considering the two extreme cases where the intervals not
 in An U Bn all have value zero or all have value one, we get both that

 A(AnJ)<f(I)<A(AniI) + e.
 and

 A(AnJ)<A(AJ)< A(AniI) + e.
 Therefore, /(/) is within e of A(AiI) and since e is arbitrary, /(/) =
 A(A,I). □

 Now we show the uniform smoothness:

 Proposition 2 For each e > 0, there is a 6 > 0 such that for each x and
 each h < 6, if the intervals [x - h,x] and [x,x + h] both lie in [0,1] then
 A (A, [x, x 4- h]) and A (A, [x - h , x]) differ by at most e.
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 Proof. Let e' > 0 be given and let e = min^'^O, 1/4). Using (3) and
 the fact that 6n - ► 0, choose ft so small that any two neighboring intervals of
 the same size < ft have / values which differ by less than e2. Choose any x in
 [ft, 1 - ft]. Choose n such that the number of stage n intervals which intersect
 [x - ft,x + ft] is between 1/e and 4/e (inclusive). Let m be the smallest function
 value of one of these intervals. Then all of these intervals have a function value

 between m and m H- 4/e x e2 = m -h 4e. Furthermore, since all but two of them
 lie entirely inside of of [x - ft,x + ft], the size of each one must be less than
 2ft/(l/c - 2) which is less than 4fte (since e < 1/4).

 Restricting our attention now to [x, x + ft] the average value of the stage
 n intervals inside of [x,x 4- ft] is between m and m 4- 4e, and by Proposition
 1, these values are the relative measure of A inside of each. Since there may
 be up to two pieces of a stage n interval on each end of [x, x + ft] which have
 combined relative measure less than 2 x 4fte/ft = 8e, we have;

 m - Se < A(j4, [x, x -I- ft]) < m- 1- 4e + 8e.
 Similarly,
 m - 8e < A(^4, [x - ft, x]) < m -h 4e + 8e.
 Therefore A(A, [x,x + ft]) and A (A, [x - ft,x]) differ by at most 20e < e'.

 □
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