Real Analysis Exchange Vol. 19(2), 1993/94, pp. 608-611

Chris Bernhardt, Department of Mathematics and Computer Science, Fairfield University, Fairfield, CT, 06439, cbernhardt@fair1.fairfield.edu Ethan Coven, Department of Mathematics, Wesleyan University, Middletown, CT, 06459, ecoven@eagle.wesleyan.edu

ON THE EXISTENCE OF FUNDAMENTAL REPRESENTATIVES OF CYCLIC PERMUTATIONS IN MAPS OF AN INTERVAL

Abstract

If a cyclic permutation which is not a double has a representative in a piecewise weakly monotone map of an interval, then it has a fundamental representative in that map.

Let π be a cyclic permutation of $\{1, \ldots, n\}$, and let f be a continuous map of a compact interval to itself, a map of an interval for short. A representative π in f is a set $P = \{p_1, \ldots, p_n\}$ such that if P is labeled so that $p_1 < \cdots < p_n$, then each $f(p_i) = p_{\pi(i)}$. S. Baldwin's forcing relation [0] on cyclic permutations (an extension of Sharkovskii's Theorem) is defined in terms of representatives. π forces θ if every map of an interval which has a representative of π also has a representative of θ . (π and θ may be permutations of different numbers of elements.)

In [0] the authors developed an efficient (polynomial-time) algorithm for deciding the forcing relation. An important ingredient of that algorithm is the notion of *fundamental representative*, defined below. We showed that to decide whether π forces θ , it is sufficient to consider only maps of an interval known as truncated horseshoe maps, and that any cyclic permutation which has a representative in a truncated horseshoe map also has a fundamental representative in it. This leads to the question: for which maps f of an interval

Key Words: interval maps, Markov graph, forcing relation

Mathematical Reviews subject classification: Primary: 58F03: Secondary: 58F20, 58F08

Received by the editors September 7, 1993

and which cyclic permutations π is it true that if π has a representative in f, then it also has a fundamental representative in f?

Informally, a representative P of π in f is fundamental if the monotonicity of f on certain intervals containing points of P is the same as the monotonicity of L_{π} on the corresponding intervals containing points of $\{1, \ldots, n\}$, where L_{π} : $[1, n] \rightarrow [1, n]$ is obtained by "connecting the dots" of $\{(i, \pi(i)) : i = 1, \ldots, n\}$ with straight lines. In order to make the definition of fundamental precise, we introduce some additional concepts and terminology.

Let $g: I \to I$ be a map of an interval and let J_1, \ldots, J_m be nondegenerate, compact subintervals of I such that each max $J_k \leq \min J_{k+1}$. The Markov graph of g with respect to (J_1, \ldots, J_m) is the directed graph with vertices J_1, \ldots, J_m and an edge $J_k \to J_\ell$ if and only if $g(J_k) \supseteq J_\ell$. The Markov graph of π is the Markov graph of L_π with respect to $([1, 2], \ldots, [n-1, n])$. (It may be defined in terms of π alone.)

For $\delta > 0$ small enough and for k = 0, ..., n, there is a unique integer λ_k such that $L^k_{\pi}[1, 1+\delta] \subseteq [\lambda_k, \lambda_k + 1]$. The loop

 $[\lambda_0, \lambda_0 + 1] \rightarrow [\lambda_1, \lambda_1 + 1] \rightarrow \cdots \rightarrow [\lambda_{n-1}, \lambda_{n-1} + 1] \rightarrow [\lambda_n, \lambda_n + 1]$

in the Markov graph of π is called the *fundamental loop* of π . (Since $\lambda_0 = \lambda_n = 1$, it really is a loop, not just a path.)

A representative P of π in f is fundamental if for $\delta > 0$ small enough and for k = 0, ..., n - 1, f is weakly monotone, i.e., nondecreasing or nonincreasing, but not constant on $f^k[\min P, \min P + \delta]$, nondecreasing or nonincreasing according to whether L_{π} is increasing or decreasing on $[\lambda_k, \lambda_k + 1]$.

Finally, π is a *double* if n is even and for $k = 1, ..., n/2, \pi(2k-1)$ and $\pi(2k)$ are consecutive integers. (In this case, π is a "double" of the permutation of $\{1, ..., n/2\}$ defined by $i \mapsto j$ if $\{\pi(2i-1), \pi(2i)\} = \{2j-1, 2j\}$.)

Theorem 1 Suppose that f is a piecewise weakly monotone map of an interval and that π is not a double. If π has a representative in f, then it has a fundamental representative in f.

PROOF. We may assume that $n \ge 2$. Let $P = \{p_1, \ldots, p_n\}$ with $p_1 < \cdots < p_n$ be a representative of π in f. Let $g : [p_1, p_n] \to [p_1, p_n]$ be a continuous piecewise weakly monotone map such that every fundamental representative of π in g also is a fundamental representative of π in f. To form g, first we "truncate" f to form $f_P : [p_1, p_n] \to [p_1, p_n]$. On $[p_k, p_{k+1}]$, let

$$f_P(x) = \begin{cases} \min(f(p_k), f(p_{k+1})) & f(x) < \min(f(p_k), f(p_{k+1})) \\ \max(f(p_k), f(p_{k+1})) & f(x) > \max(f(p_k), f(p_{k+1})) \\ f(x) & \text{otherwise.} \end{cases}$$

Then let $g: [p_1, p_n] \to [p_1, p_n]$ be obtained from f_P by "pouring water" [0] into the graph of f_P on the intervals $[p_1, p_2], \ldots, [p_{n-1}, p_n]$. On $[p_k, p_{k+1}]$, let

$$g(x) = \min \left(\max_{p_k \leq y \leq x} f_P(y), \max_{x \leq y \leq p_{k+1}} f_P(y)
ight).$$

Then g = f on P, so P is a representative of π in g. Furthermore, g is weakly monotone but not constant on each $[p_k, p_{k+1}]$, nondecreasing or nonincreasing according to whether L_{π} is increasing or decreasing on [k, k+1]. Hence a representative of π which is fundamental in g is also fundamental in f. So we show that π has a fundamental representative in g.

The map $[k, k+1] \mapsto [p_k, p_{k+1}]$ is an isomorphism of the Markov graph of π onto the Markov graph of g with respect to $([p_1, p_2], \ldots, [p_{n-1}, p_n])$. Therefore, corresponding to the fundamental loop of π , there is a loop

$$[p_{\lambda_0}, p_{\lambda_0+1}] \rightarrow [p_{\lambda_1}, p_{\lambda_1+1}] \rightarrow \cdots \rightarrow [p_{\lambda_{n-1}}, p_{\lambda_{n-1}+1}] \rightarrow [p_{\lambda_0}, p_{\lambda_0+1}]$$

in the Markov graph of g with respect to $([p_1, p_2], \ldots, [p_{n-1}, p_n])$.

Then $J = \bigcap_{k=0}^{n} g^{-k}[p_{\lambda_k}, p_{\lambda_k+1}]$ is an interval and g^n is weakly monotone but not constant on J. Since $g^n(J) \supseteq J$, $g^n(z) = z$ for some $z \in J$. The orbit $\{z, \ldots, g^{n-1}(z)\}$ of any such z is a representative of π in g. Since the monotonicity of g on $[p_k, p_{k+1}]$ is the same of that of L_{π} on [k, k+1], such an orbit is fundamental if for $\delta > 0$ small enough and $k = 0, \ldots, n-1$, g is weakly monotone but not constant on $g^k[z, z+\delta]$. Now $L_{\pi}^n(1) = 1 \in$ $\bigcap_{k=0}^n L_{\pi}^{-k}[\lambda_k, \lambda_k + 1]$, so L_{π}^n is increasing on this interval. Therefore g^n is nondecreasing on J.

Let z be the largest fixed point of g^n in J such that $g^n(x) \leq x$ for all $x \leq z$. If $z = p_2$, then $g^n[p_1, p_2] = [p_1, p_2]$, hence for $k = 0, \ldots, n-1, \lambda = \lambda_{k+1}$ is the only integer such that $g[p_{\lambda_k}, p_{\lambda_k+1}] \supseteq [p_{\lambda}, p_{\lambda+1}]$. Then the (unique) edge which originates at $[p_{\lambda_k}, p_{\lambda_k+1}]$ terminates at $[p_{\lambda_{k+1}}, p_{\lambda_{k+1}+1}]$, and so the (unique) edge which originates at $[\lambda_k, \lambda_k + 1]$ terminates at $[\lambda_{k+1}, \lambda_{k+1} + 1]$. The fundamental loop of π has length n, and because π is not a double, the fundamental loop of π is simple, i.e., does not consist of multiple repetitions of a shorter loop [0], Lemma 3.6. But there are only n - 1 vertices in the Markov graph of π , so $z \neq p_2$. Therefore $z < p_2$, and for $\delta > 0$ small enough, g^n is nondecreasing but not constant on $[z, z + \delta]$. Hence the orbit of z is a fundamental representative of π in f.

If f is not piecewise weakly monotone, the concept of a representative of π being fundamental in f need not make sense. If π is a double, the proof breaks down. For then the fundamental loop of π is the repetition of shorter loops, and we conclude not that g has a representative of π , but rather that it has a representative of a cyclic permutation of fewer than n points. In fact, the result need not be true when π is a double. Let $\pi = (1324) - a$ double of

(12) – and let $f:[1,4] \rightarrow [1,4]$ be the map obtained by "connecting the dots" of

$$\{(1,3), (2,4), (3-\delta, 2-\delta), (3+\delta, 2+\delta), (4,1)\}$$

with straight lines, where $\delta > 0$ is small. Then $\{1, 2, 3, 4\}$ is the unique representative of π in f. But it is not fundamental. (That (12) is itself a double is irrelevant.)

References

- Ll. Alsedà, J. Llibre, and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, World Scientific, River Edge NJ, 1993
- S. Baldwin, Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions, Discrete Math, 57, (1987), 111-127
- [3] C. Bernhardt, The ordering of permutations induced by continuous maps of the real line, Ergodic Theory Dynamical Systems, 7, (1987), 155-160
- [4] C. Bernhardt and E. M. Coven, A polynomial-time algorithm for deciding the forcing relation on cyclic permutations, Contemp. Math, 135, (1992), 85-93