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 A FUNDAMENTAL LEMMA FOR

 MONOTONICITY

 Abstract

 The paper contains several useful definitions which lead to the fol-
 lowing monotonicity theorem: if F is Cd H (M) on [a, ò] and F'(x) < 0
 a.e. where F is derivable, then F is decreasing on [a, 6].

 The main result of this paper is Lemma 4, which is a generalization of
 Lemma 6 of [1].

 The following theorem of Banach ([4], p. 286) is well known:

 Theorem (Banach) Any function which is continuous and satisfies LusinJs
 condition (N) on an interval , is derivable at every point of a set of positive
 measure.

 Of course, condition (N) implies condition T2, and it is this fact that leads
 to the proof of Banach's theorem.

 In [3], Foran generalizes this result, showing that Banach's theorem remains
 true, if condition (N) is replaced by Foran's condition ( M ).

 An improvement of Foran's theorem is given in [1] (see Theorem 9), con-
 dition ( M) is replaced by condition (M).

 In our article, using Lemma 4, we improve this last result in Theorem 5,
 replacing the continuity by condition Cd

 Theorem 5 is then used to prove a monotonicity theorem (Theorem 6),
 which permits an extension (see Corollary 1) of Corollary 3 of [1]. Both the
 Corollary of [1] and Corollary 1 extend the following theorem of Nina Bary
 (see [4], p. 286): (condition (N) is replaced by (M) and the continuity by Ci):

 Theorem (Bary) Every continuous function, which satisfies condition
 (N) and whose derivative is nonnegative at almost every point x where F is
 derivable, is monotone nondecreasing.
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 In what follows we shall need the following results on VB*G functions
 (sometimes this condition is called VBG* or BVG*).

 Theorem 1 ([4], p.230) Let F : [a, b] - > R, P C [a, 6], F € VB*G on P.
 Then:

 (i) F is derivable a.e. on P.

 (ii) 1jP(iV)| = A (B(F;N)) = 0, where N = {x e P : F'(x) does not exist
 finite or infinite}.

 Theorem 2 ([4], p. 234) Let F : [a, b' - > R, P C [a, 6]. If F' (x) < oo on P
 then F € VB*G on P.

 Theorem 3 ([1], p. 434) Let F : [a, 6] - * R, and let P be an uncountable
 subset of [a, 6]. If F e VB*G on P then F is continuous n.e. on P.

 Definition 1 Let F : [a, 6] - ► R . F is said to be D_ on [a, 6], if from a <
 öl < ß < b and F(ß) < F(a), it follows that [F(ß),F(a)' C F([ayß]). Let
 V+ - {F : -F e V-}. Clearly D = D+nl>_, where D is the class of Darboux
 functions on [a, b] .

 Definition 2 Let F : P -► R. F is said to be Ci at xo € P, if

 lim x^x-F(x) < F(x o) < lim

 xeP° x€P°

 Let Cd = {F : -F e Ci). Clearly C = Cd n on P , where C is the class of
 functions continuous on P.

 Theorem 4 ([2], p. 395) Cd C T>+ on an interval

 Lemma 1 Let F : [a, 6] - ► R. If iimy^x- F (y) > F(x),x G (a, 6] and F(x) >
 lim y^x+F(y),x e [a, 6) then F e U+ on [a, ò].

 Let a < a' < b' < b such that F(a') < F (b') and let a 6 (F (a'), F (b')).
 Let B = {x € [a', b'] : F(x) > a}. Clearly b' e B. Hence 5^0. Let c = inf
 (B) and suppose that c£B. Then c is a right accumulation point of B , and

 F(c) > īīmy^c+F{y) > ÏÏm V^c+F(y) > a,
 yeB

 a contradiction. It follows that c 6 B. Since i^c) > a it follows that c ^
 a'and F(x) < a,x e [a',c). By hypothesis, F(c) < lim y_^c-F(y) < a, hence
 F(c) = a. It follows that F € on [a, 6].



 A Fundamental Lemma for Monotonicity 581

 Definition 3 Let F : [a, 6] - ► M, and let P be a subset of [a, 6], c = inf (F), d =
 sup (P). F is said to be left increasing* (respectively right increasing *) on P , if
 F(xi) < F(x 2), whenever c < x' < X2 < d and x' G P (respectively X2 € P).
 F is said to be increasing * on P, if it is simultaneously left increasing # and
 right increasing # on P. In the above , if F (xi) < F(x 2), we obtain the con-
 ditions: strictly left increasing strictly right increasing #, strictly increasing *.
 Similarly , we can define conditions : decreasing *, monotone #, left decreasing #,
 eie. Clearly monotone * = monotone on an interval

 Lemma 2 Le¿ F : [a, 6] - ► M, F(a) < F(6) such that lim y^x-F(y) > F(x),
 for X G (a, 6] and F(x) > limy_>x+F(y), for x G [a, 6).

 ft} //60 = *n/{x : F(x) = F(b)} then F(b0) = F(6);

 (ii) IfXy = inf {x G (a, 60) : F(x) =2/}, y G (F(a),F(6)) then F(xy) = y.

 (iii) There exists a set A C [a, 60], a, 60 € A, that F is strictly right
 increasing * on A and F (A) = [F(a),F(6)].

 // ^4+ = {x : x ¿s a ńght accumulation point of A} then F is right
 increasing * on A U A+ and F (A U A+) = [F(a), F(6)].

 Proofs.

 By Lemma 1, F G D+ on [a, 6].

 (i) Suppose on the contrary that F (bo) ^ F(b). Then òo is a right accumula-
 tion point for the set {x : F(x) = F(6)}. Hence F(&o) > limx_>6+F(x) >
 F(6). It follows that F(6o) > F(6). Since F(a) < F(b) and F G P+,
 there exists c G (a, 60)» such that F(c) = F(b). This contradicts the
 definition of 60.

 (ii) Since F G T>+Ì{x G (a, 60) : F(x) = y} ^ 0. Suppose on the contrary
 that F(xy) y. Then xy is a right accumulation point for the set
 {x G (a, 60) : F(x) = y}. Hence F(xy) > limx_>x+F(x) > y. It follows
 that F(xy) > y. But F(a) < y. Since F G P+, there exists c G (a,xy)
 such that F(c) = y. This contradicts the definition of xy.

 (iii) Let A = {xy : y G [F(a), F(6)]}, where xy is defined in (ii). Clearly
 a, 60 G A. Since F(xy) = y,F(A) = [F(a),F(6)]. Let a < x 1 < X2 <
 60, £2 G A Then X2 = £f(x2) and F(xi) ^ F(x 2). Suppose on the
 contrary that F(x2) < F(xi). Since F(x 2) > F(a) and F G D+, there
 exists c G (a, xi), such that F(c) = F(x 2). This contradicts the fact that
 x2 = xp(X2). Thus F(xi) < F(x2) and F is strictly right increasing* on
 A.
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 (iv) Let xo G -A+, xo 7^ 6o- We show that F(xo) = inf {F(x) : x G A, x > xo}.
 By (iii), F is strictly increasing and bounded on A. Hence the above
 infimum is finite and belongs to [ir,(a),F(6)j. Since F is strictly right
 increasing* on A, F(x 0) < F(x)i for each x G A,x > xo- Hence F(xo) <
 inf {F(x) : x G A, x > xo}. But

 F{xo) > ÏÏmx_+F(z) > Bm._c+F(x) = inf {J?( x) : x e A, x > xo}
 x£A

 (since F is strictly increasing and bounded on A). It follows that F(x 0) =
 inf (F(x) : x G A,x > xo} , so F(x 0) G [F(a), F(t)] and F (A U A+) =
 [F(a),F(b)Ļ
 Let a < xi < X2 < 60, X2 G A+. Since F is strictly right increasing* on
 A , F(xi) < F(x), for each XGÌ,X>X2, hence F(xi) < inf {F(x) :
 xGì4,x> X2} = F(x 2). Thus F is right increasing* on A U A+.

 Lemma 3 Let F : [a, 6] - > M, F(a) < F(t), F £ Cd on [a, 6].

 (i) If ao = sup {x G [a, 6] : F(x) = F(a)} then F(ao) = F(a) and F(x) >
 F(ao), for each x G (ao,t].

 (ii) If bo = inf {x G [ao, 6] : F(x) = F(b)}, then ao < to,F(to) = F(b) and
 F(x) < F (bo), for each x G (ao, to].

 (in) F([ao,6o]) = [F(ao),F(to)].

 (iv) There exists a set A C [ao,to] such that ao,to G -A, F is strictly right
 increasing * on A and F (A) = [F(a),F(t)].

 ^ F zs right increasing * on A U A+ and F(A U Aj.) = [F(a),.F(t)], where
 A+ = {x : x is a ńght accumulation point of A}.

 (vi) There exists a set B C [ao,to], such that ao,to G B, F is strictly left
 increasing * on and -F(B) = [F(a), F(t)].

 (vii) F is left increasing * on B U B- and F(B U B-) = [F(a),F(t)], where
 B _ = {x : x 25 a left accumulation point of B}.

 Lemma 4 Let F : [a, t] - ► R,F(a) < F(b), and let P = {x : F'(x) > 0}.
 If F e Cd on [a, t] and |F(P)| = 0 then there exist E C [a, t] and K C
 [F(a),F(t)], such that:

 (i) 'E' = 0 and 'K' > (F(b) - F (a))/ 2;

 (ii) E and K are compact sets ;
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 (iii) F(E) = K;

 (iv) F is strictly increasing on E.

 By Theorem A, F e T>+ on [a, 6]. Let ao = sup {x e [a, 6] : F(x) = F (a)}
 and &o = inf {x € [a, 6] : F(x) = F(b)}. By Lemma 3, (i), (ii), (iii), F (ao) -
 F(a),F(bo ) = F(b) and F([ao,&o]) = [-FXao), ^(Ml- By Lemma 3, (iv), there
 exists a set A C [ao, &o], ao> &o € A, such that F is strictly right increasing* on
 A and

 F(A) = [F(ao),F(bo)l. (1)
 We show that A is nowhere dense. Suppose on the contrary that there exists an
 interval [c, d] with endpoints in A, such that A D [c,d]. It follows that [c,d) C
 A'J A+. By Lemma 3, (v), F is increasing on [c, d',F{c) < F(d) and F([c, d ]) =
 [F(c), F(d)]. By Theorem 1, 'F(P)' = F(d) - F(c). This contradicts the fact
 that |-F(jP)| = 0- Hence A is nowhere dense.
 Let {(e*:, d*:)}, k = 1,2,..., be the intervals contiguous to A. (fc = 1,2,... ,,
 since A is nowhere dense). Then -Ao C A U A+, where Ao = A - (UkLi{ck})>
 and F is right increasing* on (see Lemma 3, (v)). Let A' = {x e A0 :
 D*F(x) = -oo}. We show that

 |F(ai)| = F(b) - F (a) = F(b0) - F(a0). (2)

 Since F is right increasing* on Ao , D~ F(x) > 0,x £ Ao . Let Bo = Ao - A'.
 Then D*F(x) > - oo on Bo- Hence F_ (x) > - oo on Bo . By Theorem 2,
 F e VB*G on B0. By Theorem 1, since |F(P)| = 0, it follows that |F(B0)| = 0,
 Since F(A) = [F(a),F(b)], we have (2). Let e e (0,1). Let AT be a natural
 number such that

 (3)
 k=N

 We shall construct a cover in the Vitali sense for the set F(Ai).
 Let x e A'. Then D*F(x) = - oo. It follows that there exist

 &(x) > N and o:(x) G dfc(x)) (4)
 such that F(a(x)) < F(x). Since F is right increasing* on Ao ,

 F(x)<F(dk{x)). (5)
 For each k(x) choose e(x) so that

 0 < e(x) < min {F(x) - F(a(x)) ;



 584 Vasile Ene

 Let Jx,€(x) = [-F(z) - a(x),.F(x)]. Then

 Rx,£(x)},z € Alte(x) € (0, min {F(x) - F(a(x));

 is a cover in the Vitali sense for the set F(Ai). Since F(d^x)) > F(x) > F(x) -
 e(x) > F(a(x)) and F € V+, it follows that the set {t € [a(x),dfc(x)] : F(t) =
 F(x)-e(x)} Ļ 0. Let ax,£(x) = sup {i € [a(x),dfe(x)] : F(t) = F(x)-e(x)}. By
 Lemma 3, (i), F(ax^x )) = F(x) - e(x). Since F G P+, it follows that the set
 {£ E [ûx,e(x)î ^/c(x)] • F(t) = F(x)} ^ 0. Let &xł€(x) = inf { t 6 [ûx,e(x)?^fc(x)] •
 F(t) = F(x)}. By Lemma 3, (ii), F(bxi<x)) = F(x) and ax^x) < 6X)€(X). By
 Lemma 3, (iii) , -^([o-x^x^ frx,e(x)D = [-^(^x,e(x))> -^X^x^x))] = *^x,c(x)* By The-
 orem 3, there exist a natural number n ,x¿ € Ai, and e(x¿) G (0, min{F(xi) -

 F(a(xi));m-/la))},i = l,2,...,n, such that ES-i > W6) "
 F(a)) • (1 - e) and

 { JXi , ex¿}, i = 1, 2, . . . , n are pairwise disjoint (6)

 We may suppose without loss of ģenerality that

 F(x!)<F(X2)<...<F(X„). (7)

 It follows that there exist a natural number q < n and a set

 {n,r2,...,rg} C {l,2,...,n},ri < r2 < ... < rq = n,r0 = 0

 such that

 F(xr 0+i) < F(xri) < F(dk(x ro+1)) < -F(xri+i) < F(xT2) (8)
 < F(dk(Xri+1)) < . . . < F(xTq_l+ 1) < F(xTq) (9)
 = F(xn) < ^(^Ä:(xr<7_1 + 1))- (10)

 Let ai = aXro+lł€(Xro+1) and 6i = &xro+1|C(Xro+l)- Then

 [ai,6i] C [ck(xrQ+i)i dk(XrQ+1)}- (11)
 In general let ari = sup {t e [6ri-i ,4(xro+1)] : ^(0 = fķrj - e(zri)}

 and bri = inf {t e [ariìdk{XrQ+l)] : F(t) = F(xri)}. By Lemma 3, (i), (ii), (iii),

 F fa) = F(xi) - c(xi), F(bi) = F(xi) and (12)
 F ([ai, bi]) = [F(ai)ìF(bi)}ìi = lì2ì...ìrl. (13)
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 By (6), (10), (9),
 <2-1 < &i < (2-2 < &2 ^ ^ &7*i 6ri3.nd [<2-í,6¿] C [Cfc(XrQ + 1), ^fc(xro + 1)]*

 Let ar i+i = axri+liC(Xri+l) and &n+i = &xri+ite(Xrļ+l)- Then

 [arļ+i, br i-i-i ] C [ck(Xrļ+1)i dk(Xrļ+ļ)]- (14)
 Continuing, we obtain

 cl' ^ b' CLf-ļ ^ brļ ^ d^i-ļ-i ò^i _ļ_ i . . . (15)

 ^ - 1 < bfq - 1 = ûn < ^r7 = ^nî (16)

 F(a¿) = F(x¿) - e{xi), F(bi) = F(x¿) and (17)
 F([aubi]) = [F(a¿),F(6¿)],z = l,2,...,n; (18)

 [í2i, 6¿] G [c/c^Xj -i-i) ? ^ 4- 1, . . . , J • • • î Q 1* (l^)

 By (3), (4), (15), we have

 ¿(i.-o.xfit^ü). (20)
 Î=1

 Moreover, we have

 n

 ^(F(6i) - F(ai)) > (F(60) - F(a0)) • (1 - e) and (21)
 1=1

 F(bi) - F(ūi) < (F(bo) ~ F(Qo)) , i = 1, 2, . . . , n. (22)

 Let e¿ e (0, 1), i = 1, 2, ... , such that

 (l_ei).(l- e2).(l - e3)-...>ì. (23)
 Suppose we have constructed the sets Ev-' and Kp-',p > 2.

 -Ē/p_i = (żi, Ü, ip-') [diļ • • . ip- i, • . . ip- i],

 Kp- i = (¿i, Ü, ip- i) [i^(a-ij . . . żp_i), FfJ)^ • • • ¿p_i)],

 with |^p-i| < (&o - ûo)/2p_1 and

 |ÜTp_i| > (F(6o) - F(ao))(l - ex) ... (1 - ep_i).
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 Similar to the construction of E' C [ao,&o] and for ep e (0,1) and
 [ûij . . .ip-1,6^ . . . ip-i], there exist natural number n¿1? . . . ,îp_i and some
 pairwise disjoint subintervals [a^ . . . ip_i, 6^ . . . zp_i], zp = i, . . . , n¿1 , . . . , ip_i
 (numbered from the left to the right), such that the sum of their length is less
 than (bh . ..zp_ 1 - aťl . ..ip_i)/2, and for ip = 1,2 ...îp_i,

 F([aij . . . Zp, ... ip]) = [^(ûij . . . 2P), ^(feiļ . • . ip)]

 are pairwise disjoint closed subintervals of . . . ip), ^(6^ . . . zp)]. These
 intervals are in an increasing order on the y-line and each of them has the
 length less that ( F(bo ) - F(ao))/4tp. The sum of their length is less than
 (F(bh . . . ip- i) - FÇa^ . . . ¿p_i))(l - ep). Let

 Ep = ļ^J [û-ij . . . iPì . . . ip]

 and

 Then 'EP' < ( b0 - a0)/2p and | Kp' > ( F(bo ) - F(ao))(l - ei) ... (1 - ep). Let
 E = U ™=1EP and K = U ™=1KP.

 (i) It follows that 'E' = 0, Kp is measurable and 'K' > F(bo) - F(a o))/2 =
 (F(b)-F(a))/2.

 (ii) Since Ep,KPip > 1, are compact sets, it follows that E and K are also
 compact sets.

 (iii) Let xo € E. Then there exists a sequence of closed intervals

 [ttii-.tp» &ň...2p],P > e&ch interval containing xo- Then we have xq =
 n.1,2

 p> 1

 F(x o) 6 •F,([ûti...tpj ^¿j...tp])
 p>i

 = n cfi^^
 p>i

 p>i

 hence F(E) C
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 To see that K C F(E ), let yo G K. Then there exists a sequence of
 closed intervals {[ûi1...ip,&t1...tp]} with p > 1, such that each interval
 [F(a>ii...iP),F(bi1...bip)] contains y0. Then

 Vo - P) [F(aii...ip)i
 ilt...,ip

 p> 1

 It follows that

 Pi [aii...iP,bii...biP]
 il

 p> 1

 degenerates to a point xo- Hence,

 F(x o) G P| = {2/0}
 ň

 p>l

 and F(xo) = yo- It follows that if C F(E)

 (iv) Let x' < x" ,x' ,x" G E. Then there exist two sequences of closed in-
 tervals > 1 and {[<^...¿»,6*». ..»»]},? > 1, such that
 both

 X = P) [o<i'l...i'p)ibi,1...bi'p)]
 ťi

 P>1

 and

 x = Pi
 *i#

 p>l

 Since x' < x" , there exists po > 1, such that ij = i'J,j = 1, 2, . . . ,po - 1
 and i'pQ < i'Ļ. Hence

 x G L fûî' i' « ¿i' ļ and x G fùì" L " « 6«" 11 í" v" | . L Ij-.-lpQ' i' « h-"0lPOJ ¿i' L 1 " po - i PO « 11 -Vo-1 í" v" POJ

 It follows that

 hence FOr') < ir(x,/).
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 Definition 4 Let F : [a, 6] - ► M, P C [a, 6]. F is said to AC on P, if for
 every e > 0, there exists a 6 > 0 such that ^2{F(bi) - F(üí)) < e, for each
 sequence of nonoverlapping closed intervals {[ai,6¿]},¿ > 1, with endpoints in
 P and - o>i) < à. Let AC = {F : - F e AC}. Clearly AC = AC n AC
 on P, where AC is the class of all absolutely continuous functions on P.

 Definition 5 Let F : [a, 6] - ► M, P C [a, 6]. F is said to satisfy Foran7s
 condition (M) on P, if F € AC on E, whenever E C P and F e VB on P.

 Definition 6 Let F:[a,i)]^M,Pc [a, 6]. F is said to be (M) on P, if F e
 AC on E, whenever E C P and F € VB on E. Let (M) = {F : -F € (M)}.
 Clearly (M) = (M) 0 (M) on P.

 Theorem 5 (An extension of Theorem 9 of [1].) Let F : [a, 6] - > M, and
 F e CdC '(M) on [a, 6]. Then F is denvable on a set of positive measure. More-
 over, if there exist 0 < a < b < 1, such that F (a) < F(b), then |F(P)| > 0,
 where P = {x : Ff(x) > 0}.

 The proof is similar to that of Theorem 9 of [1], using Lemma 4 instead of
 Lemma 6 of [1].

 Theorem 6 (An extension of Theorem 10 of [1].) Let F : [a, 6] - ► M,
 and F e Cd H (M) on [a, &]. If F' (x) < 0 at almost every point x where F'(x)
 exists and is finite , then F is decreasing on [a, 6] .

 The proof is similar to that of Theorem 10 of [1].

 Corollary 1 (An extension of Corollary 3 of [1].) Let F : [a, 6] - ► M,
 and F e C¿ D (M) on [a, 6]. If F' (x) > 0 at almost every point x where F'(x)
 exists and is finite , then F is AC and increasing on [a, 6] .

 We are indebted to the reviewer for many remarks allowing to improve the
 final version of the text.
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