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 ON CONTINUOUS AND

 QUASI-CONTINUOUS FUNCTIONS

 It is not hard to see (cf. e.g. [4]) that, in the case of real functions of a real
 variable, every discontinuous Darboux function has infinite variation. On the
 other hand, it is possible for a Darboux function / : M2 - ► IR2 to have finite
 variation, and be discontinuous at any point of its domain, as the following
 example shows.

 Example 1 Let g : M - > [0, 1] be a function mapping every non-degenerate
 interval to [0, 1]. Define a function / : M2 -> M2 by /((x, y)) = (g(x)i0).

 However, rather surprising is (in view of the result of T. Šalat) R. Pawlak's
 result (cf. [3], Theorem 7) showing that, in the space of bounded Darboux
 functions f : [0, 1]2 - > R2 with finite variation, continuous functions constitute
 a boundary set. This result prompts one to if continuous functions constitute
 a 'small seť in the space of bounded Darboux functions / : M2 - ► M2 with
 finite variation? The question thus raised requires that the notion of a 'small
 set' be stated precisely. (Theorem 1.6 included in book [2] shows that a 'small
 set' in the sense of the Lebesgue measure may be 'large' in the topological
 sense, and a 'small set' in the topological sense may have a large Lebesgue
 measure).

 It seems that, in the case of metric spaces, one may take porous sets as
 'small sets'. Here it is essential to observe (cf. e.g. [5] as well as [6], Theorem
 2.8) that if A C M is a porous set, then it is a nowhere dense set of Lebesgue
 measure zero and, thereby, the class of a- porous sets is of the first category
 and is contained in the <r- ideal of sets of measure zero. In connection with

 these assertions, the question posed at the beginning may be reformulated as
 follows:

 Do continuous functions constitute a porous set in the space of bounded
 Darboux functions f : M2 - ► K2 with finite variation, equipped with the metric
 of uniform convergence ?
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 The present paper includes the answer to the question posed here. What
 is more, it has been shown that continuous functions constitute a porous set
 in some space which, when considered as a subset of the space of bounded
 Darboux functions with finite variation, is a porous set.

 Definition 1 Let f : X - > y where X, y are arbitrary topological spaces. We
 say that f is a Darboux function if the image of each arc £ C X is a connected
 set.

 Definition 2 Let f : R2 - > R2. A function Nf : R2 - ► (0, +oo) defined in
 the following way: Af/{p) is equal to the number of elements of the set f~1(p)
 when the last set is finite or +oo when f~x(p) is not finite , is called the Banach
 indicatrix of the function f.

 Definition 3 Let f : R2 - > R2 be a Darboux function with measurable Ba-
 nach indicatrix. We say that f has finite variation (in the Banach sense ) if
 fm 2 Nfip) dp < +°°- this case set V(f) = fR2 A f/(p) dp.

 Throughout the paper, we adopt the standard symbols, definitions and
 notations. The letters N, Q, R denote the sets of all positive integers, rational
 numbers and real numbers, respectively. The distance in the space R2 is
 denoted by d, whereas the letter p is used to write down the metric of uniform
 convergence in the space of bounded Darboux functions / : R2 - ► M2 with
 finite variation. The two-dimensional Lebesgue measure of the set A C M2 is
 denoted by 7712(A).

 Theorem 1 In the space of bounded Darboux functions f : R2 - ► M2 having
 finite variation, endowed with the metric of uniform convergence, the set of
 functions possessing a dense set of points of quasi- continuity is a porous set.

 PROOF. Let /0 be a bounded Darboux function with finite variation, possess-
 ing a dense set of points of quasi-continuity. Let e G (0, 1), let xo be any point
 of quasi-continuity of the function /0 and set ao = /0(^0)- Then there exist a
 point z S R2 and a number 6 > 0, such that

 (1) fo(K(z,6)) C K(aoĄ)
 the ball with center ß and radius |. Let ß be a point of the sphere S (a 0, §),
 such that

 (2) ^ Mz) e [ao,ß) if fo(z) Ï a0;
 (2) ^ ß is any point of the sphere S (a 0, |) if fo(z) = ao-
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 Let M = Uq€(o}§)n®S(ao,ç) U [a o>/?)- Clearly M is a connected set, and
 rri2(M) = 0. Let & be the family of all spheres 5(2,77) where 77 G (0,5).
 Define on 0 the equivalence relation by 5(2, 771) ~ S(z , 772) <=ï m - rj2 e Q.
 Let V be the set of equivalence classes. Then the cardinality of V is equal to
 the cardinality of the continuum.

 Note that

 for any 771,772 with 0 < 771 <r¡2< 6, the family {5(z,i?)}ne[ni^2]
 .«v contains representatives of all equivalence classes
 ^ ' (More precisely for any w € V, there exists 77 e [771, 772]

 such that 5(2,77) belongs to w).

 Let t : V - ► M be a bijection. Define go : M2 - i ► IR2 by

 ( W ļ = íť([s'(2'd(2»x»]~) if X € /íT(z,¿)'{z}
 50 ( W ļ = '/o(x) if x ^ 6)'{z},

 where [5(2,77])^ denotes the equivalence class containing 5(2,77). We shall
 first show that go is a Darboux function. So assume that £ is any fixed arc
 contained in K(z,6). We shall show that

 a) if there is a real number r > 0 such that C C (2, r),
 , then <7o(£) is a one-point set;
 ^ ' b) if there is no real number r > 0 such that

 C C 5(2, r), then <7o(£) = Al.

 Obviously condition (4) implies the connectedness of the set #o(£)-
 To prove (4), let us first assume that 2 £ C. Let r' = inîaec d(z, a) and

 7*2 = supa€jCd(2, a) < <5. Of course, for each a € £, we have d(z,a) e [7*1,7-2]
 and r' < 7*2- If r' = 7*2, then C C 5(2, ri) and, in view of the definition of
 the mapping go, the set #o(£) is one-element. So assume that r' < 7*2. Since
 £ is compact and connected and since the distance of a point from a set is a
 continuous function, we infer that

 , -v for any r G [ri,r2], there exists an element ar e C
 ^ ' such that d(z,ar) = r.

 By the definition of go , (5) and (3) imply

 9O{£) = Uri<r<r2 Ua££nS(z,r) {0o(a)} = ^ri<r<r2 {9o{ar)}
 = Uri<r<r2{ť([5(z,r)]^)} = Ur€(0,í){ť([5(z,r)]^)} = M.

 The proof of (4) has thus been concluded in the case when 2 ^ C.
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 So now assume that z e C. (We still have the assumption C C K(zi6).)
 Then there exists an arc L C £'{>z} contained in no sphere S(z, 77) (0 < 77 < 6).
 By the proof of condition (4) carried out before, we may deduce that

 (6) 90(C) D go(C) = M.

 Then by (2) we have go(£) C {/0(2)} UX = M. The above inclusion and (6)
 prove that go(£) = M completing the proof of (4).

 Next assume that C is an arc having points in common with the comple-
 ment of K(z, 6). If £ C'K(z, ó) = 0, then from the definition of the function go
 it follows that go(£) = fo(£) is connected. Thus in order to finish the proof
 of the Darboux property of go, it suffices to consider the case

 (7) £ntf(z,<5)^0 and C'K(z,8)^t

 First show that go(C n K(zi 6)) is connected. To that end note that

 ( ' v there exists an arc C' C C n K(z, 6) such that £''5(2, r) ^ 0
 ( ' ' for any r e (0,6).

 By (7) there exists a G C H K(z,6). Thùs there exists 6* > 0 such that
 K(aì6*) C K(z,6). Hence

 (9) aeK(z,6-j)n£.
 The set K(z,6 - Ç) fi C is a nonempty, closed subset of the Hausdorff con-
 tinuum C. Consequently the component Ca of this set containing a satisfies
 Ca n Pr£ (K(z,6 - -Ç) fi C) 0. Hence it appears that

 (10) canS(z,6-^)nc^<D.
 Indeed, to prove (10), it suffices to demonstrate that

 (11) S(z,6-6-^)nCDFrc(K(z,6-j)nC).
 So, let X e Fr¿ (K(z,6 - Ç) fi C). Then

 (12) xeK(z,6-^)nC
 and

 (13) Int£ (K(z, 6-Ç)nC) Zś D K(z, 6-Ç)n£. z Zś z
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 If X ļ S(zì6 - Ç) n £, then by (12) x £ S(z,6 - 4p) and consequently again
 by (12) x e K(z, 6 - 4j-) n£. Then (13) proves that x ļ Pr ( K{z , 6 - 4j-) n£),
 which is contrary to the definition of x. Thus x G S(z,6 - ^-), verifying
 (11) and, thereby, (10). By (9) and (10), Ca is not a one-element set and
 Ca'S{z,r) 0 for r G (0,<5). Let £' = Ca. Then £' is a closed, connected
 subset of the arc £ consisting of more than one element. Thus C' is also an
 arc. Therefore (8) is proved.

 In view of (8) and (4) we may deduce that

 (14) go(CriK(z,6))=M.

 The equality 9o's^z 6 ^ = fo'S(z as well as (1) and (14) imply, in turn, that

 (15) g0(K(z,ô)r'C) c K(a0, |).
 Relations (14) and (15) allow us to conclude that M C go(K(z, 6) fi C) c M .
 On the basis of the above inclusions, the connectedness of M implies that

 (16) go(K(z , 6) fl£) is a connected set.

 We now prove that #o(£) is a connected set. Let {Cs}5€5 denote the family
 of all components of the set C'K(z,6) and let 5 be any fixed element of the
 set S. It is easy to see that Cs is an arc or a one-element set, and since (cf.
 (7)) £0 5(2,(5)^0,

 (17) Cs n S(z,6) 0.

 Indeed, note that H = £'K(z,6) is a non-empty (cf. (7)), closed set in C. In
 turn £'K(z, S) is a subset of H open in C. Thus Int cH D C'K(z,6). Since
 H is closed in £, we infer Fr cH C Cf)S(z,6). So CsflFr£ H ^ 0 implies (17).
 Moreover

 (18) g0(Cs) = fo(Cs) is a connected set

 and (by (17))

 (19) po(C5)n^o(£n^(z,6))^0.

 By (16), (18) and (19) and since s E S' is arbitrary,

 (20) go(Cs) U <7o(£ n K(z , 6)) is a connected set for each s e S.

 Since po(£) = £o (£ nř(z, 5)) U Uses<7o(Cs)> it follows that go(C) is connected
 and therefore the proof that go is a Darboux function is complete.
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 Next we define a new mapping fco : ffi2 - » R2. To that end let # be the
 family of all spheres S(ao,r) where r G (0, §) ' Q. Define an equivalence
 relation '«'by

 for any S(a0,7*i), S(a0,r2) € #5(a0,7*i) « S(a0ir2)
 if and only if 7*1 - 7*2 is a rational number.

 This relation divides # into a continuum of equivalence classes. Denote the
 set of these classes by #*. Then there exists a surjection I : $* -> M. Define
 fco : M2 -> M2 by

 k ^ j _ í '([£(acb d{oLQ, z))]Ä) when there is </? £ $ such that x e tp lx when x £ <p for any (p e #,

 where [5(a,r)]Ä denotes the class containing 5(a,7*). It is not hard to show
 that fco(if(ao, f )) = M. We shall now establish that

 (21) fc0 (C) is a connected set for any connected C C M2.

 Let C C IR2 be a connected set. If C C R2'K(ao, §), then fco (C) = C
 and condition (21) is satisfied. Consequently assume now that C C K(olq, |).
 Then the following situations are possible:

 Io There exists r E (0, |) such that C C 5(ao,r). If r is an irrational
 number, then fco (C') is a one-element set and thus a connected set. If r is a
 rational number, then fco (C') = C again a connected set.

 2° C = {c*o}. Then fco (C') = {ao} is, of course, a connected set.
 3° There are distinct 7*1,7*2 G (0, |) with CnS(ao,7*i) ^ 0 ^ Cn ¿>(<20,7*2).

 In this case it is easy to verify that C contains elements of the representatives
 of all equivalence classes. Thus the definition of fco implies that fco(C) = M,
 which means that once again fco(C) is a connected set.

 Finally assume C C ' K(olq, |) ^ 0 and C'K(a o,|) ^ 0. Then M C
 M U (C H S {a o,§)) C M = Ä"(ao,§). From the connectedness of M it
 follows that

 (22) Mu(Cn S (a 0, ^)) ó is a connected subset of M U C. ó

 In addition (M U C)'(M U (C n S(a0i § ))) = T U Q where T = C'K(a0i f )
 and g = (C n K(a0, § ))'M. Moreover T C R2'K(aQi f ) and Q C K(a0i §).
 Hence T and Q are separated sets (also in M U C). In view of the equality
 M U (CU 5(a 0, f)) = M U (C'K(a 0, §)) and by Theorem 8, (page 228,
 [1]), we deduce that

 (23) M U (C'if (ao, f )) is a connected set in M U C, and thus in M2.
 u
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 The definition of fco implies the equalities

 fco(C) = ko(C0K(aoĄ))Uko(C'K(aoĄ))

 = MU(C'K{aoĄ)).
 Hence and from relation (23) it follows that ko(C) is a connected set completing
 the proof of proposition (21).

 By (21) and since go has the Darboux property, gf0 = fc0 o go is a Darboux
 function. It is not difficult to check that

 o(y)

 Ngļiv) = < +°° HyeM,
 0 iiy&K(a0,f)'M,

 that A fg'Q is measureable and fm2 Ng>Q(y)dy < +oo. Consequently g'0 has finite
 variation.

 2

 Since € G (0, 1), we have § - y > 0. We shall now show that

 no function possessing a dense set of points of quasi-continuity

 belongs to the ball K(g'0, § - Ç).

 Let h be a function having a dense set of points of quasi-continuity. Then
 there exists a point po of quasi-continuity of h , such that po G K(z,6)'{z}.
 Let 7o = h(po). Then there exist qo and ii > 0 such that

 (25) <5i < d(z,q0) < <5, K(q0,6i) C K(z,6) and h(K(q0,6i)) C K( 70,

 Let

 (26) ro€(|-p|)nQ.
 If ao 7^ 70, then let

 (27) 7l eH%nS(a0,r0)

 where H^0 denotes the half-line with the initial point ao, not containing 70
 and contained in the line passing through ao and 70. If ao = 7o, then assume

 (28) 71 G 5(a0,r0).

 Since To G Q, by (27) and (28) 71 G M. Consequently from the definitions
 of ko and go

 (29) there exists z' G K(z,8)'{z} such that 71 = go(zi).
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 Consider an equivalence class [5(2, d(2,2i))]^,. Let d(z, go) = a. Then S(z, r)n
 K(qo,ôi) 0 for anyr € [a- 4j-, a+4^-]- FVom (3) there exists ri 6 [a- 4j-, 0+
 4j-] suchthat [5(z, rj)]^ = [£(2, <¿(2,21))]^. Let 21 € S'(2,ri)nif(go,<5i)- Then
 from the definitions of go and fco and since ro € Q,

 (30) g'o(ži) = g'o(zi) = 71.
 2

 Of course z' e K(qo,6'). Therefore (25) implies that h(z') e K( 70,
 Hence from (26), (30) and since ao € [7o>7i]>

 d{9o(¿i)H¿i)) = d{ji,h(zi)) > d(7i,iť(7o, ^-))
 £2 € £2 £ £2

 = r0 + d(a0,7o) ~ ļj" > 3 ~ "3 + d(ao,7o) > ģ - y •
 2

 Hence p(<?0> h) > ^ Since the choice of h was arbitrary, (24) follows.
 Finally by (1) and the definition of g'0i we conclude that p(/o,<7o) ^ §£-

 Thus K(g o, § - 3-) C K(fo,e). Hence in the space of bounded Darboux
 functions with finite variation, the porosity of the set of all functions having a

 £.

 dense set of points of quasi-continuity is no smaller than 2 lim supe_0+ 3 3 =
 §>0. □
 Remark As was suggested by the referee, Theorem 1 holds if we replace the
 density of the sets of points of quasicontinuity by that of the set of continuity
 points. It is so because each function / : M2 - ► M2 possessing a dense set of
 points of quasicontinuity also has a dense set of continuity points.

 The above theorem answers the question raised in the introduction because
 it implies that the set of continuous functions in the space of bounded Dar-
 boux functions with finite variation constitutes a porous set. The analysis of
 various examples leads, however, to the question, "What can be said about
 the set of continuous functions in the space of bounded and quasi-continuous
 Darboux functions with finite variation?" In particular the earlier results sug-
 gest that this set may be porous. The theorem presented below shows that
 this conjecture is true.

 Theorem 2 In the space of quasi- continuous bounded Darboux functions
 f : IR2 - ► IR2 with finite variation , with the metric of uniform convergence ,
 continuous functions constitute a porous set.

 PROOF. Let /0 be any continuous function with finite variation. The proof
 will be carried out in two stages.
 First assume that /0 is a constant function, and that e G (0,1). Let
 /o(®2) = {a0} = {(<*?, £*2)} and let ß € S(á0, f) n {(£,77) : 77 = (Ą and f >
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 a?} C M2. Set €i = § - ^ > 0 and £2 = f 'A(4 ~~ £ )• Then £2 + e' = (|)2.
 Define ip : (0, ^2] - ► M be a function by <p(£) = ^isin^. Fix xo € M2 and
 define go '-R2 -+ M2by

 ao if X = xo

 / X >1 _ (a? + d(x,x0),a§ 4- (p(d(x,x0))) if 0<d(x,x0)<e2
 g° X >1 _ (aÇ + d(x,x0),a§) if e2 < d(x,x0) < §

 w/3 if f < d(x,x0).
 We shall show that

 (31) ^0|k2'{io} *s a continuous function.

 For this purpose define ģo : [0, +00) - ► M2 by

 r ao iî y = 0

 a 0 (y' - J (aî + y- a 2 + v(y)) if y e (o, £2]
 0 (a? + y,û£) ifî/e[e2, f];

 ./? if y e [f, +00).

 Clearly

 (32) 5o = íto°d(zo, •)•

 Since v? is continuous, we may assert that po|(o,+oo) ls continuous. By the
 continuity of x »- > cf(xo,x), equality (32) implies (31). Consequently we shall
 show that

 (33) <7o is a quasi-continuous function.

 Since M2'{xo} is open, it suffices, to establish the quasi-continuity of this
 mapping at the point xo- Let 61,62 > 0. Then < min{<5i,<52} for some
 ko G N. It is easy to check that afc0 = (a? 4- 2 ) satisfies the condition
 ako € K(a0,62) nj0(®2). Let xko 6 gõ1(ako). Then xko € Ji(xo,5i)'{xo}.
 Consequently, by (31), go{V) C K(ao ,¿2) for some neighborhood V of the
 point xo, such that V C K(xo,6') which completes the proof of (33).

 Now we prove that £0 is a Darboux function. To this end we shall first
 prove that

 (34) go possesses the Darboux property.

 To prove (34) it suffices to show that

 (35) the set go{Je0) a connected set for any so G (0, +00),
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 where Jeo = [0,£o] and £o G (O, +00). We shall show that

 (36) ao€¿o(Jeo'{0}).

 For this purpose consider a sequence {Çk}k= 1,2,... where = ļf for fc 6 N.
 Without loss of generality assume that & € («/eo'{0}) n (0>£2) for & G N. Ob-
 viously y?(ffc) = 0 for k = 1, 2, - Consequently the sequence with the general
 term (a? + £&, + <£>(&:)) is contained in the set po(</e0'{0}) and converges
 to ao, which completes the proof of (36). Since 9o(Je0'{Q}) is connected and
 by the evident equality go(Je0 ) = 9o{Je0'{Q}) U {0}, (36) implies (35) which,
 in turn, implies (34).
 Now let C G M2 be an arbitrary connected set. Then the set d(xo,C) is

 connected and by (32), go(C) = ģo(d(xo, C))- This means, by (34), that go(C)
 is a connected set. The Darboux property of the function go has finally been
 proved.

 It can easily be seen that go is a function with finite variation. For sim-

 plicity set 6 = £1 - ļp = § - |e2. Then 6 G (0,£i). Let t be an arbitrary
 continuous function. We shall show that t £ K(go, 6). Assume to the contrary
 that

 (37) teK(g0i6).

 Set

 <,(*) = {«,»?) € R2 : 77 > c*2 - (£ļ - S)}

 and

 ¿āo^) = {(S'7?) e ®2 : V < + (ei - £)}•

 Obviously -A~0(<5) U i4j0(ô) = M2. Without loss of generality assume that
 t(x 0) G A~0(<5). Since t is continuous, we infer that

 (38) t(K(x0,6'))cA-o(6)

 for some d' G (0,5). Let k' be a positive integer such that

 (39> rrk<s'
 and let x/Cl be a point such that (¡(1^,1 0) = lļ£/ļkl • Then (39) implies that
 Xfcj G K(xq,6'). Thus by (38), we have i(xfcj G -Aā0(5). On the other
 hand (37) implies that ¿(xfcj G lf(<7o(zfci), <$)• By the definition of go, we get

 9o(xkl) = (a? + , a® +£1^. Hence ¿(x^J ^ A*0(5). This contradiction
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 proves t £ K(go,ô). It is easy to verify that K(go,6) C K(fo,£). Therefore
 the porosity at /0 is at least

 ę _ 3 £2
 2 lim sup

 £_>()+ ^

 The proof of the case when /0 is a constant function has been completed.
 Now proceed to the second stage of the proof of the theorem. Let /0 : M2 - > R2
 be continuous with finite variation, taking at least two values, and let e G (0, 3).
 Then /0 is not constant. Hence

 , . there exists a point xo such that, for any neighborhood
 ^ ' U of xo there is a point zo G U such that /o(xo) 7^/0(^0)-

 Put /0(2:0) = ao = (ao> ao) and r = § • Then r G (0, 1). Let t' = r - ^ > 0
 and let ri = t' - ^ >0. Moreover set 7*2 = jr^rf 2 - r). It is not
 difficult to see that r2 + r $ = (t')2. Let <p be the function defined by <p(£) =

 rising for £ G (0, T2]. If £ G [t',t), then set fc¿ = where [a] denotes
 the greatest integer < a. Let ip be the function defined by

 m , 2ML1Ü, [f _ fcŁti] for ? s (T., r)

 and let

 ^0(0 = (ai +Çcosip((i), a% + £sin^(£)) for Ç € [t',t).

 We shall prove that h'0 is a continuous mapping. Set

 T - T'
 (41) ak = r

 and

 (42) Jfc = [ofe, afc+i) for fc = 1,2,... .

 It can be proved that if £ G Jjt, then fc = fc^ for fc = 1, 2,

 of the function ip, we conclude that

 (43) for a fixed fc G N the function ^|jfc is linear and ip' jk(Jk) = [0, 2n).

 Let fc G N be fixed. Then (43) implies that the functions £ i-h ► a? +£ cos ^/>(£)

 and £ i-h ► aļj+C sin ip(£) are continuous on Jfc and moreover lim^_>0- cos i/>(£) =

 cos<0(ûa;+i)- Thus the function £ a? -f £ cos tp(£) is continuous for £ G [t', t).
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 Analogously we establish the continuity of the function £ cĄ + £ sin -0(0 for
 f G [t',t). These results imply that h'0 is continuous on [t',t).
 Now define ho : [0, r) - ► M2 by

 a0 ify = 0

 i 0 (u' _ J (Qo + y>a 2 + <p(y)) i f y e (o, r2] 0 (aj + y, a§) if y € [r2, t']
 ,h'o(y) if y £ [t', t)

 and h'¿ : M2 - ► M2 by

 h»( ' - j^o{d(a0ìx)) iîxeK{a0ir)
 ° if X K(qío,t).

 It is easy to see that

 (44) hö'K(a0ir) = ho° dÌK{a0ìT)(a0 , •).
 Note that

 (45) /i0|(0 ,r) is a continuous function.

 By (44) and (45) as well as by the definition of Aq, we infer that

 (46) ^0|K2'(5(ao,T)u{ao}) is a continuous ftxnction.

 Analogously to the proof of condition (34) we can show that

 (47) ho is a Darboux function.

 We shall now prove that

 , ^ if C C K(ao1r) or C C R2'K(ao, r), and if C is connected,
 ^ ' then h'¿(C) is also a connected set.

 Indeed this fact, in the case when C C M2'JftT(ao,/r), follows immediately from
 (46). So assume C C K(c¿o,t). Then d(ao ,r) is an interval contained in
 [0 ,t). By (44) and (47), h'¿(C) = ho(d(ao,C)) is a connected set completing
 the proof of (48).

 Next we prove that

 (49)
 if C is a connected set such that C n K{a o, r) ^ 0
 and C'if(ao,r) ^0, then /Iq(C fi K(ao, r)) D
 /iq(C n if(ao,T)) U ¿>(ao, t) and hf¿(C n K(ao,T)) is a connected set.
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 Indeed by the assumptions on C, we deduce that

 (50) J = d(a0iC D K(ao,r)) = [a,r)

 Hence by (44) and (47),

 (51) h'¿ (C n K(a o, r)) is a connected set.

 Let z G S(olo,t). Then z = (aj + rcos^z, aSļ + rsimßz) where ipz G [0,27t).
 Note that limjt_>+00 = r (cf. (41)). Without loss of generality assume that
 ak > a (cf. (50)) for each k G N. By (43) tpz = i/>(ÇZlk) where ÇZyk G J/t (cf.
 (42)) for k G N. Consequently G J for k G N and the sequence with the
 general term zk = (aj + £z,fcCOsV>z, + £z,fcsint/>z) converges to z. By the
 definition of J, we infer that = d{a o,£fc) where Xk G C fi K(ao,r) and
 k G N is arbitrary. Also limfc_>+00 h'¿ (xfc) = z. The proof of the inclusion of
 (49) is complete. Prom this inclusion and the definition of h'¿ we can assert
 that

 ti¿(C H K(a o, r)) C h'¿{C n ff(a0> r)) C h'¿{C n K(a0ir)).

 The above fact and (51) implies that hf¿(C n K(ao,r)) is a connected set.
 Therefore the proof of condition (49) is finally complete.

 Now let C be a connected set with C O K (a o, r)) ^ 0 and C'K(a o, r) ^ 0.
 Let be the family of all components of h'¿(C'K(a o, r)) = C'K(a o, r).
 Assume in addition that C is an arc. First establish that

 (52) Bt H h'¿(C n K{a 0, r)) 0 for t G T.

 For simplicity set H = C'K(aoir). By the assumptions on C and by the
 theorem of Janiszewski, we infer that Bt D Clc(C'W) ^ 0 where t is a fixed
 element of the set T. This implies Bt C)K(ao, t) ^ 0. Since Bt nK(a o, r) = 0,
 we have BtDS(a o, r) ^ 0. By the last condition and the two evident inclusions
 h'¿(C fi K(olq, t)) D C H S(a o, r) and Bt C C and since t G T is arbitrary, we
 infer (52).

 Clearly h'¿ (C) = /iq (CC'K(aoi T))UUteT^t' The above condition as well as
 (51) and (52) prove that h'¿(C) is connected in the case when CC'K(a o, r) ^ 0
 and C'K(aoir) ^ 0. This fact and (19) allows us to conclude that

 (53) the function h'¿ possesses the Darboux property.

 Since /o is continuous , we see that the image of any arc under /0 is ar-
 cwise connected. Hence by (53), the function ho = h'¿ o /0 is a Darboux
 transformation. Now we shall prove that ho is quasi-continuous. Since fo
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 is continuous, (46) implies that /i0|K2'j-i (s(a0tr)u{a0}) ÌS continuous. Conse-
 quently since M2'/J"1(5(ao,r) U {ao}) is open, it suffices to consider the set
 /¿_1(5(ao,T) U {ao}). We shall show that

 (54) ho is a quasi-continuous function on the set /¿~1(ao).

 Let xi G /o"1 (ao) and let 61,62 > 0- It must be shown that there exists an
 open set V such that

 (55) V c K(x 1,61) and h0(V) C K(a0i62).

 Evidently /¿"1(5(ao,r)) is closed, and x' ļ /¿-1(5'(ao,r)). Therefore 61 may
 be chosen so that

 (56) /o-1(5(ao,r))nü'(x1,¿1) = 0.

 If /0 is a constant function in some neighborhood V' of xi, then V = V fi
 K(xi,6i) satisfies (55) (since ho(V) = {ao}). Consequently assume that there
 exists no neighborhood of xi in which the function /0 is constant. Then there
 exists x[ G üf(x,6i) such that /o(z'i) ^ /0(^1) = ao- Let do = d(ao,/o(:ri)).
 Then do > 0. Since d(ao, fo{xi)) = 0 and since the function x •- ► d(ao,/o(x))
 is continuous, we infer that

 (57) d(a0,/o(xfco)) = ^
 for some point Xfc0 G K (xļ, <5ļ)'{xi }, where fco € N is chosen so that

 (58) 0 < p- < min(do,<52).
 KO

 Since = from the definitions of h'¿ and ho, and also from (57),

 we conclude that ho(xk0) = ^a? -I- aS^ and as can easily be checked,
 7*2

 d(ao,ho(xk0)) = 7-. Consequently by (58)
 ko

 (59) h0(xk0) G if (ao, 62).

 Note that Xk0 G ÜT(xi,6i). Thus (56) implies that Xk0 ^ fol(S(a o,t)). Prom
 (57) and (58), we infer that Xfc0 ļ f0l(ao)- Thus (the set M2'/¿"1(5(ao, r) U
 {ao}) is open) Xfc0 is a point of continuity of ho and by (59), there exists an
 open set V satisfying (55) proving condition (54).
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 Now we shall show that

 (60) ho is a quasi-continuous function on the set /¿'1(5(a o,t)).

 Let X G fõ1(S(a0i'r)) and let 61,62 > 0. It must be shown that ho(V) c
 K(h0(x)i62) for some open set V C K(x,6'). With no loss of generality-
 assume that

 (61) 62 < r - T' .

 By the definition of the function /0, we infer that

 (62) fo(K(x,6[)) C K{f0{x),62) = K(h0(x),62)

 for some 6[ G (0, ¿1). Note that if there is a non-empty open set V C K(x,6[)
 such that fo(V) C R2'K(ao,r), then, by (62), ho(V) C K(ho(x), 62). So now
 assume that the image (under /0) of each non-empty, open subset of the ball
 K(xi6[) has a non-empty intersection with K(ao,r). In particular by (62),
 /0(2:) G K(ao,r) Pi K(fo(x)i 62) for some 2 G K(x,6[). The set /o(jRT(£,01))
 is connected and contains fo(x) and fo{z). Since d'Q = d(aoifo(z)) < t and
 since d(a 0, /o(x)) = t, by the continuity of the function £ »-+ d(a 0, /o(£))>

 (63) for d G ( ď0,r ), there is x¿ G K(xì6[) with d(ao, fo(xd)) = d.

 By condition (49) (for C = R2) and since ho(x) = /o(x) G S(ao,r), we
 conclude that /io(z) G h'¿(K(oto,r)). Thus for some y we have

 (64) y G h'¿(K (ao, t)) H K(h0(x),T - Ą).

 So á(a0,2/) G (dņ, r). By (63), d(a0,/o(¿)) = d(a0,y) for some x G #(£, ¿í).
 By (61) d(a0>/o(í)) € (t',t). Thus the definition of h'¿ implies hf¿(f0{x)) G
 (t',t). using (64) it follows easily that y G hf0((r'r)) and consequently y =
 ho(d(a0ì y)) = hft(f0(x))- By (61) and (64), y = h0{x) G K(h0(x),62). Since
 /o(x) £ 5(ao,r) U {ao}, the element x G K(xiì6[) is a point of continuity
 of ho , which means that there exists an open set V C K(xi,6ļ) such that
 ho{V) C K(/io(x),¿2). This proves (60).

 It is easy to see that

 Í0 ify€Jr(ao,T)'MR2)
 AAho|E2'(x(ao,2)nft„(K2))(y) = if yeR2'K{a0iTy

 Since m2(iír(ao,r) D /i0(M2)) = 0 and since /0 has finite variation, we infer
 r2 5

 that ho also has finite variation. For simplicity set 6 = r' - - = r - -r2 > 0.
 6 6

 Then 6 G (0, ri). We shall show that

 (65) t £ K(ho,6) for any continuous function t : R2 - > M2.
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 Assume to the contrary that, for some continuous function t, the relation

 (66) teK(h0,6)

 holds. Set

 <(¿) = {(^) € M2 : 7? > a" - (n - I)}
 and

 B¿o(6) = {(?, v) e ®2 : 1? < + (n - Í)}.

 Evidently, ¿?¿"o(^) u ^āo0) = ®2- Without loss of generality assume that
 t(x o) G B~0(6). Since t is continuous,

 (67) t(K(x0j'))cB¿0(6)

 for some 6f > 0. Then by (40), there exists zq G K(xo,6') such that /o(xo) ^
 /o(zo)- Note that the set T = /o([xo, zo]) is connected and /o(xo), /o0*o) €
 Choose ki G N such that

 (68) ÎT4fc7 < d^ao'
 The function y 1- ► d(ao,y) is continuous. Since ao = /0(^0) since /0(20) G T

 2T2

 since T is connected and from (68), we conclude that d(c*o, yjtJ = ļ ^ ^or
 some yk 1 G T. The definition of T implies

 (69) /o(zfci) = Vkr for some xkl € [x0, zo] C K(x0, 6').

 In turn the definition of ho implies ho(xk1 ) = (a.® + q° + n j and
 by (66), we infer that ¿(x/ej G K(h o(xki),à). Therefore £(xfcj ^ B~0(6).
 However from (67) and (69) we easily conclude that ¿(x^) G B~0(6). This
 contradiction proves that (66) is false thereby completing the proof of (65).

 It can easily be verified that p(ho , /o) < 2 r. Consequently the ball K (/o, 3r)

 contains a ball K{łiQ,ó) such that K(h$,6) does not contain any continuous
 function. Thus the porosity at the point /o is not less than the number

 *-5. 2
 2 • lim sup - -

 e - >0+ ^ 3

 □
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