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 TWO-DIMENSIONAL PARTITIONS

 1. Introduction

 For the purposes of this article,
 A rectangle means a Cartesian product in the plane, M2, of two compact

 intervals, R = [a, 6] x [c,d].
 A partition of a rectangle Ä, is a finite collection of nonoverlapping sub-

 rectangles whose union is R.
 For 0 < A < 1 a partition is called À - regular if each subrectangle satisfies

 À < eccentricity = mm{height/ width, width/ height}.
 A gauge is any function from the plane to the positive real numbers.
 A partition is called special 6 - fine if every subrectangle has at least one

 vertex, where the gauge, <5, is larger than both the height and the width of
 the rectangle. (The word "special" denotes that the gauge is calculated at a
 vertex of the rectangle, rather than at just any point in the rectangle.)

 Given particular 6 and A, we call a partition proper if it is both A-regular
 and also special ¿-fine.

 In [1] Z. Buczolich, answering a question of W. Pfeffer (see [3]) established
 the following assertion.

 Theorem 1.1 (Buczolich) If A = and if 6 is any gauge , then every
 rectangle can be properly partitioned.

 No attempt was made by Buczolich to improve the regularity A, since for
 his purposes any A > 0 was sufficient. In fact, the A in his proof is actually
 bigger than 1/1000. As it turned out the Riemman type integral which follows
 from this theorem did not have the properties Pfeifer was hoping for and so
 the study of special partitions seemed to be abandoned. (See [4].)
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 Our interest in Buczolich's theorem is from a different point of view. We
 would like to know how much À could be improved and in particular, could A
 be arbitrarily close to 1? We think this question is natural and intriguing from
 a geometrical point of view. Furthermore if the regularity A could be shown to
 be bounded below by 1, then the same bound may suffice for similar problems
 involving "symmetrical ¿-fine" partitions (where the center of the rectangle,
 rather than vertices is used), and this may have important ramifications in
 the theory of uniqueness for trigonometric series.
 We therefore did our best to try to improve the A in Buczolich's theorem.

 We found that A could be any number < V2- In the case where 6 is upper
 semicontinuous, then A could be exactly We conjecture that this is the
 best possible. The reason (as will become apparent in the following proof) is
 that when two rectangles in the construction are found to overlap, there seems
 to be an overwhelming need to extend the short side of the larger rectangle to
 encompass the smaller one. Hence we need to have a rectangle such that both
 ratios height /width and 2 • height /width are between A and 1/A and that is
 why A = is used. Although this value of A seems natural, we have no idea
 how to prove it is best possible.

 Our main result is as follows.

 Theorem 1.2 If A < and if 6 is any gauge, then every rectangle can be
 properly partitioned.

 2. Pink Sets

 Let 6 be a positive function defined on M2 and let 0 < A < 1. We say that an
 open set G is pink if every rectangle A C G has a proper partition. First we
 show that the union of all pink sets is a dense subset of M2, and is also pink.

 To do this, let An = {(x,y) |<5(x, y) > 1/n} and let S = U^Ļ^An)0 where
 F° denotes the interior of a set F. By the definition of <5, U = M2.
 Hence by the Baire Category Theorem, S is nonempty. To show that S is
 pink, let B C S be a rectangle. Since B is compact, it is contained in the
 union of finitely many An . But the An are nested; so there is a single An
 such that B C An . Without loss of generality suppose that the diameter of
 B is smaller than 1/n and that B has eccentricity bigger than A. If the center,
 c, of B is from An , cut B into four rectangles with a common vertex c. If
 c e An'Ani then choose d € An close enough to c so that the four rectangles
 that partition B with a common vertex d still have eccentricity bigger than
 A. In either case the four rectangles are a <5-fine partition of B. Therefore
 according to our definition, the open set S is pink. Repeating the argument
 in any closed interval shows that the pink sets are dense.
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 Let P = U{G |G is pink}. If P were not pink, then there would be a
 rectangle B C P which could not be properly partitioned. Quadrasecting
 using the center of B yields four smaller rectangles at least one of which can't
 be properly partitioned. Continuing this process we obtain a sequence of
 rectangles which cannot be properly partitioned. The sequence converges to a
 point and hence eventually the tail of the sequence will be inside the open set
 G that contains that point. This contradicts the fact that G is pink. Therefore
 P is pink.

 Let C = M2 ' P. Suppose C ^ 0. By the Baire Category Theorem there is
 a rectangle D and an integer n so that 0 ^ COD0 C An and diam(D) < l/n.
 We fix such an n. Notice that by the definition of P there is a rectangle R C D
 that can't be properly partitioned. For À < we will show how to properly

 partition R contradicting that C ^ 0. This means that all of M2 is pink which
 will finish the proof. For the rest of the article 0 < À <

 It remains to show that every rectangle R C D can be properly parti-
 tioned. So, let R = [a, 6] x [c, d] C D be given. We show that if e(x) =
 min{<5(a,x),<5(6,x), ( b - a)/ 2} and if c < x < d, then for every 0 < e < e(x)
 the rectangle [a, b] x [x, x + e] can be properly partitioned. It is easy to see that
 the one dimensional interval [c, d] can be partitioned into a finite sequence of
 nonoverlapping intervals, Ik k = 1, 2, • • • , ra, of the form Ķ = [x, x 4- e] where
 0 < e < e(x). This fact is known in the literature as Cousins Lemma. (See [2].)
 Now let denote the collection of nonoverlapping rectangles that properly
 partition [a, 6] x Ą. Then the finite collection of is a proper partition
 of R. So to complete the proof it remains to show that [a, 6] x I can be
 properly partitioned. Fix k and let Y denote [a, 6] x /&.

 Remark It is easy to see that every rectangle with pink interior can be prop-
 erly partitioned. To do this, first put a ¿-fine square in each corner. Then,
 using Cousins lemma, partition each side with <5- fine squares. Then partition
 the remainder into pink rectangles which then can be properly partitioned.

 3. Green Points and Thin Rectangles

 Definition 3.1 We say that a rectangle B is thin if

 a) At least one left vertex and at least one right vertex have a gauge value
 6 > y/2 • height(B).

 b) width(B) > y/2 • height(B).

 Notice that Y = [a, b] x Ik is thin. Call the points from Y CiAn green. Let
 proj (A) denote the projection of the set A onto the interval [a, 6]. Let h(x)
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 denote the distance from x to the base of Y . If Ï is a collection of sets, let
 Tr = Tr = ([a, 6] ' proj (LUer^)) x Ik-
 Using H = height(Y ), construct two rectangles in Y at each end of Y

 with height H and with width H/ y/2. Since Y is thin, the two rectangles are

 ^-regular, ¿-fine and nonoverlapping. Let 'ř denote the collection of these
 two rectangles. We establish the following algorithm to inductively define
 subpartitions of Y . After showing this procedure terminates in finitely many
 steps, we can produce the desired partition of Y . Before we introduce the
 algorithm, for a point x 6 7, Ri = Ri{x) and Rr = Rr(x) will be two rectangles
 with:

 a) common vertex x,

 b) bases on the base of Y .

 See Fig 1.

 x

 Rl Rr Ri Rr

 x Fig 1.

 Algorithm Step 0. Find x G on the top side of Y such that S(x) >
 H'/ 2, if possible and construct rectangles Ri(x) and Ap(x) of dimensions x
 H. Otherwise go to Step 2.
 Step 1. Adjoin to the rectangles Ri(x) and Rr(x) and go back to Step 0.
 Step 2. Find x e Tą on the bottom side of Y such that 6(x) > Hy/2, if
 possible and construct rectangles Ri(x) and Rr(x) of dimensions XH x H.
 Otherwise go to Step 4.
 Step 3. Adjoin to 'I> the rectangles Ri{x) and Rr(x) and go back to Step 2.
 Step 4. Set h = sup{/i(x) : x in is green}. Note that h < H. Let

 S = {x G Tą : 3 a sequence {xm} C Tą fi An converging to x and h(x) = h}.

 If S = 0, go to Step 5. Otherwise for each x e S construct rectangles Ą and

 Rr of dimensions -j= x h. Since supx yeS 'x - y ' is finite, we may pick a finite
 subset, {xi, ..., xm}, of S so that, for 1 < i < j < ra, |x¿ - Xj' > and
 S C U i(Ri(xi) U Rr(xi)). Renumber the sequence, if necessary, from left to
 right. Note that by the construction there is 0 < t < | such that

 ([a, b] ' proj (U ReąR U ¿ (Ri(xi) U Rrfa)))) x [h - t , h]
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 is pink.
 Let W be a component of U¿(ñ¡(xi) u, v the upper vertices of

 W . See Fig 2.

 11 Xj Xp y

 Ri(xj)

 Fig 2.
 Observe that W can only intersect U ņR in Ri(xj) or Rr(xv), Successively

 pick points yi e T O An i = such that

 i) ¡Xi - yi' < t and if h < height{Y), then also |x¿ - 2/¿| < height(Y) - /i,

 ii) the rectangle Wj, with bottom side [proj (it), proj ( yj )] and with upper
 right vertex yj has eccentricity strictly between À and

 iii) for j < i < p the rectangle, with bottom side [proj (t/¿_i),proj (y i)]
 and with upper right vertex yi is A-regular

 iv) the rectangle Wp+i, with bottom side [proj (yp), proj (v)] and with upper
 left vertex yp has eccentricity strictly between A and

 v) The rectangles (dashed rectangles in Fig 3.) sitting on top of rectangles
 Wi, and with top sides on the top side of W are thin. See Fig 3.

 Observe that ii) and iv) are possible since A < Statement iii) is

 possible since ^ < |x¿ - i| < hy/2 and v) is possible since it suffices
 to pick yi close enough to Xi such that the height of the dashed rectangle is
 smaller than the gauge of the vertex opposite to yi.

 Xj %j+ 1 Xp
 ;

 Fig 3.

 Note that if there is a PGÝ such that P°nW ^ 0, then either P°C'Wj ^ 0
 pO  n 1 ^ 0, and height(P) is greater than h, and the eccentricity of or
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 P is strictly between À and Adjoin the rectangles Wj,..., Wp+ 1 to 'I>, set
 H =the minimum height of rectangles in 'I>, and go to Step 2.

 Step 5. If none of the previous steps can be performed, the algorithm is
 finished.

 First we have to show that the algorithm is finite. Suppose not. If H stays
 bounded away from 0, then the widths of rectangles in '£ are also bounded
 away from 0. Since intersection of every three rectangles has empty interior,
 this is impossible. Since H is nonincreasing, H converges to 0. In this case
 there is a sequence of green corners converging to a point x on the base of Y
 which is in Y ' Ur^R. This forces Step 2 in the algorithm to be applied every
 time after some stage. However when Step 2 is applied the value of H does
 not decrease, contradicting that H - ► 0. Therefore the algorithm is finite.

 Some rectangles in the collection may overlap. But no three rectangles
 have common overlap, and if two of them do overlap, say P = J x I and
 Q = E x F, then both have eccentricities strictly between A and So if
 P is taller than Q (in which case P was constructed in a stage before Q),
 simply replace these two rectangles by ( J U E) x I. The new collection is
 nonoverlapping A-regular and ¿-fine.

 Therefore we partitioned Y into a finite collection of nonoverlapping rect-
 angles such that they are either A-regular and ¿-fine or with pink interior or
 thin.

 The only ones that we still need to consider are those that are thin. See Fig
 4. below. (Dashed rectangles are the thin rectangles.) If the top side of a thin
 rectangle, R, is not on the top side of V, then the height of the pink region in
 Y above R is, by i), greater than the height of R. Apply the algorithm to R
 and let R' be a thin rectangle in the partition of R. Since R' has a green lower
 vertex, x, we can replace Ri with a rectangle of the same width as R' and
 height h(x) (the distance from x to the base of Ä). This rectangle is A-regular
 and ¿-fine and is completely inside Y even though it could extend above R.

 Fr

 'x"

 Fig 4.
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 So the remaining case is that of repeated application of the algorithm to
 a nested sequence of thin rectangles {Rk}, all having top side on the top side
 of Y . Let X € Hfciìk. Note that x is on top side of every Rk . Then there is
 a fc such that x is a green point. Since x is a green point on the top side of
 Rk, there is a ¿-fine regular rectangle in the partition of Rk that contains
 x which is a contradiction. This completes the proof of the Theorem.

 4. Upper Semicontinuous Case

 Finally note that if 6 is upper semicontinuous, then An is closed. So for the
 points y i in Step 4 one can choose y i = in which case for j < i < p the

 rectangles are ^-regular, while the eccentricities of Wj and Wp+ 1 are
 exactly So if À = then if P and Q are two rectangles in 'ř that

 overlap, then their union is still ^»-regular. Since also in this case the set of
 thin rectangles from step 4 is empty we have the following theorem:

 Theorem 4.1 If 6 is a positive upper semicontinuous function defined on M2,

 then every rectangle has a -^--regular 6 -fine partition.
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