Hajrudin Fejzić, Chris Freiling and Dan Rinne*, Department of Mathematics, California State University, San Bernardino CA 92407

TWO-DIMENSIONAL PARTITIONS

1. Introduction

For the purposes of this article,
A rectangle means a Cartesian product in the plane, \mathbb{R}^{2}, of two compact intervals, $R=[a, b] \times[c, d]$.

A partition of a rectangle R, is a finite collection of nonoverlapping subrectangles whose union is R.

For $0<\lambda \leq 1$ a partition is called λ-regular if each subrectangle satisfies $\lambda \leq$ eccentricity $=\min \{$ height $/$ width, width/height $\}$.

A gauge is any function from the plane to the positive real numbers.
A partition is called special δ - fine if every subrectangle has at least one vertex, where the gauge, δ, is larger than both the height and the width of the rectangle. (The word "special" denotes that the gauge is calculated at a vertex of the rectangle, rather than at just any point in the rectangle.)

Given particular δ and λ, we call a partition proper if it is both λ-regular and also special δ-fine.

In [1] Z. Buczolich, answering a question of W. Pfeffer (see [3]) established the following assertion.

Theorem 1.1 (Buczolich) If $\lambda=\frac{1}{1000}$ and if δ is any gauge, then every rectangle can be properly partitioned.

No attempt was made by Buczolich to improve the regularity λ, since for his purposes any $\lambda>0$ was sufficient. In fact, the λ in his proof is actually bigger than $1 / 1000$. As it turned out the Riemman type integral which follows from this theorem did not have the properties Pfeffer was hoping for and so the study of special partitions seemed to be abandoned. (See [4].)

[^0]Our interest in Buczolich's theorem is from a different point of view. We would like to know how much λ could be improved and in particular, could λ be arbitrarily close to 1 ? We think this question is natural and intriguing from a geometrical point of view. Furthermore if the regularity λ could be shown to be bounded below by 1 , then the same bound may suffice for similar problems involving "symmetrical δ-fine" partitions (where the center of the rectangle, rather than vertices is used), and this may have important ramifications in the theory of uniqueness for trigonometric series.

We therefore did our best to try to improve the λ in Buczolich's theorem. We found that λ could be any number $<\frac{1}{\sqrt{2}}$. In the case where δ is upper semicontinuous, then λ could be exactly $\frac{1}{\sqrt{2}}$. We conjecture that this is the best possible. The reason (as will become apparent in the following proof) is that when two rectangles in the construction are found to overlap, there seems to be an overwhelming need to extend the short side of the larger rectangle to encompass the smaller one. Hence we need to have a rectangle such that both ratios height/width and $2 \cdot$ height/width are between λ and $1 / \lambda$ and that is why $\lambda=\frac{1}{\sqrt{2}}$ is used. Although this value of λ seems natural, we have no idea how to prove it is best possible.

Our main result is as follows.
Theorem 1.2 If $\lambda<\frac{1}{\sqrt{2}}$ and if δ is any gauge, then every rectangle can be properly partitioned.

2. Pink Sets

Let δ be a positive function defined on \mathbb{R}^{2} and let $0<\lambda<1$. We say that an open set G is pink if every rectangle $A \subset G$ has a proper partition. First we show that the union of all pink sets is a dense subset of \mathbb{R}^{2}, and is also pink.

To do this, let $A_{n}=\{(x, y) \mid \delta(x, y) \geq 1 / n\}$ and let $S=\cup_{n=1}^{\infty}\left(\overline{A_{n}}\right)^{0}$ where F^{0} denotes the interior of a set F. By the definition of $\delta, \cup_{n=1}^{\infty} A_{n}=\mathbb{R}^{2}$. Hence by the Baire Category Theorem, S is nonempty. To show that S is pink, let $B \subset S$ be a rectangle. Since B is compact, it is contained in the union of finitely many $\overrightarrow{A_{n}}$. But the $\overline{A_{n}}$ are nested; so there is a single $\overline{A_{n}}$ such that $B \subset{\overline{A_{n}}}^{0}$. Without loss of generality suppose that the diameter of B is smaller than $1 / \mathrm{n}$ and that B has eccentricity bigger than λ. If the center, c, of B is from A_{n}, cut B into four rectangles with a common vertex c. If $c \in \overline{A_{n}} \backslash A_{n}$, then choose $d \in A_{n}$ close enough to c so that the four rectangles that partition B with a common vertex d still have eccentricity bigger than λ. In either case the four rectangles are a δ-fine partition of B. Therefore according to our definition, the open set S is pink. Repeating the argument in any closed interval shows that the pink sets are dense.

Let $P=\cup\{G \mid G$ is pink $\}$. If P were not pink, then there would be a rectangle $B \subset P$ which could not be properly partitioned. Quadrasecting using the center of B yields four smaller rectangles at least one of which can't be properly partitioned. Continuing this process we obtain a sequence of rectangles which cannot be properly partitioned. The sequence converges to a point and hence eventually the tail of the sequence will be inside the open set G that contains that point. This contradicts the fact that G is pink. Therefore P is pink.

Let $C=\mathbb{R}^{2} \backslash P$. Suppose $C \neq \emptyset$. By the Baire Category Theorem there is a rectangle D and an integer n so that $\emptyset \neq C \cap D^{0} \subset \overline{A_{n}}$ and $\operatorname{diam}(D)<1 / n$. We fix such an n. Notice that by the definition of P there is a rectangle $R \subset D$ that can't be properly partitioned. For $\lambda<\frac{1}{\sqrt{2}}$ we will show how to properly partition R contradicting that $C \neq \emptyset$. This means that all of \mathbb{R}^{2} is pink which will finish the proof. For the rest of the article $0<\lambda<\frac{1}{\sqrt{2}}$.

It remains to show that every rectangle $R \subset D$ can be properly partitioned. So, let $R=[a, b] \times[c, d] \subset D$ be given. We show that if $\epsilon(x)=$ $\min \{\delta(a, x), \delta(b, x),(b-a) / 2\}$ and if $c \leq x \leq d$, then for every $0<\epsilon \leq \epsilon(x)$ the rectangle $[a, b] \times[x, x+\epsilon]$ can be properly partitioned. It is easy to see that the one dimensional interval $[c, d]$ can be partitioned into a finite sequence of nonoverlapping intervals, $I_{k} k=1,2, \cdots, m$, of the form $I_{k}=[x, x+\epsilon]$ where $0<\epsilon \leq \epsilon(x)$. This fact is known in the literature as Cousins Lemma. (See [2].) Now let Ψ_{k} denote the collection of nonoverlapping rectangles that properly partition $[a, b] \times I_{k}$. Then the finite collection of $\left\{\Psi_{k}\right\}_{k=1}^{m}$ is a proper partition of R. So to complete the proof it remains to show that $[a, b] \times I_{k}$ can be properly partitioned. Fix k and let Y denote $[a, b] \times I_{k}$.
Remark It is easy to see that every rectangle with pink interior can be properly partitioned. To do this, first put a δ-fine square in each corner. Then, using Cousins lemma, partition each side with δ-fine squares. Then partition the remainder into pink rectangles which then can be properly partitioned.

3. Green Points and Thin Rectangles

Definition 3.1 We say that a rectangle B is thin if
a) At least one left vertex and at least one right vertex have a gauge value $\delta>\sqrt{2} \cdot \operatorname{height}(B)$.
b) $\operatorname{width}(B)>\sqrt{2} \cdot \operatorname{height}(B)$.

Notice that $Y=[a, b] \times I_{k}$ is thin. Call the points from $Y \cap A_{n}$ green. Let $\operatorname{proj}(A)$ denote the projection of the set A onto the interval $[a, b]$. Let $h(x)$
denote the distance from x to the base of Y. If Υ is a collection of sets, let $T_{\Upsilon}=T_{\Upsilon}=\left([a, b] \backslash \operatorname{proj}\left(\cup_{A \in \Upsilon} A\right)\right) \times I_{k}$.

Using $H=\operatorname{height}(Y)$, construct two rectangles in Y at each end of Y with height H and with width $H / \sqrt{2}$. Since Y is thin, the two rectangles are $\frac{1}{\sqrt{2}}$-regular, δ-fine and nonoverlapping. Let Ψ denote the collection of these two rectangles. We establish the following algorithm to inductively define subpartitions of Y. After showing this procedure terminates in finitely many steps, we can produce the desired partition of Y. Before we introduce the algorithm, for a point $x \in Y, R_{l}=R_{l}(x)$ and $R_{r}=R_{r}(x)$ will be two rectangles with:
a) common vertex x,
b) bases on the base of Y.

See Fig 1.

Algorithm Step 0. Find $x \in \overline{T_{\Psi}}$ on the top side of Y such that $\delta(x) \geq$ $H \sqrt{2}$, if possible and construct rectangles $R_{l}(x)$ and $R_{r}(x)$ of dimensions $\frac{H}{\sqrt{2}} \times$ H. Otherwise go to Step 2.
Step 1. Adjoin to Ψ the rectangles $R_{l}(x)$ and $R_{r}(x)$ and go back to Step 0 .
Step 2. Find $x \in \overline{T_{\Psi}}$ on the bottom side of Y such that $\delta(x) \geq H \sqrt{2}$, if possible and construct rectangles $R_{l}(x)$ and $R_{r}(x)$ of dimensions $\lambda H \times H$. Otherwise go to Step 4.
Step 3. Adjoin to Ψ the rectangles $R_{l}(x)$ and $R_{r}(x)$ and go back to Step 2.
Step 4. Set $h=\sup \left\{h(x): x\right.$ in T_{Ψ} is green $\}$. Note that $h \leq H$. Let
$S=\left\{x \in \overline{T_{\Psi}}: \exists\right.$ a sequence $\left\{x_{m}\right\} \subset T_{\Psi} \cap A_{n}$ converging to x and $\left.h(x)=h\right\}$.
If $S=\emptyset$, go to Step 5. Otherwise for each $x \in S$ construct rectangles R_{l} and R_{r} of dimensions $\frac{h}{\sqrt{2}} \times h$. Since $\sup _{x, y \in S}|x-y|$ is finite, we may pick a finite subset, $\left\{x_{1}, \ldots, x_{m}\right\}$, of S so that, for $1 \leq i<j \leq m,\left|x_{i}-x_{j}\right| \geq \frac{h}{\sqrt{2}}$ and $S \subset \cup_{i}\left(R_{l}\left(x_{i}\right) \cup R_{r}\left(x_{i}\right)\right)$. Renumber the sequence, if necessary, from left to right. Note that by the construction there is $0<t<\frac{h}{2}$ such that

$$
\left([a, b] \backslash \operatorname{proj}\left(\cup_{R \in \Psi} R \cup_{i}\left(R_{l}\left(x_{i}\right) \cup R_{r}\left(x_{i}\right)\right)\right)\right) \times[h-t, h]
$$

is pink.
Let W be a component of $\cup_{i}\left(R_{l}\left(x_{i}\right) \cup{ }^{\ell} R_{r}\left(x_{i}\right)\right), u, v$ the upper vertices of W. See Fig 2.

Fig 2.
Observe that W can only intersect $\cup_{\Psi} R$ in $R_{l}\left(x_{j}\right)$ or $R_{r}\left(x_{p}\right)$. Successively pick points $y_{i} \in T \cap A_{n} i=j, \ldots, p$ such that
i) $\left|x_{i}-y_{i}\right|<t$ and if $h<\operatorname{height}(Y)$, then also $\left|x_{i}-y_{i}\right|<\operatorname{height}(Y)-h$,
ii) the rectangle W_{j}, with bottom side $\left[\operatorname{proj}(u), \operatorname{proj}\left(y_{j}\right)\right]$ and with upper right vertex y_{j} has eccentricity strictly between λ and $\frac{1}{2 \lambda}$.
iii) for $j<i \leq p$ the rectangle, W_{i}, with bottom side $\left[\operatorname{proj}\left(y_{i-1}\right), \operatorname{proj}\left(y_{i}\right)\right]$ and with upper right vertex y_{i} is λ-regular
iv) the rectangle W_{p+1}, with bottom side $\left[\operatorname{proj}\left(y_{p}\right), \operatorname{proj}(v)\right]$ and with upper left vertex y_{p} has eccentricity strictly between λ and $\frac{1}{2 \lambda}$.
v) The rectangles (dashed rectangles in Fig 3.) sitting on top of rectangles W_{i}, and with top sides on the top side of W are thin. See Fig 3.

Observe that ii) and iv) are possible since $\lambda<\frac{1}{\sqrt{2}}<\frac{1}{2 \lambda}$. Statement iii) is possible since $\frac{h}{\sqrt{2}} \leq\left|x_{i}-x_{i-1}\right| \leq h \sqrt{2}$ and v) is possible since it suffices to pick y_{i} close enough to x_{i} such that the height of the dashed rectangle is smaller than the gauge of the vertex opposite to y_{i}.

Fig 3.
Note that if there is a $P \in \Psi$ such that $P^{0} \cap W \neq \emptyset$, then either $P^{0} \cap W_{j}^{0} \neq \emptyset$ or $P^{0} \cap W_{p+1}^{0} \neq \emptyset$, and $\operatorname{height}(P)$ is greater than h, and the eccentricity of
P is strictly between λ and $\frac{1}{2 \lambda}$. Adjoin the rectangles W_{j}, \ldots, W_{p+1} to Ψ, set $H=$ the minimum height of rectangles in Ψ, and go to Step 2.
Step 5. If none of the previous steps can be performed, the algorithm is finished.

First we have to show that the algorithm is finite. Suppose not. If H stays bounded away from 0 , then the widths of rectangles in Ψ are also bounded away from 0 . Since intersection of every three rectangles has empty interior, this is impossible. Since H is nonincreasing, H converges to 0 . In this case there is a sequence of green corners converging to a point x on the base of Y which is in $\overline{Y \backslash \cup_{R \in \Psi} R}$. This forces Step 2 in the algorithm to be applied every time after some stage. However when Step 2 is applied the value of H does not decrease, contradicting that $H \rightarrow 0$. Therefore the algorithm is finite.

Some rectangles in the collection Ψ may overlap. But no three rectangles have common overlap, and if two of them do overlap, say $P=J \times I$ and $Q=E \times F$, then both have eccentricities strictly between λ and $\frac{1}{2 \lambda}$. So if P is taller than Q (in which case P was constructed in a stage before Q), simply replace these two rectangles by $(J \cup E) \times I$. The new collection is nonoverlapping λ-regular and δ-fine.

Therefore we partitioned Y into a finite collection of nonoverlapping rectangles such that they are either λ-regular and δ-fine or with pink interior or thin.

The only ones that we still need to consider are those that are thin. See Fig 4. below. (Dashed rectangles are the thin rectangles.) If the top side of a thin rectangle, R, is not on the top side of Y, then the height of the pink region in Y above R is, by i), greater than the height of R. Apply the algorithm to R and let R_{1} be a thin rectangle in the partition of R. Since R_{1} has a green lower vertex, x, we can replace R_{1} with a rectangle of the same width as R_{1} and height $h(x)$ (the distance from x to the base of R). This rectangle is λ-regular and δ-fine and is completely inside Y even though it could extend above R.

Fig 4.

So the remaining case is that of repeated application of the algorithm to a nested sequence of thin rectangles $\left\{R_{k}\right\}$, all having top side on the top side of Y. Let $x \in \cap_{k} R_{k}$. Note that x is on top side of every R_{k}. Then there is a k such that x is a green point. Since x is a green point on the top side of R_{k}, there is a δ-fine $\frac{1}{\sqrt{2}}$ regular rectangle in the partition of R_{k} that contains x which is a contradiction. This completes the proof of the Theorem.

4. Upper Semicontinuous Case

Finally note that if δ is upper semicontinuous, then A_{n} is closed. So for the points y_{i} in Step 4 one can choose $y_{i}=x_{i}$, in which case for $j<i \leq p$ the rectangles W_{i} are $\frac{1}{\sqrt{2}}$-regular, while the eccentricities of W_{j} and W_{p+1} are exactly $\frac{1}{\sqrt{2}}$. So if $\lambda=\frac{1}{\sqrt{2}}$, then if P and Q are two rectangles in Ψ that overlap, then their union is still $\frac{1}{\sqrt{2}}$-regular. Since also in this case the set of thin rectangles from step 4 is empty we have the following theorem:

Theorem 4.1 If δ is a positive upper semicontinuous function defined on \mathbb{R}^{2}, then every rectangle has a $\frac{1}{\sqrt{2}}$-regular δ-fine partition.

References

[1] Z. Buczolich, A general Riemann complete integral in the plane, Acta Math. Hung. 57 (3-4) (1991), 315-323.
[2] P. Cousin, Sur les fonctions de n variables complexes, Acta Math. 19 (1895), 1-61.
[3] W. F. Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295 (1986), 665-685.
[4] W. F. Pfeffer, On the generalized Riemann integral defined by means of special partitions, Real Analysis Exch. 14 No. 2 (1988-89), 506-511.

[^0]: *The second and third authors were supported by NSF.
 Mathematical Reviews subject classification: 26A24, 26B20
 Received by the editors June 26, 1994
 Presented at $17^{\text {th }}$ Summer Symposium in Real Analysis, Macalaster College, St. Paul, Minnesota.

