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 BÔCHER'S THEOREM IN R2 AND
 CARATHÉODORY'S INEQUALITY

 Abstract

 An improved version of the classical Bôcher's theorem in C is proved
 using Carathéodory's inequality and Riesz integral representation of sub-
 harmonic functions.

 1. Introduction

 Bôcher's theorem (see Axler et al [1]) in the complex plane states that if
 u(z) > 0 is harmonic in then u(z) = a log 'z' +v(z), where v(z) is
 harmonic in |z| < 1 and a < 0.

 In this note, we show that this theorem can be proved with only a one-
 sided asymptotic growth condition on u. The tools used for this new proof
 are the Carathéodory's inequality and the Riesz integral representation for
 subharmonic functions. This form of Bôcher's theorem is sharper than the
 ones given in [1].

 2. Bôcher's Theorem in C

 Lemma 1 Let h(z) be harmonic in 'z' > R. Let a > R. Then , in 'z' >
 a, h(z) = f log I z - £| d/i(£) + H(z ), where H(z) is harmonic in C and 'x is a
 signed measure with compact support in K = {z : 'z' = a} U {0}.

 PROOF. Given a continuous function / on 'z' = a, let Daf denote the
 continuous function in M < a such that Daf is harmonic in 'z' < a and
 Daf = f on 'z' = a (See Poisson Integral formula, R. P. Boas [2], page 167).
 Choose a > 0 large, so that h(z) - a log l4 > Dah(z) on 'z' = b, R <
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 b < a. This is always possible since log- < 0 in 'z' < a. Since, on

 'z' = a, Dah(z) = h(z) = h(z) - alog^, by maximum principle for har-
 monic functions, h(z) - a log ^ > Dah(z) in b<'z'< a. Define

 = I k ^ Ín a
 ' Dah(z) H-alog^- in 'z' < a

 Then u(z) is harmonic outside K = {z : 'z' = a} U {0}, u{z) is subharmonic
 in 'z' < a and - u(z) is subharmonic in 'z' > 0. Consequently, by Riesz
 decomposition theorem for subharmonic functions (M. Tsuji [3], p. 48), if
 0 < 6 < a < c, there exists a unique (positive) measure /¿i with support in
 'z' = a such that if 6 < 'z' < c, then -u(z) = v(z) + f log | z - f | d/x i(£) where
 v(z) is harmonic in ò < 'z' < c.

 Note that /logļz - f|d/¿i(£) is subharmonic in C and harmonic outside
 the circle 'z' = a. Also observe that if 6 is the Dirac measure with support
 {0}, then u(z) = Dah(z) - alog|a| + a j'og'z - f| d6(£) for 'z' < b where
 Dah(z) - alogļa| is harmonic in 'z' < a. Set /¿ = a6 - ļx'. Then /x is
 a signed measure with support in K = {z : 'z' = a} U {0} such that in
 C, /log|z - f| dß(£) is well-defined and H(z) = u(z) - fio g'z - £' dfj,(£) is
 harmonic in C. Since u(z) = h(z ) in 'z' > a, the lemma is proved. □
 Note: In the above construction, set /i(C) = f€ d/u = a-fii{z : 'z' = a). Then
 b(z) = /log|z - ^|d/x(Ç) - /x(C) log 'z' is harmonic in 'z' > a; further, since
 b(z) can be written as /K(log 'z - £' - log |z|) dļi(£) where K is the compact
 support of /i and since (log 'z - £| - log 'z') - > 0 as 'z' - > oo and Ç G K, we
 note that b(z) is a harmonic function in 'z' > a tending to 0 at infinity.

 Lemma 2 Let ip(z) = o('z's) when 'z' - > oo be a real-valued function with
 s < 1. Suppose H(z) is a harmonic function in C such that H(z) > <p(z)
 outside a compact set. Then H(z) is a constant.

 Proof. If s < 0, H(z) has a lower bounded outside a compact set and hence
 H(z) is a constant. (This is a version of Liouville's theorem for harmonic
 functions).

 When 0 < s < 1, choose an entire function f(z) in C such that Re f(z) =
 -H(z). Let A(r) = maxļ2ļ=r -H(z). Note that, by hypothesis, for e > 0 there
 exists t such that, -H(z) < p(z ) < e'z's for 'z' > I and hence A(r) < ers if
 r > £. Then by Carathéodory's inequality (R. R Boas [2], page 135),

 'f(rei6)' < |/(0)| + ^~r'A{R) + i/(0)], 0 <r<R.

 Taking R = 2 r, we note that 'f(z)' = o(|^|s) when 'z' - y oo. This implies that
 /(z), and consequently H(z), is a constant. □
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 Theorem 1 Let ip(z) = o('z'~s) when 'z' - ► 0 be a real-valued function with
 s < 1. Suppose u(z) is harmonic in 0 < 'z' < 1 such that u(z) > tp(z). Then
 u(z) = À log 'z' + v(z) where v(z) is harmonic in 'z' < 1.

 PROOF. Let h(z) = u(j=). Then h(z) is harmonic in i*i > i and h(z) ^ <P{') =
 o(|z|s) when 'z' - ► oo. Now, by Lemma 1, h(z) = /log|z - £'dfi(Ç) + H(z)
 in 'z' > a > 1, where H(z) is harmonic in C. Hence, in 'z' > a, h(z)
 is of the form h{z) = /¿(C) log |z| + b(z) + H(z) where b(z) is a harmonic
 function in |z| > o, tending to 0 at infinity. (See the Note following Lemma
 1). Consequently, outside a compact set, H(z) > <p{') - m(C) log 'z' - b(z).
 Let if i (z) = <¿>(|) - /i(C) log 'z' - b(z). Now, when 0 < s < 1, ipi(z ) = o(|z|s)
 since (p( i) = o(|z|5) and log 'z' = o(|j2:|s).

 When s < 0, if we choose any 6 such that 0 < 6 < 1, then ipi(z) = o('z'6)
 since ip{') = o(|z|s) = o('z'6) and log 'z' = o('z'6). Thus, for any value of 5 <
 1, <fi(z) = o('z'a) for some a, 0 < a < 1 and H(z) > <pi(z) outside a compact
 set. Hence, by Lemma 2, H(z) is a constant. Thus, h(z) = /¿(C) log |z|+6(z) +
 a constant and hence in 0 < 'z' < 1, u(z) = h(j) = -/x(C) log |z| + (a
 harmonic function v(z) bounded near 0). Since a bounded harmonic function
 in 0 < 'z' < t extends as a harmonic function in 'z' < t, v(z) is harmonic in
 'z' < 1. (To prove this, one makes use of the Poisson integral formula and
 the maximum principle for harmonic functions). Thus u(z) = A log 'z' 4- v(z ),
 where À = - /x(C). □
 Remark: Now it is important to remark that this theorem gives the best

 possible result. The example of the function u(z) = R e^ which is harmonic
 in 0 < 'z' < 1 and u(z) = 0('z'~l) shows that in the theorem o(ļz|~s) cannot
 even be replaced by 0(|z|~s). This form of Bôcher's theorem is sharper than
 the ones given in Axler et al. ([1], Theorem 3.9 and Exercise 16, p. 58).
 Acknowledgement: We thank the referees for their useful remarks.
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