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 ON THE POINTS OF BILATERAL

 QUASICONTINUITY OF FUNCTIONS

 Abstract

 The set of all bilateral quasicontinuty points of real functions is in-
 vestigated.

 1. Introduction

 A real function / : M - ► M is said to be quasicontinuous (cliquish) at x G M if
 for every neighbourhood U of x and every e > 0 there is a nonempty open set
 G C U such that |/(x) - f(y)' < e for each y e G (| f(y) - f(z)' < e for each
 y, z e G) [10].

 A function / : M - ► M is said to be left (right) hand sided quasicontinuous
 at a point x G M if for every 6 > 0 and for every open neighbourhood V
 of f(x) there exists an open nonempty set W C (x - 6, x) n /_1(VQ (W C
 (x,x + 5) n A function / is bilaterally quasicontinuous at x if it is
 both left and right hand sided quasicontinuous at this point [8].

 Denote by C(f),BQ(f),Q~(f),Q+(f),Q(f) and A(f) the set of all con-
 tinuity, bilateral quasicontinuity, left hand side quasicontinuity, right hand
 side quasicontinuity, quasicontinuity and cliquishness points of a function
 / : IR - > M, respectively. The sets Q{f) and A(f) have been character-
 ized in [9] and the triplet (C(/), Q(/), A(f)) has been characterized in [3], [4]
 and [5] (for a more general domain of /).

 In the present paper we shall characterize the sixtuple (C(/), BQ(f), Q~ (/),
 Q+(/),Q(/),^(/))- It is well-known that C(f) C Q(f) C A(/), C is a
 set, A(f) is closed [9] and A(f) ' C(f) is of the first category [12] (see also [3],
 [4], [5]). From the definition we have

 CU) C BQ(f) = Q-(f ) n Q+(/) c Q-(f) U Q+(f) = Q(f).
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 The letters M, Q and N stand for the set of real, rational and natural
 numbers, respectively. For a subset A of M denote by Cl A and Int A the
 closure and the interior of A , respectively. If A is a subset of R and x G M
 then d(x, A) = inf{|x - a' : a G A}.

 2. Points of Bilateral Quasicontinuity

 Lemma 2.1 Let f : M - > M. Then the set Q(f) ' BQ(f ) is countable.

 Proof. Let x G Q(f) ' Q+(/)- Then there are e(x),<5(x) > 0 such that for
 every nonempty set W C (i,x + i(x)) there exists zw G W with

 I f(zw) - fix) I > 2e(x). (1)

 Let a(x), 6(x), c(x) be rational numbers such that x < c(x) < x + <5(x) and
 /(x) - e(x) < a(x) < /(x) < b(x) < f(x) + e(x) and let 7 r : Q(f) ' Q+{f) -»
 Q x Q x Q be a mapping defined by

 7r(x) = (a(x),6(x),c(x)).

 Suppose that 7r(xi) = 7t(x2) for some Xi,X2 G Q(f) ' Q+(/), x' < x<i. Then
 xi < X2 < c(x2) = c(xi) and /(xi),/(x2) G (a(xi), 6(xi)). This yields X2 G
 (xi,xi + ¿(xi)) and |/(xi) - /(x2)| < ^(xi). Since X2 G Q(f) there exists an
 open nonempty G C (xi,xi + ¿(xi)) such that 'f(t) - /(x2)| < £(x') for each
 t e G. Hence for each t G G we have ' f(t) - f(x i)| < ' f(t) - f(x 2)] + ' f(x2) -
 f(x i)| < 2e(xi)ì a contradiction with (1). Hence the mapping 7r is injective
 and the set Q(/)'Q+(/) is countable. Similarly we can prove that Q{f)'Q~ (/)
 is countable and hence Q(f ) ' BQ(f) = ( Q(f ) ' Q+(f)) U ( Q(f ) ' Q~(f)) is
 countable. □

 By a standard way we can prove

 Lemma 2.2 If f' : M - ► M is left (ńght) hand sided continuous a£ x G M and
 /2 : M - ► M is left (right) hand sided quasicontinuous at x, then /1 + /2 is left
 (right) hand sided quasicontinuous at x.
 If f 1 is continuous at x and /2 is cliquish at x, then /1 + /2 is cliquish at x.

 Theorem 2.3 Let C,D,Di,D2,E,A be subsets o/M. Then C = C(f), D =
 BQ{f), Dl = Q+(/), D2 = Q-(/), £ = Q(/) and A = A(/) /or some
 f : and only if C C D = Di C) D2 C Di U D2 = E C A, C is a G¿
 set, A is closed , A'C is of the first category and E'D is countable.

 Proof. Sufficiency follows from previous remarks and Lemma 2.1.
 Necessity. The set A ' C is a Fa set of the first category, hence by [13] we
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 can write A ' C = U^Li Fni where Fn are closed nowhere dense and pairwise
 disjoint. For each n G N we define gn : M - » M,

 9„(x)={psi"^
 (and gn{x) = 0 for Fn = 0) and put

 oo

 9=Y,9n-
 71= 1

 Then <7 is continuous at each x in C U (M ' A) and for x e Fn, the function
 J2jján9j ÌS continuous at x. Moreover, we have for x € Fn
 limmfg(u) = liminf^(tt) = g(x) - 2~n,
 u-*x~ u->x+

 lim sup g(u) = lim sup g(u) = g(x) -f 2~n.
 u->x~ u->x+

 Let S, T be dense disjoint subsets of M such that S U T = M. Define
 h : M - ► M by

 i / ' f dix, A), if x e S,
 Ä(l) i / ' = '0, if x e T.

 Then h is continuous at each x e A.

 Since E ' D is a countable set, the sets D' ' D2 and D2 ' Di are countable
 disjoint sets. Let Di'D2 = {ai,a2, . . . ,a„, . . .}, D2'Di = {&i, b2, • • . , bn, . . .}
 (one-to-one sequences). For each n G N define fcn,mn : M - ► M by

 Ł ^ = J 2~n> if 1 ^ «n.
 ' ' 0, otherwise;

 /_<* _ / 2_n> if x ^ 6n,
 ' _ ļ 0, otherwise;

 and put
 oo oo

 k = y^ kn, m - Y, mn.
 n= 1 n=l

 Then k is continuous at each point different from an and m is continuous at
 each point different from bn. Moreover, k is right hand sided continuous and
 m is left hand sided continuous.

 Now define p : M - ► M as follows

 {0, 2_n, 2~n+1, if if ifxeFn'£. x x £ e C Fn U n (M £, ' -A),
 2_n, if x e Fn n £,
 2~n+1, ifxeFn'£.
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 Since p(y ) < 2~n+1 for each y G M ' (Fi U Fi U ... U Fn), so p is continuous
 at each point in C U (M ' A).
 Finally, define / : R - ► M by

 f = g + h + k + m + p.

 We shall show that / is our function.

 1. Let X G R'A. For each nonempty open G C (x - ¿d(x, A)ìx-'-^d(xì A))
 we have diam(ft(G)) > ^d(x, A) and therefore ft is not cliquish at x. Since the
 functions p, k , ra, ý are continuous at x, by Lemma 2.2 we deduce

 R'AcM'A(f). (2)

 2. Let x e C. Then all functions p, fc, ra, ft, g are continuous at x and hence

 c c C(/). (3)

 3. Let x € E'C. Then x e Fnn E for some n e N. Let e, 6 > 0. Let i G N
 be such that 2~x < |. Since lim sup gn(u) = 2 ~n, there is w G (x,x 4- 5) such

 u- »-X+

 that max{0, 2~n - f } < <7n(w) < 2~n = p(x). Then w £ Fn and hence there is
 an open neighbourhood H of w such that | gn(w) - 9n(y) I < f for each y E H.
 Now G = ířn(x,x+<5)'(i<iU. . .U Fi) is an open nonempty subset of (x,x4-<5).
 Let y G G. Then 0 < p(y) < 2~* and hence | p(y) 4- gn(y) - p(x) - gn(x) | <
 'p(y)' + '9n(y)-9n(w)' + 'gn(w)-p(x)' + 'gn(x)' <f + f + f+0 = e. Therefore
 gn + p is right hand sided quasicontinuous at x. Similarly we can prove that
 gn 4- p is left hand sided quasicontinuous at x.
 Now, if x G D' ' C, then ra, ft, gj and k are right hand sided con-

 tinuous at x and gn 4- p is right hand sided quasicontinuous at x. Hence by
 Lemma 2.2 we have

 A'cca+(/). (4)

 If x G £>2 ' G, then fc, ft, ^2j^ngj and ra are left hand sided continuous at
 x and <7n 4- p is left hand sided quasicontinuous at x and hence

 D2'CcQ~(f). (5)

 4. Let x e A ' E. Then x € Fn' E for some n G N. Let e, 5 > 0.
 Let ¿ G N be such that 2~z < |. By the definition of gn , there is an open
 nonempty set H C (x - <5, x 4- <5) such that 'gn(y)' < f for each y e H.
 Now G = H ' (Fi U ... U Fi) is an open nonempty subset of (x - <5, x 4- 6)
 and for each y e G we have 0 < p(y) < 2 Hence for y,z € G we have
 |pn(y) +p(y) -Sn(z) -p(z)l < ISn(y)| + |p(y)l + ISn(z)| + 'p(z)' < £. Therefore
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 gn + p is cliquish at x. Since ft, fc, ra, 9j are continuous at x, by Lemma
 2.2 we have

 A'EcA{f). (6)

 Now let a be such that 2~n < a < 2~n+1. Let G be an arbitrary nonempty
 open set. Then there is y e G such that p(y) = 0 (because A ' C is of
 the first category) and hence gn{y) + p(y) < 2~n < a. The set (a, oo) is a
 neighbourhood of p(x) = 2~"n+1 and ( gn + p)(y) £ (a, oo), thus gn +p is not
 quasicontinuous at x. Since the functions k , ra, ft, gj are continuous at
 x, by Lemma 2.2 we deduce

 A'EcR'Q(f). (7)

 5. Let x e D'C. Then x e Fn fi E for some n € N. Since liminfp(u) = 0
 u-*x

 and liminf g{u) = g(x) - 2~n so liminf(p + <7)(it) = g(x) -2~n ^ g(x) + 2~n =
 'U - u-*x

 ( 9 + P)(x) an(l 9 + p i s n°t continuous at x. Since k , ra, ft are continuous at x
 we have

 D'CcU'C{f). (8)

 6. Let x e fli ' 02. Then there are n, i e N such that x = o¿ G Fn fi E.
 Let a be such that 2~n < a < 2~n 4- 2~' Let G C (-oo,x) be an arbitrary
 nonempty open set. Then there is y e G with p(y) = 0. The interval (a, oo)
 is a neighbourhood of (fc¿ + p + gn)(x) = 2~r + 2~n and (fc¿ + p + gn)(y) <
 2~n < a, hence H- gn is not left hand sided quasicontinuous at x. Since

 9j an<^ kj are continuous at x, by Lemma 2.2 we have

 D1'D2cm'Q-(f). (9)

 Similarly we can prove
 D2'D1 Cl'Q+(/). (10)

 Combining (3), (7), (8), (9), (10) and (2) we get C = C(f).
 Combining (3), (4), (5), (9), (10), (7) and (2) we get D = BQ(f).
 Combining (3), (4), (10), (7) and (2) we obtain D' = Q+(/).
 Combining (3), (5), (9), (7) and (2) we obtain Di = Q~(f).
 The conditions (3), (4), (5), (7) and (2) imply E = Q{f).
 Finally, (3), (2), (6), (4) and (5) imply A = A(f). □

 If we put Di = D and D<¿ = E we obtain

 Corollary 2.4 Let C,D,E and A be subsets o/M. Then C = C(f), D =
 BQ(f), E = Q(f ) and A = A(f) for some f : M - ► M if and only if
 C C D C E C A, C is a G$ set , A is closed , A'C is of the first category and
 E'D is countable.
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 We recall that a set A is quasiopen (by some authors semi-open) if A C
 Cl Int A [11].

 Theorem 2.5 Let D be a subset of reals. Then the following conditions are
 equivalent:

 (a) There is f : M - ► M such that D = BQ(f).

 (b) There is f : M - > M such that D = Q(f).

 (c) The set CI D'D is of the first category .

 (d) The set Int Cl D' D is of the first category .

 (e) There are a Gs set C and a closed set A such that A'C is of the first
 category and C C D C A.

 oo

 (f) There is a decreasing sequence {Wn} of open sets such that fļ Wn C
 71=1

 OO

 flcfi Ciwn.
 n= 1

 oo

 (g) There is a sequence {Dn} of quasiopen sets such that D = f] Dn.
 71=1

 Proof.

 (a)=Ke): We put C = C(f) and A = A(f).
 (e)=>(c): We have Cl D ' D C A ' C.
 (c)=Kd): We have Int Cl D ' D C Cl D ' D.
 (d)=>(b): It follows from Theorem 3 in [9].
 (b)=>(f): It follows from Theorem 1 in [5].

 OO

 (f)=>(g): We put Dn = Wn U D. Then we have D = f] Dn. Further,
 71=1

 Wn c Dn implies Cl Wn C Cl Int Dn and hence Dn = Wn U D C Cl Wn C
 Cl Int Dni thus the sets Dn are quasiopen.

 OO OO

 (g)=>(a). Put C - f| E = D, A = fļ Cl Int Dn. Then we
 71=1 71=1

 have C C D C E, C is a set and A is a closed set. Since A ' C C
 oo

 |J (Cl Int Dn ' Int Dn)y the set A ' C is of the first category. Finally, since
 71=1

 Dn C Cl Int Dn , we have D = E = f] Dn C fļ Cl Int Dn = A. Now we
 71=1 71=1

 apply Corollary 2.4. □
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 3. Limits

 If T is a family of functions / : M - » R, then B{T), U (J7) and D(!F) denote the
 collection of all pointwise, uniform and quasiuniform limits of sequences taken
 from T , respectively. Recall that a sequence {/n}, fn : M - ► M, quasiuniformly
 converges to / : M - » M [14;p.l43] if the sequence {/n} pointwise converges to
 / and Ve > 0 Vra € N 3p e N Vx € M min{|/m+i(x) - /(x)|, . . . , | fm+p{x) -
 /(x)|} < e.

 Denote by Q, BQ and /C the family of all quasicontinuous, bilaterally
 quasicontinuous and cliquish functions / : M - ► M, respectively. It is well-
 known that U(Q) = Q and U(JC) = K, [10], B(Q) = /C and B(IC) is the family
 of all functions with the Baire property [7] and D()C) = /C [2] . A standard
 proof shows that the uniform limit of a sequence of bilaterally quasicontinuous
 functions is bilaterally quasicontinuous. In [6] it is shown that every cliquish
 / : M - y M is the quasiuniform limit of a sequence of Darboux quasicontinuous
 functions. From previous remarks and Lemma 3.2 we obtain

 Theorem 3.1 We have U(BQ) = BQ, D(BQ) = B(BQ) = K.

 Lemma 3.2 Let f : M - » M be Darboux and quasicontinuous. Then it is
 bilaterally quasicontinuous.

 Proof. Let x e M, e, 6 > 0. If f(y) = f(x) for each y e (x,x + 6), then
 evidently / is right hand sided quasicontinuous at x. Let f(y) ^ /(x) for some
 ye (x,x + ¿) and let e.g. /(x) < f(y). If a e (/(x),min{/(2/),/(x)+e}), then
 there is z € (x, y) with f(z) = a. Now there is an open nonempty G C (x, y)
 such that f{G) C (/(x),/(x) +£)), thus / is right hand sided quasicontinuous
 at x. □

 Remark 3.1 The converse of Lemma 3.2 is not true. Let C be the Cantor
 set. We can arrange the set of all complementary intervals in [0, 1] in a one-
 to-one sequence {In} such that the sets U^Li -^2 n o,nd U^=i^2n-i are dense
 in C. Now the function f : M - > M defined by f(x) = 1 for x G U^Li ^ ^2 n
 and f(x) =0 otherwise , is bilaterally quasicontinuous but not Darboux.

 However , if f is in Baire class 1, then f is Darboux and quasicontinuous
 if and only if it is bilaterally quasicontinuous. In fact , if f is bilaterally quasi-
 continuous then it has the Young property (i.e. for each x there exist sequences
 xn t x and yn ļ x such that f(x) = lim f(xn) = lim f(yn ) ) and hence by

 71- >00 71- >00

 [l;p.9] it is Darboux.
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