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 A FIRST RETURN CHARACTERIZATION

 FOR BAIRE ONE FUNCTIONS

 Abstract

 A new characterization of the class of Baire 1 functions is given in
 terms of the notion of first return recoverability.

 In a previous paper [0] by the present authors, a first return characteriza-
 tion was given for the class of Darboux Baire 1 functions utilizing the notion
 of first return continuity. In this paper we broaden the concept of first return
 continuity to first return recoverability to give a characterization of the class
 of Baire 1 functions. The functions considered here are real- valued and defined

 on [0,1]. However, the characterization actually holds for Baire 1 functions
 / : X - ► y, where X is a compact metric space and F is a separable metric
 space [0]. The proof presented here for the special case utilizes the ordering
 properties of the line and, consequently, is markedly simpler than the proof
 for the general theorem. We begin by defining our terminology.

 By a trajectory we mean any sequence {xn}^0 of distinct points in [0, 1],
 which is dense in [0,1]. Let {xn} be a fixed trajectory and let y E [0,1].
 We define what we shall mean by the first return route to y based on the
 trajectory {xn}. If p > 0, we use Bp(y) to denote {x G [0, 1] : | x - y' < p}.
 We let r ( Bp(y )) denote the first element of the trajectory in Bp(y). The first
 return route to y , 1Zy = {yk}kLi, is defined recursively via

 3/1 = zo,

 - J r(ßlj/-l*|(f)) ifj/T^fc
 yk+1-'yk - if y = yk.
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 We say that / : [0, 1] - ► M is first return recoverable with respect to {xn}
 provided that for each y G [0, 1] we have

 k-> Jim f(yk) = f(y), k-> oo

 and that / is first return recoverable if there exists a trajectory {xn} such that
 / is first return recoverable with respect to {xn}.

 Theorem 1 A function f : [0, 1] - ► M is first return recoverable if and only if
 it is of Baire class one .

 Proof. Suppose that / is a Baire 1 function. Without loss of generality we
 may assume that / is bounded. For otherwise, we take arctan(/) and obtain
 a trajectory {xn} so that arctan(/) is first return recoverable with respect to
 {xn}. Then, it is an easy matter to verify that / is first return recoverable
 with respect to {xn} as well.

 Since / is of Baire class one, the set of points of discontinuity of / is a first
 category Ta set. Enlarge this set to a first category Ta set F which is dense in
 [0, 1]. Since / is bounded and of Baire class one, we may find, using techniques
 of Kuratowski, a sequence of Baire class one characteristic functions {hj} and a

 oo

 sequence of real numbers {üj} such that the series ūjhj converges uniformly
 j=i

 to f on [0, 1]. (See Theorem 3, p. 388 in [0].) For each j we let M¡ = h~l{ï),
 i = 0,1.

 We are going to define a collection of closed sets

 Ģ = {Gv : v is a finite sequence of natural numbers.}

 (We shall denote the length of such a finite sequence, v, of natural numbers
 by 'v'. We denote the term of v by v(k), and if v has length at least n,
 we let v'n denote the truncated sequence {z/(l), i/(2), . . . , ^(n)}. If r = i/'n for
 some n, then we say that v is an extension of r. Finally, if 'u' = n and i is a
 natural number, we let vi denote the sequence {i/(l), i/(2), . . . ,i/(n),¿}.) We
 shall inductively define our collection so that

 1) Each G u is a closed set.

 2) For each natural number n, U|i/|=n ^ = F-

 3) If v ± T, and neither is an extension of the other, then Gv D Gr - 0,

 4) If r is an extension of i/, then Gr Ç G v.
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 5) For each n, if 'i/' = n, then hj is constant on Gv for j = 1, 2, . . . , n.

 We induct on the length of v' Using the well known fact that a first
 category subset of the line can be written as a countable union of disjoint
 closed sets, we first express Mq flFasa countable union of disjoint closed
 sets, and similarly express M' H F as a countable union of disjoint closed sets.
 We combine these two collections into one collection of disjoint closed sets and
 enumerate it as {G*}?^. (Without loss of generality we shall assume that
 Gi 0.) Note that conditions 1) - 5) hold for n = 1.

 Next, assume that Gu has been defined for all v of length at most fc and
 that l)-5) are satisfied for n = fc. Fix a v of length fc. Since both Mq +1 n Gv
 and M*+1nG„ are first category Ta sets, we may express each as a countable
 union of disjoint closed sets. We combine these two collections to form the
 collection {G^} Doing this for each v of length fc, we obtain the collection
 {Gr}, where each r has length fc-f 1. It is a straightforward matter to see that
 l)-5) are valid for n = k + 1. In this manner we have completed the definition
 of the collection Q. Throughout the following, we let Qk = {Gv : 'v' < fc and
 each term of v is at most fc}.

 Next, we select the required trajectory {xn} from points in F . We shall
 do this inductively by stages, selecting a natural number rik at the fc ^ stage,
 partitioning [0,1] into intervals of length l/2nfc, then selecting and ordering
 some points from F in some of these intervals. At the end of the k^1 stage, we

 want {xz}£fc0, the trajectory defined up to this point, to satisfy the following
 properties:

 i) If X e Gv G Qk, then the nearest point of {xi}]^0 to x is in GUi and

 ii) If x £ Gi, £ Qk- 1, xi is in the first return route to x , and rrik-i < I < rrik ,
 then xi e G v.

 At the first stage (fc = 1), we set ri' = 1 and partition [0, 1] into two intervals
 of length 1/2. If G' n [0,1/2] ^ 0, we select both the maximum and the
 minimum of this intersection. Similarly, if G' fl [1/2,1] ^ 0, then we select
 maximum and the minimum of this intersection. Thus, we have selected at
 least one and at most four distinct points, which we label from left to right as
 xo, xi, . . . , xmi . Note that both conditions i) and ii) are satisfied at this stage.

 Assume that stage fc has been completed, that the points xo,xi, . . . ,xmfc
 have been specified and conditions i) and ii) are satisfied at this stage. Choose
 rifc+i > rik so large that

 a) Each partition interval of length l/2nfc+1 contains at most one of the
 points x0, xi, . . . , Xmk , and
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 b) For each 1 < Z < fc + 1, each partition interval of length l/2nfc+1 contains
 points from at most one of {Gv e Gk+i • M = Z}.

 We describe how to select the points to be added to the trajectory at this
 stage and then we shall explain how to order these newly selected points.

 Look at any partition interval of length l/2nfc+1 which intersects 'J{GU :
 Gv G Gk+ 1}- Fix this interval. First, note that if both Gu and Gr intersect
 this interval, then either r is an extension of v or v is an extension of r. Let
 Gv be the unique element of Gk+i having the longest v such that Gv intersects
 this interval. Say 'v' = ra, and note that m < k -f 1. Select the maximum and
 minimum of Gv in this interval, and do the same for Gv |m_1 , Gv |m_2 , . . . , G .
 Now, repeat this for each interval in the partition. If a partition interval misses
 (J {G„ : Gv G Gk+i}, we don't select any points from that interval at this stage.

 We have now selected all the points which we wish to add to the trajectory
 at this stage, and have yet to describe how to order these points, or rather
 those which have not already appeared in the trajectory construction. We first
 define an ordering on the i/'s for which Gu 6 Gk+i • For each j < k order the
 i/s of length j whose terms involve only 1, 2, . . . , k in any manner as

 v{<i4<...<Ą.
 Also, arbitrarily order those i/s for which Gv € Gk+i and which either are of
 length k + 1 or have fc 4- 1 as one of their terms as

 vi < i/2 < ... <

 Our ordering scheme on the i/'s for which Gv e Gk+i is then

 Vl <V2 <...<!/£<

 < l/f-1 < I/*"1 < . . . < <

 < Ą ~2 < V%~2 < . . . < <

 <u'<u'<...< Ą<
 < Vi < v2 < ... < vik+1.

 Now add the points selected at this stage fc + 1 to the trajectory in the
 following order. First look at the newly selected points of Gvk and order them
 from left to right and label them as xn's beginning with xmfc+ 1. Then look
 at the newly selected points of Gvk and order them from left to right, etc.,
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 continuing to follow the ordering of the i/'s shown above. (Keep in mind that
 a point only gets listed in the trajectory once.)

 Let us now show that conditions i) and ii) are satisfied at the end of stage
 k- hi. To show that condition i) holds, assume that x G Gr G Gk+i • If x = xi
 for some I < rrik+i then we are done. If not, let J be the interval containing
 x of length l/2nfc+1 from the partition considered at stage k + 1. Let G„ be
 the unique element of Qk+i having the longest v which intersects J. Note that
 v is an extension of r. Let 'u' = m. Since the only points of J we pick are
 the max and min of J intersected with each of GI/,GI/ļm_1,GI/ļm_2,...,GI,ļ1
 and the sequence {Gu, G„|m_2, . . . , G is monotonically increasing,
 we have that i) holds.

 To show that condition ii) holds, assume that x e Gr € Gk> If x = x¡ for
 some 1 < I < m*; then we are done. If that is not the case, let I be the interval
 of length 1 /2nfc of the partition considered at stage k which contains x and the
 nearest element of 1ZX restricted to {x/}[^fc0. Let Gu be the unique element of
 Qk having the longest v which intersects I. Note that v is an extension of r.
 At stage k + 1, interval I is subdivided into a finite collection Tí of intervals
 of length l/2nfc+1. Suppose ļl is such that GM G Qk+i and Gß intersects some
 J E Tí. Then, the points picked at stage k + 1 from J are either in Gr or
 they are labeled after the nearest point to x is labeled. Thus, condition ii) is
 satisfied.

 This completes the construction of the trajectory {xn}. (That {xn} is
 dense in [0, 1] follows from the fact that F is dense there.)

 Now we must show that / is first return recoverable with respect to {xn}.
 Clearly, the only points in doubt are those in F ' {xn}. Let x be such a point
 and let e > 0. Choose N so large that

 j= 1

 for all t G [0,1]. Let 1ZX denote the first return route to x based on the
 trajectory {xn}. Let v be that unique sequence of length N such that x G Gv.
 Let

 M = ma x{N, i/(l), i/( 2), . . . , v{N)}.

 Let te 7£x be such that t is added to the trajectory at stage M -h 1 or later.
 By properties i) and ii) it follows that t G G„ as well. Since each of hi is
 constant on Gv for all i = 1, 2, ... , iV, we have that

 hi(t) = hi(x) for all i = 1, 2, . . . , N.
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 Thus for all such t G Tlx we have

 N N

 I f(x) - f{t) I < + I + I = e,
 ¿=1 i- 1

 completing the proof for one direction of the theorem.
 The proof for the other direction is much shorter and more straightforward,

 even in the general situation considered in [0]. Thus, we do not repeat the
 argument here.
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