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 THE LATTICE GENERATED

 BY DERIVATIVES

 Abstract

 In [4] Z. Grande asked, "What is the smallest lattice of functions
 containing all derivatives?" In this paper I prove that the answer is the
 family of all Baire one functions and that this family is the smallest
 lattice of functions containing all non-degenerate derivatives. Moreover
 it is proved that the lattice generated by bounded (non-degenerate)
 derivatives is the family of all bounded Baire one functions.

 First we need some notation. The real line (-00,00) is denoted by M
 and the set of positive integers by N. Throughout this article m is a fixed
 positive integer. The word function means mapping from Mm into M un-
 less otherwise explicitly stated. The words measure , summable etc. refer to
 Lebesgue measure and integral in Mm. We denote by a V 6 (a A 6) the larger
 (the smaller) of the real numbers a and 6. The Euclidean metric in Mm will
 be denoted by g. For every set A C Mm, let diamA be its diameter (i.e.,
 diam A = sup{^(x, y) : x,y G A}), xa its characteristic function and 'A' its
 outer Lebesgue measure. The symbol fA f will always mean the Lebesgue
 integral. We say that / is a Baire one function if it is a pointwise limit of
 some sequence of continuous functions. For any function / we write ||/|| for
 sup{|/(í)l : t €

 The word interval (resp. cube) will always mean a non-degenerate compact
 interval (resp. cube) in Mm, i.e., the Cartesian product of m non-degenerate
 compact intervals (resp. compact intervals of equal length) in M. By an interval
 function we mean a mapping from the family of all intervals into M.

 We say that the intervals J, J are contiguous if they do not overlap (i.e.,
 I fi J is not a non-degenerate interval) and I U J is an interval. We say that
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 an interval function F is additive if F(IöJ) = F(I) + F(J) whenever I and J
 are contiguous intervals.

 We say that a sequence of intervals { Jn : n G N} is o-convergent to a point
 X G Mm if

 1. X G n£°=1Jn,

 2. lim diam In = 0,
 TL - »OO

 0 (diam/„)m
 3. 0 lim sup

 n- ► oo I I

 We will write /n x. (Cf., e.g., [4].)
 Let F be an arbitrary interval function and x G Mm. We define

 olim sup F(I) = sup < lim sup F(In) : In x k
 /=M ^ n- >oo ^

 Similarly we define

 o-liminf F (I) = inf (liminf F(In) : In =4- x). I=>X I TI-+OQ J

 If the two limits above coincide, we denote their value by olim F (I).
 I - řX

 We say that the function / is an o derivative if there exists an additive
 interval function F (called the primitive of /) such that for each x e Mm

 "ii? Tj? = /w '

 Recall that oderivatives are Baire one functions. (Cf. [4, Lemma 2.1, p. 151]
 and [4, Lemma 3.1].)

 We say that x 6 Mm is an o-Lebesgue point of the function, /, if / is locally
 J ' f - f(x) I

 summable at x and olim - - -

 I^x |J|
 function if each x G is an oLebesgue point of /.

 We say that x G Mm is an o- dispersion point of a set A C Mm if

 i- I^n/I n olim i- - - - = n 0.
 I+x |J|

 We say that A is d0-open if each x G A is an odispersion point of Mm ' A.
 The family of all d0-open sets forms a topology on Mm; the so-called o-density
 topology (cf. [4]). The terms "d0-c/osecř", " d0-interior " (cZ0-int) etc. will refer
 to this topology. We say that the function / is o- approximately continuous if
 it is continuous with respect to this topology. Recall that:
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 • for every measurable set A C Mm, 'A ' d0- int A' = 0,

 • each o-Lebesgue function is both an o-approximately continuous function
 and an oderivative,

 • each bounded o-approximately continuous function is an o-Lebesgue
 function.

 We say that the function / is o-non-degenerate at a point x € Mm if x is
 an o-dispersion point of the pre-image of the set ( f(x ) - e, f(x) +e) by / for
 no e > 0. We say that / is o-non-degenerate if it is o-non-degenerate at each
 point x € Mm.

 We will need a few lemmas. The first one is the well-known Lusin-Menchoff

 property of the o-density topology (cf. [4]).

 Lemma 1 Given a measurable set B and a closed set A C d0-int B , we can
 find an o-approximately continuous function g such that 0 < g < 1 on Mm,
 g = 1 on A and g = 0 off of B.

 The next three lemmas are proved in [4].

 Lemma 2 Assume that a sequence of pairwis e disjoint sets {Hn : n G N}, a
 sequence of o-approximately continuous functions {hn : n e N} and c e (0, 1]
 satisfy the following conditions:

 i) hn(x) = 0 if x & Hn , n e N,

 ii) '{x e Hn: hn(x) = 0} I > C' 'Hn', neN,

 Hi) for every x £ U ^=1Hn and every r > 0 there exists a cube I 3 x such
 that diami < r and for each n G N either 'Hn fi I' = 0 or Hn C I ,

 iv) for each j G N and each x 6 Hj there is a p > j such that for each
 n> p, diamHn < [ß(x, Hn)]2 .

 Set h = i ^n- Then h is o-non-degenerate.
 [4, Lemma 4]

 Lemma 3 The sum of an o-approximately continuous function with an o-non-
 degenerate function is o-non-degenerate.
 [4, Lemma 5]

 Lemma 4 Whenever u is a Baire one function there exist a Baire one func-
 tion v , a sequence of pairwise disjoint , compact sets {Hn : n e N} and a
 sequence {cn} of non-negative real numbers such that the following conditions
 are satisfied:
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 i) u - v is an o-Lebesgue function ,

 ii) v is o- approximately continuous at all points of U^jJïn,

 iii) v(x) = 0 if X G Hn ' d0-int Hn for some ne N,

 *») M < E~=lCn -XHn,

 v) °n ' XHn is a Baire one function,

 vi) v is bounded provided that u is bounded,

 vii) for every x £ U^=lHn and every r > 0 there exists a cube I 3 x such
 that diami < r and for each n G N either Hn fl / = 0 or Hn C I,

 viii) for each j G N and each x e Hj there is a p > j such that for each
 n > p, diam Hn < [ ß{x,Hn )]2.

 [4, Lemma 10]

 Finally we will use a part of Proposition 3 of [4].

 Lemma 5 Let {Hn : n e N} be a sequence of pairwise disjoint compact
 subsets of Mm and let {Kn} be a sequence of non-negative numbers such that
 the function Kn ' XHn is a Baire one function. Then there is a sequence
 {^n} of positive numbers satisfying the following condition:

 (•) for every sequence of functions {fn : n G N} if for each n G N

 i) fn is an o-deñvative,

 ii) fn(x) = 0 if x & Hn,

 Hi) ''fn'' < Kn,

 iv) ' flfn' < £n for every interval I,

 then the function f = fn is an o-derivative.

 The main tool will be the following lemma.

 Lemma 6 Let A C Mm be non-empty, bounded and measurable. Suppose v is
 a function such thatv-'A is o- approximately continuous and || v-X-A II = c < oo,
 and suppose e > 0. Then there exist o-approximately continuous functions fi,
 Î2, /3 and /4 such that

 (*) v-XA = (/IA /2) V (/3 A /4)

 and for j G {1,2,3,4}
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 i) fj(x) = 0 if X £ A,

 ii) II /ill < 12c,

 iii) |{s€í4: fj(x)=0}' >'A'/U,

 iv) 'fjfj' < £ for every interval I.

 PROOF. Write A as the union A = u£=1/4n of measurable, pairwise disjoint,
 non-empty sets of diameter less than

 £

 24m • (1 V c) • (1 V diam A)m_1 '

 For n G {1, . . . , k} express the set An as the union An = Uj=1An¿ of mea-
 surable, pairwise disjoint, non-empty sets of equal measure. For j G {1, 2, 3, 4}
 find closed, disjoint sets Arj.i, An,j,2 C d0-int An¿ such that | An ¿,l' > l^n,j|/3
 (Z G {1, 2}) . Use Lemma 1 to find an o- approximately continuous function
 such that

 • tl>ntj(x) = 1 if X G Anjì2 ,

 • = 0 if X Anj or X G Afi^j^ i,

 • 0 < ipnj < 1 on Mm.

 Construct also an o-approximately continuous function <pj such that

 • <Pj(x) = 0 if X e

 • <Pj(x) = 1 if X Ć U n=1Anj,

 • 0 < tpj < 1 on Mm.

 For n G {1, . . . , k} and j G {1, 2, 3, 4} set

 [a (v • tPj) 1
 , 1 if 'An' > 0

 7n,j - JAn ýnj ,
 0 otherwise.

 Define fj = v-XA' Vj ~ EÍU i 7n,¿ * ýnj- Then clearly /i, /2, /3, /4 are
 approximately continuous and condition i) holds. Observe that for each x G A,
 fj(x) ^ v(x) for at most one j G {1, 2, 3, 4}. So (*) is satisfied.

 For n G {1, . . . , k} if 'An' > 0, then |7n¿| < ° ^ c Thus
 l^n,j,2|

 condition ii) is fulfilled. Next observe that for j G {1,2,3,4} we have that
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 {xe A : fj(x) = O } D u£=1AnJłi and 'AnJA' > 'An'/l2 for n G {1, . . . , k}.
 Hence iii) holds. Let I be an arbitrary interval. Let B denote the union of
 those An for which An ' I ^ 0. Observe that

 'B n I' < 2 m • max {diam An : n G {1, ... , fc}} • (diam A)m_1 < ^ ^ ^ .

 So for j G {1,2,3,4}

 k I I

 'ÍM ]Ji 1 = 'Í U ¿NÉ 1 I/ J M 1 + 'f I M- I I J f ■ ]Ji 1 U ahi 1 n=i J An 1 'JuAri'IjíÇ>Anm I J boi

 (We used that fA fj = 0 for n G {1, . . . , fc}). This proves iv). □

 Theorem 7 For each Baire one function u : Km - » K there are o-non-degen-
 erate o-derivatives /1, /2, /3, /4 : - ► M that u = (fi A /2) V (/3 A /4).
 Moreover if u is bounded , i/ien ¿Zie o-derivatives fi, /2, /3, /4 can also be
 chosen to be bounded.

 Proof. Let the function v, the sequence of compact sets {ifn : n e N} and
 the sequence of non- negative real numbers {cn} be as in Lemma 4. Apply
 Lemma 5 with Kn = 12cn (n G N) and find a sequence of positive numbers
 {£n} satisfying the conditions of this lemma. For each n G N use Lemma 6 with
 A = Hn and e = £n, to get ^approximately continuous functions /n> 1, /n> 2,
 /n>3 and /ni4 fulfilling its conclusions. (Conditions ii) and iii) of Lemma 4

 imply the o-approximate continuity of v • XHn') Set fj = (j €
 {1,2,3,4}). By condition (•) of Lemma 5 we get that /1, /2, /3 and /4 are
 o-derivatives.

 For j G {1, 2, 3, 4} use Lemma 2 for the family {/nj : n G N} to prove that

 fj is o-non-degenerate. (The assumptions of this lemma follow by conditions
 i) and iii) of Lemma 6 and conditions vii) and viii) of Lemma 4.) Since u - v
 is o- approximately continuous and fj is o-non-degenerate, fj = (u - v) + fj is
 o-non-degenerate. (Also cf. Lemma 3). Clearly by condition (*) of Lemma 6,

 u = (u - v) + v = (it - v) + [(/1 A /2) V (f3 A £)] = (/1 A /2) V (/3 A /4).

 If u is bounded, we can choose the function v to be bounded. Then for each
 j G {1,2,3,4} the functions from the family {fnj : n G N} have a common
 bound. So fj and fj are bounded, which completes the proof. □
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