Real Analysis Exchange Vol. 19(2), 1993/94, pp. 471-477

Aleksander Maliszewski, Mathematics Department, Pedagogical University, ul. Chodkiewicza 30, 85–064 Bydgoszcz, Poland e-mail: wspb05@pltumk11.bitnet

THE LATTICE GENERATED BY DERIVATIVES

Abstract

In [4] Z. Grande asked, "What is the smallest lattice of functions containing all derivatives?" In this paper I prove that the answer is the family of all Baire one functions and that this family is the smallest lattice of functions containing all non-degenerate derivatives. Moreover it is proved that the lattice generated by bounded (non-degenerate) derivatives is the family of all bounded Baire one functions.

First we need some notation. The real line $(-\infty, \infty)$ is denoted by \mathbb{R} and the set of positive integers by N. Throughout this article m is a fixed positive integer. The word function means mapping from \mathbb{R}^m into \mathbb{R} unless otherwise explicitly stated. The words measure, summable etc. refer to Lebesgue measure and integral in \mathbb{R}^m . We denote by $a \vee b$ $(a \wedge b)$ the larger (the smaller) of the real numbers a and b. The Euclidean metric in \mathbb{R}^m will be denoted by ϱ . For every set $A \subset \mathbb{R}^m$, let diam A be its diameter (i.e., diam $A = \sup \{\varrho(x, y) : x, y \in A\}$), χ_A its characteristic function and |A| its outer Lebesgue measure. The symbol $\int_A f$ will always mean the Lebesgue integral. We say that f is a Baire one function if it is a pointwise limit of some sequence of continuous functions. For any function f we write ||f|| for $\sup \{|f(t)| : t \in \mathbb{R}^m\}$.

The word *interval* (resp. *cube*) will always mean a non-degenerate compact interval (resp. cube) in \mathbb{R}^m , i.e., the Cartesian product of m non-degenerate compact intervals (resp. compact intervals of equal length) in \mathbb{R} . By an *interval function* we mean a mapping from the family of all intervals into \mathbb{R} .

We say that the intervals I, J are *contiguous* if they do not overlap (i.e., $I \cap J$ is not a non-degenerate interval) and $I \cup J$ is an interval. We say that

^{*}Supported by a KBN Research Grant 2 1144 91 01, 1992-94

Key Words: Baire one function, derivative of an interval function, lattice of functions Mathematical Reviews subject classification: Primary 26A24. Secondary 26B05, 28A15. Received by the editors March 11, 1993

an interval function F is additive if $F(I \cup J) = F(I) + F(J)$ whenever I and J are contiguous intervals.

We say that a sequence of intervals $\{I_n : n \in \mathbb{N}\}$ is *o-convergent* to a point $x \in \mathbb{R}^m$ if

- 1. $x \in \bigcap_{n=1}^{\infty} I_n$,
- 2. $\lim_{n \to \infty} \operatorname{diam} I_n = 0,$
- 3. $\limsup_{n\to\infty}\frac{(\operatorname{diam} I_n)^m}{|I_n|}<\infty.$

We will write $I_n \stackrel{o}{\Rightarrow} x$. (Cf., e.g., [4].)

Let F be an arbitrary interval function and $x \in \mathbb{R}^m$. We define

$$o-\limsup_{I\Rightarrow x} F(I) = \sup \Big\{\limsup_{n\to\infty} F(I_n): I_n \stackrel{o}{\Rightarrow} x\Big\}.$$

Similarly we define

$$\operatorname{o-liminf}_{I \Rightarrow x} F(I) = \inf \left\{ \liminf_{n \to \infty} F(I_n) : I_n \stackrel{o}{\Rightarrow} x \right\}.$$

If the two limits above coincide, we denote their value by o-lim F(I).

We say that the function f is an o-derivative if there exists an additive interval function F (called the *primitive* of f) such that for each $x \in \mathbb{R}^m$

$$\operatorname{o-lim}_{I \Rightarrow x} \frac{F(I)}{|I|} = f(x).$$

Recall that o-derivatives are Baire one functions. (Cf. [4, Lemma 2.1, p. 151] and [4, Lemma 3.1].)

We say that $x \in \mathbb{R}^m$ is an *o-Lebesgue point* of the function, f, if f is locally summable at x and $o-\lim_{I \Rightarrow x} \frac{\int_{I} |f - f(x)|}{|I|} = 0$. We say that f is an *o-Lebesgue function* if each $x \in \mathbb{R}^m$ is an *o*-Lebesgue point of f.

We say that $x \in \mathbb{R}^m$ is an *o*-dispersion point of a set $A \subset \mathbb{R}^m$ if

$$\operatorname{o-lim}_{I \Rightarrow x} \frac{|A \cap I|}{|I|} = 0.$$

We say that A is d_o -open if each $x \in A$ is an o-dispersion point of $\mathbb{R}^m \setminus A$. The family of all d_o -open sets forms a topology on \mathbb{R}^m ; the so-called o-density topology (cf. [4]). The terms " d_o -closed", " d_o -interior" (d_o -int) etc. will refer to this topology. We say that the function f is o-approximately continuous if it is continuous with respect to this topology. Recall that:

- for every measurable set $A \subset \mathbb{R}^m$, $|A \setminus d_o$ -int A| = 0,
- each o-Lebesgue function is both an o-approximately continuous function and an o-derivative,
- each bounded *o*-approximately continuous function is an *o*-Lebesgue function.

We say that the function f is *o-non-degenerate* at a point $x \in \mathbb{R}^m$ if x is an *o*-dispersion point of the pre-image of the set $(f(x) - \varepsilon, f(x) + \varepsilon)$ by f for no $\varepsilon > 0$. We say that f is *o-non-degenerate* if it is *o*-non-degenerate at each point $x \in \mathbb{R}^m$.

We will need a few lemmas. The first one is the well-known Lusin-Menchoff property of the o-density topology (cf. [4]).

Lemma 1 Given a measurable set B and a closed set $A \subset d_o$ -int B, we can find an o-approximately continuous function g such that $0 \leq g \leq 1$ on \mathbb{R}^m , g = 1 on A and g = 0 off of B.

The next three lemmas are proved in [4].

Lemma 2 Assume that a sequence of pairwise disjoint sets $\{H_n : n \in \mathbb{N}\}$, a sequence of o-approximately continuous functions $\{h_n : n \in \mathbb{N}\}$ and $c \in (0, 1]$ satisfy the following conditions:

- i) $h_n(x) = 0$ if $x \notin H_n$, $n \in \mathbb{N}$,
- *ii*) $|\{x \in H_n : h_n(x) = 0\}| \ge c \cdot |H_n|, n \in \mathbb{N},$
- iii) for every $x \notin \bigcup_{n=1}^{\infty} H_n$ and every $\tau > 0$ there exists a cube $I \ni x$ such that diam $I < \tau$ and for each $n \in \mathbb{N}$ either $|H_n \cap I| = 0$ or $H_n \subset I$,
- iv) for each $j \in \mathbb{N}$ and each $x \in H_j$ there is a p > j such that for each n > p, diam $H_n < [\varrho(x, H_n)]^2$.

Set $h = \sum_{n=1}^{\infty} h_n$. Then h is o-non-degenerate. [4, Lemma 4]

Lemma 3 The sum of an o-approximately continuous function with an o-nondegenerate function is o-non-degenerate. [4, Lemma 5]

Lemma 4 Whenever u is a Baire one function there exist a Baire one function v, a sequence of pairwise disjoint, compact sets $\{H_n : n \in \mathbb{N}\}$ and a sequence $\{c_n\}$ of non-negative real numbers such that the following conditions are satisfied:

- i) u v is an o-Lebesgue function,
- ii) v is o-approximately continuous at all points of $\bigcup_{n=1}^{\infty} H_n$,
- iii) v(x) = 0 if $x \in H_n \setminus d_o$ -int H_n for some $n \in \mathbb{N}$,
- iv) $|v| \leq \sum_{n=1}^{\infty} c_n \cdot \chi_{H_n}$,
- v) $\sum_{n=1}^{\infty} c_n \cdot \chi_{H_n}$ is a Baire one function,
- vi) v is bounded provided that u is bounded,
- vii) for every $x \notin \bigcup_{n=1}^{\infty} H_n$ and every $\tau > 0$ there exists a cube $I \ni x$ such that diam $I < \tau$ and for each $n \in \mathbb{N}$ either $H_n \cap I = \emptyset$ or $H_n \subset I$,
- viii) for each $j \in \mathbb{N}$ and each $x \in H_j$ there is a p > j such that for each n > p, diam $H_n < [\varrho(x, H_n)]^2$.
- [4, Lemma 10]

Finally we will use a part of Proposition 3 of [4].

Lemma 5 Let $\{H_n : n \in \mathbb{N}\}$ be a sequence of pairwise disjoint compact subsets of \mathbb{R}^m and let $\{K_n\}$ be a sequence of non-negative numbers such that the function $\sum_{n=1}^{\infty} K_n \cdot \chi_{H_n}$ is a Baire one function. Then there is a sequence $\{\varepsilon_n\}$ of positive numbers satisfying the following condition:

(•) for every sequence of functions $\{f_n : n \in \mathbb{N}\}$ if for each $n \in \mathbb{N}$

- i) f_n is an o-derivative,
- ii) $f_n(x) = 0$ if $x \notin H_n$,
- *iii*) $||f_n|| \leq K_n$,
- iv) $\left|\int_{I} f_{n}\right| \leq \varepsilon_{n}$ for every interval I,

then the function $f = \sum_{n=1}^{\infty} f_n$ is an o-derivative.

The main tool will be the following lemma.

Lemma 6 Let $A \subset \mathbb{R}^m$ be non-empty, bounded and measurable. Suppose v is a function such that $v \cdot \chi_A$ is o-approximately continuous and $||v \cdot \chi_A|| = c < \infty$, and suppose $\varepsilon > 0$. Then there exist o-approximately continuous functions f_1 , f_2 , f_3 and f_4 such that

(*)
$$v \cdot \chi_A = (f_1 \wedge f_2) \vee (f_3 \wedge f_4)$$

and for $j \in \{1, 2, 3, 4\}$

THE LATTICE GENERATED BY DERIVATIVES

- i) $f_j(x) = 0$ if $x \notin A$,
- *ii)* $||f_j|| \leq 12c$,
- *iii*) $|\{x \in A : f_j(x) = 0\}| \ge |A|/12$,
- iv) $\left|\int_{I} f_{j}\right| \leq \varepsilon$ for every interval I.

PROOF. Write A as the union $A = \bigcup_{n=1}^{k} A_n$ of measurable, pairwise disjoint, non-empty sets of diameter less than

$$\frac{\varepsilon}{24m\cdot(1\vee c)\cdot(1\vee\operatorname{diam} A)^{m-1}}$$

For $n \in \{1, \ldots, k\}$ express the set A_n as the union $A_n = \bigcup_{j=1}^4 A_{n,j}$ of measurable, pairwise disjoint, non-empty sets of equal measure. For $j \in \{1, 2, 3, 4\}$ find closed, disjoint sets $A_{n,j,1}, A_{n,j,2} \subset d_o$ -int $A_{n,j}$ such that $|A_{n,j,l}| \ge |A_{n,j}|/3$ $(l \in \{1, 2\})$. Use Lemma 1 to find an o-approximately continuous function $\psi_{n,j}$ such that

- $\psi_{n,j}(x) = 1$ if $x \in A_{n,j,2}$,
- $\psi_{n,j}(x) = 0$ if $x \notin A_{n,j}$ or $x \in A_{n,j,1}$,

•
$$0 \leq \psi_{n,i} \leq 1$$
 on \mathbb{R}^m .

Construct also an o-approximately continuous function φ_j such that

- $\varphi_j(x) = 0$ if $x \in \bigcup_{n=1}^k A_{n,j,1}$,
- $\varphi_j(x) = 1$ if $x \notin \bigcup_{n=1}^k A_{n,j}$,
- $0 \leq \varphi_j \leq 1$ on \mathbb{R}^m .

For $n \in \{1, ..., k\}$ and $j \in \{1, 2, 3, 4\}$ set

$$\gamma_{n,j} = egin{cases} \displaystyle rac{\int_{A_n} (v \cdot arphi_j)}{\int_{A_n} \psi_{n,j}} & ext{ if } |A_n| > 0 \ 0 & ext{ otherwise.} \end{cases}$$

Define $f_j = v \cdot \chi_A \cdot \varphi_j - \sum_{n=1}^k \gamma_{n,j} \cdot \psi_{n,j}$. Then clearly f_1 , f_2 , f_3 , f_4 are approximately continuous and condition i) holds. Observe that for each $x \in A$, $f_j(x) \neq v(x)$ for at most one $j \in \{1, 2, 3, 4\}$. So (*) is satisfied.

For $n \in \{1, ..., k\}$ if $|A_n| > 0$, then $|\gamma_{n,j}| \le \frac{c \cdot |A_n \setminus A_{n,j,1}|}{|A_{n,j,2}|} \le 11c$. Thus condition ii) is fulfilled. Next observe that for $j \in \{1, 2, 3, 4\}$ we have that

 $\{x \in A : f_j(x) = 0\} \supset \bigcup_{n=1}^k A_{n,j,1} \text{ and } |A_{n,j,1}| \ge |A_n|/12 \text{ for } n \in \{1, \ldots, k\}.$ Hence iii) holds. Let *I* be an arbitrary interval. Let *B* denote the union of those A_n for which $A_n \setminus I \neq \emptyset$. Observe that

 $|B \cap I| \leq 2m \cdot \max \left\{ \operatorname{diam} A_n : n \in \{1, \ldots, k\} \right\} \cdot (\operatorname{diam} A)^{m-1} \leq \frac{\varepsilon}{12 \cdot (1 \vee c)}.$

So for $j \in \{1, 2, 3, 4\}$

$$\left|\int_{I} f_{j}\right| = \left|\int_{A\cap I} f_{j}\right| \leq \sum_{n=1}^{\kappa} \left|\int_{A_{n}} f_{j}\right| + \left|\int_{\bigcup_{A_{n}\setminus I\neq\emptyset} A_{n}\cap I} f_{j}\right| \leq \int_{B\cap I} |f_{j}| < \varepsilon.$$

(We used that $\int_{A_n} f_j = 0$ for $n \in \{1, \ldots, k\}$). This proves iv).

Theorem 7 For each Baire one function $u : \mathbb{R}^m \to \mathbb{R}$ there are o-non-degenerate o-derivatives $f_1, f_2, f_3, f_4 : \mathbb{R}^m \to \mathbb{R}$ such that $u = (f_1 \land f_2) \lor (f_3 \land f_4)$. Moreover if u is bounded, then the o-derivatives f_1, f_2, f_3, f_4 can also be chosen to be bounded.

PROOF. Let the function v, the sequence of compact sets $\{H_n : n \in \mathbb{N}\}$ and the sequence of non-negative real numbers $\{c_n\}$ be as in Lemma 4. Apply Lemma 5 with $K_n = 12c_n$ $(n \in \mathbb{N})$ and find a sequence of positive numbers $\{\varepsilon_n\}$ satisfying the conditions of this lemma. For each $n \in \mathbb{N}$ use Lemma 6 with $A = H_n$ and $\varepsilon = \varepsilon_n$, to get *o*-approximately continuous functions $f_{n,1}, f_{n,2},$ $f_{n,3}$ and $f_{n,4}$ fulfilling its conclusions. (Conditions ii) and iii) of Lemma 4 imply the *o*-approximate continuity of $v \cdot \chi_{H_n}$.) Set $\tilde{f}_j = \sum_{n=1}^{\infty} f_{n,j}$ $(j \in$ $\{1, 2, 3, 4\}$). By condition (•) of Lemma 5 we get that $\tilde{f}_1, \tilde{f}_2, \tilde{f}_3$ and \tilde{f}_4 are *o*-derivatives.

For $j \in \{1, 2, 3, 4\}$ use Lemma 2 for the family $\{f_{n,j} : n \in \mathbb{N}\}$ to prove that \tilde{f}_j is o-non-degenerate. (The assumptions of this lemma follow by conditions i) and iii) of Lemma 6 and conditions vii) and viii) of Lemma 4.) Since u - v is o-approximately continuous and \tilde{f}_j is o-non-degenerate, $f_j = (u - v) + \tilde{f}_j$ is o-non-degenerate. (Also cf. Lemma 3). Clearly by condition (*) of Lemma 6,

$$u = (u - v) + v = (u - v) + \left[\left(\widetilde{f_1} \wedge \widetilde{f_2} \right) \vee \left(\widetilde{f_3} \wedge \widetilde{f_4} \right) \right] = (f_1 \wedge f_2) \vee (f_3 \wedge f_4).$$

If u is bounded, we can choose the function v to be bounded. Then for each $j \in \{1, 2, 3, 4\}$ the functions from the family $\{f_{n,j} : n \in \mathbb{N}\}$ have a common bound. So \tilde{f}_j and f_j are bounded, which completes the proof.

THE LATTICE GENERATED BY DERIVATIVES

References

- A. M. Bruckner, Differentiation of real functions, Lect. Notes in Math. #659, Springer, Berlin 1978.
- R. Carrese, On the algebra generated by derivatives of interval functions, Real Anal. Exchange 14 (1988-89), 307-320.
- [3] Z. Grande, Some problems in differentiation theory, Real Anal. Exchange 10 (1984-85), 334-342.
- [4] J. Lukeš, J. Malý, L. Zajíček, Fine topology methods in real analysis and potential theory, Lect. Notes in Math. #1189, Springer, Berlin 1986.
- [5] A. Maliszewski, Algebra generated by non-degenerate derivatives, Real Anal. Exchange 18 (1992–93), 599–611.
- [6] A. Maliszewski, Integration of derivatives of additive interval functions, submitted.