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CONVERGENCE THEOREMS FOR
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INTEGRAL

1. Introduction

We prove three convergence theorems for the approximate mean continuous
integral, the D;-integral, which was recently introduced in [5] by the present
authors and which is more general than the C;D-integral of Sargent [8]. Also

in three other theorems results analogous to those for the C;D-integral are
deduced.

2. Preliminaries

The Lebesgue measure will be denoted by p. The general Denjoy integral and
the special Denjoy integral will be denoted by D and D* respectively.

Definition 1 A function F : E — R, where R is the set of reals and E C R, is
said to be generalized absolutely continuous or ACG on E if E can be expressed

as countable union of closed sets on each of which F is absolutely continuous
and is written F € ACG(F).

This definition of ACG differs from [7, page 223] in that we are not using
continuity.

Definition 2 Let F be a real valued function defined on [a,b] and let c € [a, b].
Let F be D-integrable in some neighborhood of c. If there is a finite real number
L and a measurable set E. C [a,b] having ¢ as a point of density (one sided
point of density if ¢ = a or ¢ = b) such that for € > 0 there is 6 = 6(¢) > 0
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such that |-:—1—C(D) [ F(t)dt - L| < € whenever z € E; and 0 < |z —¢| < §,
then L is said to be D;-limit of F at ¢ and we write D;-lim;,. F(t) = L.
The function F is said to be D;-continuous at ¢ if D-lim;,. F(t) = F(c).
In other words F is Dy-continuous at ¢ € [a,b] if F' is D-integrable in some
neighborhood of ¢ and F(c) is the approzimate derivative at ¢ of its indefinite
D-integral. F is said to be Dy-continuous on [a,b] if it is D,-continuous at

every point of [a, b].

Definition 3 Let a sequence of functions {F,} be defined on [a,b]. If E C
[a,b], then {Fy} is said to be absolutely continuous on E uniformly in n or
UAC on E if for € > 0 there is § = §(g) > 0 such that for every sequence of
non-overlapping intervals {(ax, Bx)} with end points on E and > (Bx—ax) < §
we have ), |Fn(Bk) — Fn(ax)| <&, for all n. Clearly if {F,} is UAC on E,
then it is UAC on every subset of E.

The sequence {F,} is said to be UACG on E if E = U2, X;, X; closed
and {F,} is UAC on each X;. Clearly if {F,,} is UACG on E, then every
closed subset of E has a portion on which the sequence {Fy,} is UAC.

If c € [a,b] and if for every € > 0 there is § = §(¢) > 0 such that

|Fr(z) — Fr(c)| < € whenever z € [a,b], |z —¢| <6,

for all n, then the sequence {Fy,} is said to be equicontinuous at c. It is clear
that if the sequence {Fy,} is equicontinuous at each point of [a,b], then by the
compactness of [a,b], for every € > 0 there is § > 0 such that

|Fr(z') — Fp(z")| < € whenever z’,z" € [a,b] and |z’ — "] < 4,

for all n.

Let each Fy, be D-integrable in [a,b] and let ¢ € [a,b]. If there is a measur-
able set E. C [a,b] having c as a point of density (one sided point of density
ifc=a orc=1"b) such that for € > 0 there is § = 6(¢) > 0 such that

1
T—c

T
(D)/ Fo(t)dt — Fr(c)| < € whenever z € E. and 0 < |z — ¢| < 6,
c

for all n, then the sequence {F,} is said to be equi-D;-continuous at c.

Definition 4 (5] A function f : [a,b) — R is said to be D, -integrable on [a, b]
if there is a Di-continuous, ACG function ¢ : [a,b] — R such that ¢, = f
almost everywhere in [a,b]. The function ¢ is said to be an indefinite D,-
integral of f and ¢(b) — ¢(a) is the definite integral of f on [a,b]. The definite
integral is denoted by (D) [, : f(t) dt or simply (D) |, : f
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The function f is said to be D;-integrable on a measurable subset E of
[a,b] if fg is Dy-integrable on [a,b] where fg is defined by

f(z) ifz € FE

fe(z) = {o frdE

and we write f € D1(E). We shall take (D1) [ f = (D1) [} f&-

It follows that the D;-integral is strictly more general than the GM;-
integral of Ellis and the C; D-integral of Sargent (cf. [5]).

The following theorems will be needed later.
Theorem C. (Cauchy property of the D;-integral). If f is D;-integrable in
[a, 8] for every B,a < B < b, and if Dl-limg_.b-(Dl)fff = L, then f is
D -integrable in [a,b] and (Dy) f: f=1L.

Theorem H. (Harnack property of the Di-integral). Let E C [a,b] be a
closed set with complementary intervals Iy = (ak,bx), k=1,2,... . Let f €
D, (E) and f € Di(|ak,bk]) for each k with F(z) = (D) f:k fi ap <z <b.
Let (if there are infinite number of intervals Iy )

(i) 32, (D) [ £l < oo
(if) limy— oo SUP,e(ay bx] | 3227 Ja, F(t) dt| = 0.

Then f is Dy-integrable in [a,b] and (D) f:f = (D1) [g f + X k(D1) f:: f

Theorems C and H are proved in [5].

Remark 1 It may be noted that Sargent [8] has obtained the Harnack property
for the CyD-integral with the conditions (i) and (i) replaced by

oo

a sup
( ) ; ar<z<bk

1
T —ag

/ Fi(t) dtl < 00
(223

oo

) Y suwp

k=1 ar<r<bi

1
b —

b
/ Fi(t) dt — Fie(by)

<o

(see [8, property B]). But (@) and (B3) together imply (i) and (i) and so our
conditions (i) and (i) are more general. In fact from [8, Lemma III] we get
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that 52, |[2% £(8)dt| = S5 IFi(bi) — Filaw)| < H S w(ow, bi) where H
is a constant and

wk(ag,by) = max-[ sup / Fi(t) dt — Fr(ag)|,
ax<z<bk
sup |- / F.(t) dt — Fr(bx)|]-
ar<z<br |Vk —

Since Fi(ax) = 0, (a) and (B) imply > po 1|fb" f(t)dt| < oo implying (i).
Also convergence of the series in (a) implies (zz)

We also need the following theorem of Romanovskii whose proof can be
found in [1, page 36, Theorem 46].

Theorem R. Let F be a non-empty system of open subintervals of the bounded
open interval (a,b) that has the following four properties:

(1) if (a,B) and (B,7) are in F then so is (a,7);
(2) if (e, B) € F then every open subinterval of (a, ) is also in F;
(3) if every proper open subinterval of (a, ) is in F then (a,3) € F;

(4) if all the contiguous intervals in (a,b) of a non-empty perfect subset
E of (a,b) are in F, then F contains some interval (a,B) such that

(, B)NE #0.
Then (a,b) € F.

3. Main Results

Lemma 1 Let f, € Di([a,b]) and Fu(z) = (D1) [ fn, a < z < b, for each
n and let {F,} be UAC on a closed set E C [a,b]. Let {(o,Bk)} be the
contiguous intervals of E on [a,b], Fin = (D) f:k frn,ar <z < B and if
there are infinitely many intervals {(ox, Bk)}, let

(1) lim sup

k—00 ze(a,Bx]

(D) "R (1) dtl =0

T — Qg ak

for all n. Then f, is Lebesgue integrable on E for all n and for € > 0 there
is § = 6(e) > 0 such that for all measurable set A, A C E with u(A) < 6, we
have |(L) [, fn| < € for all n.
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PROOF. Since F, is absolutely continuous on the closed set E, the function
¢n where ¢, = F,, on E and ¢, is linear in the closure of all contiguous
intervals [, Bk, is absolutely continuous on [a,b]. Since ¢}, = (Fy,)q, almost
everywhere on E and (Fy),, = fn almost everywhere on [a, b], ¢}, = f» almost
everywhere on F and so the first part follows.

Let € > 0. There is § > 0 such that for every sequence of non-overlapping
intervals {[rp, sp]} with end points on E, and }__(sp —p) < 6 we have for all
n

@) >0 [ 7 fal = 3 1Falsp) = Falry)| < /3.

Let now A be a measurable subset of E with p(A) < §. We may suppose that
each point of A is a limit point of E from both sides. Then there is a sequence
of open sets {G,} such that G, D Gpry1 D A and limy, 00 u(Gr,) = p(4).
We may further assume that for each m the end points of the constituent open
intervals of G, are in E. Let G = Ui(ZTmis Ymi), Bm = Ui(E N [Tmi, Ymi)-
Denote by (@mij, Bmij) the contiguous intervals of E,, in [Tmi,Ymi]. Then
Gm ~ FEp, = Uij (amij,ﬁm-j). Clearly Qmij, ﬁmij € E. Choose mg such that
if m > mo, then u(Gm) < 6. Hence from (2) we have

Bmij
(3) >_1(Dy)

Y

"l <e/zand S0y [ fal<e/3

Zni ij Qmij

whenever m > mg and for all n. Now if there is only a finite number of
contiguous intervals of E N [Ty;, Ymi], then

Ymi Brmij

@ o[ Themf e Ton [

Tmi Qmij

So suppose there are infinitely many contiguous intervals of E N [T, Ymi]-
Then from (1) we have for all n
1 T

(5) lim sup | ——(D) Frijn(t)dt| =0

I 70 z€(amizBmij] T~ Fmij Cmi
where Finijn = (D1) f:m',» frny  @mij < T < Bmij. Now from (3) and (5), the
conditions (i) and (ii) of Theorem H are satisfied for the set £ N [Zm;, Yms] and
the contiguous intervals (Qmij, Bmij) Of E N [Tmi, Ymi] in [Tmi, Ymi]. Hence by
Theorem H we have (4). Thus (4) being true for all cases, by summing the
expressions in (4) over i and taking m > mg, we have from (3) that

(6) (L) /E RARICY I R
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for all n and all m > mg. Since f, is Lebesgue integrable on F, there is 6, > 0
such that for every measurable subset B of E with u(B) < é,,, we have

@ [

Since Gy, D A and limp— oo p(Gm) = u(A4), limpooo u(Ep ~ A) = 0. So
there is m; > mg such that u(E,, ~ A) < 6, for all m > m;. Since A C E,,,

from (7)
(L)/; fn_(L)/Afn = (L)

I Emy~A

(7) <¢e/3.

(8) fal <€/3.

So from (6) and (8) we have for all n, |(L) [, fn| <e.

Lemma 2 Let f, be Lebesgue integrable on [a,b] and F,(z) = (L) f fry @ <
z < b, for each n and let {F,} be UAC on [a,b]. Then for € > 0 there is
6 = 8(e) > 0 such that for each measurable subset A of [a,b] with u(A) < 6,
we have |(L) [, fn| <, for all n.

This follows from Lemma 1.

Lemma 3 Let X C [a,b], X closed and let {F,} be a sequence of functions
on [a,b] which is UAC on X and let {F,} converge to F on X U {a} U {b}.
Let G, be F, on X U {a} U {b} and linear on the closure of each interval of
[a,b] ~ X. Then {G,} is UAC on [a,b)].

PRroOF. Clearly {F,,} is UAC on XU{a}U{b}. Let {(as, b;)} be the collection
of intervals of [a,b] ~ X. Let € > 0 be given. Then there is § = §(¢) > 0 such
that for every countable collection of non-overlapping intervals {(z;, z;)} with
zj, 3 € X U{a} U {b} and 3 (z} — ;) < 6, we have for all n

9) S |Fa(a}) - Falay)] <.

Let N be such that Y oo v (b; —a;) < 8. So,

(10) D |Fa(b) = Fa(ai) <e.
i=N

Let M = maxlsisN_1{|ﬂb—;;:—5gﬂl|}. Thenfor 1 <i< N -1,

Fn(b,-!—F,.!a.g! < F b. -F a, F'b"_Fn(bg'
(11) bi—a; = bi—a; b;—a;
F(a:)—Fn(ai)
+ | bi—a; S M + b.o—a,.0
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where L = sup,, maxi<i<N—1{|F(b;) — Fn(b:)|, |F(a;) — Fn(a:)|} and b;, —a;, =

min;<;<n-1(b; — a;). Let § = mm(6,m—b('37‘—-)°_—‘_ﬁ). Let {(zj,7})} be any
collection of non-overlapping intervals with z;, =} € [a,b] and Y (z}—z;) < o.
We may suppose (if necessary, by breaking the interval (a:J,xJ) into two or
three subintervals) that either z;, 7 € X U {a} U {b} or (:r_,, ) C [as, bs) for
some i. Let ), denote summation over all j for which z;, z e X U{a}u{b}
and ), denote summation over the rest. Now for ), each J corresponds
to an i by the correspondence (z;,z;) C [a;,b;]. We further break }_, into
two parts 35 and ), such that ), denotes summation over all j in }_, for
which the corresponding ¢ > N and ), denotes summation over all j in 3y,
for which ¢ < N. Then using (9), (10), (11),

2 lGn($§~) — Gn(z;)|
> 1|Gn(x = Gn(zj)| + 22|G = Ga(z;)]
21lGn (5’3 ) Gn(z;)l +23|Gn(1’ ) Gn(z;)I

Gn( ) Gn(z;)
24 zz,—:c = | (xj-x.'l)

ZylFr (?) Fa(@)l + T2y [Fa(bs) — Falas)|
PR Lt S R A )

._a‘

<25+&bﬁ°3+— 8o < 3e.

(12)

+ IN +

Hence the result.

Lemma 4 If for each n, Fy(z) is D1-continuous at ¢ € [a,b] and Fy,(z) tends
uniformly to F(z), then F(z) is D;-continuous at c.

PROOF. Let € > 0. There is n such that
(13) |Fn(z) — F(z)| < €/3 for z € [a, b)].

Since Fy,(z) is D;-continuous at ¢, it is D-integrable in some neighborhood of
c. Let ¢,(z) be the indefinite D-integral of F,,. By the D;-continuity of F,
there is a set E = E,, having 0 as a point of density and a § = §(e,n) > 0
such that

dn(c+ h) — ¢n(c)
h

Let h € F and 0 < |h| < é. From (13), since F,,(z) is D-integrable, F(z) is
D-integrable and

(14) — Fo(c)| <e/3forhe E, 0 < |h| <é.

- h
Salcth=tald _ L(D) [**" F(t) ot

15
1s) = I%(D) [ FA(t) - F(2)) dtl <e/3.
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Hence from (13), (14) and (15),

c+h
(16) ‘%(D)/ F(t)dt— F(c)| < for h€ E, 0 < [h| < 6.
c

Letting h — 0 we get from (16)

F(c)—¢

IA

1 C+h 1 C+h
NP | <1 1
}11_13) inf h(D)/c F(t)dt < ’PLI}) sup h(D)/c F(t)dt
< F(c)+e.

Since ¢ is arbitrary, limp_oap}(D) f: +h F(t)dt = F(c). So F(z) is D;-
continuous at c.

Theorem 1 Let {f,} be a sequence of D;-integrable functions on [a,b] and
let Fr(z) = (D1) [ fn, ¢n = (D) [} Fa, a <z <b. Let

(i) limp—oo frn = f almost everywhere in [a,b],

(it) {Fn} be equi-Dy-continuous and {¢n} be equicontinuous at every point
of [, b],

(i) {Fn} and {¢n} be UACG on [a,b] and {F,} be pointwise bounded on
[a, 8],

(iv) for every perfect set in [a,b] having infinitely many complementary in-
tervals {(ax, Bk)}

lim sup
k=00 e (ak,Bi]

T
1 (D) ] Fi () dt| =0, uniformly in n,
k

T — o a
where Fy n(z) = (Dy) f:k fn, akx <x < k.
Then f is D, -integrable in [a,b] and lim,_o(D;) f: fn=(D1) f: f-

Remark 2 For D-integral this is the result of [1, page 40, Theorem 47]. The
last part of the condition (iii) i.e. {F,} is pointwise bounded on [a,b], and
the condition (iv) are absent there since they are redundant for D-integral. In
fact for D-integral, {F,} is equicontinuous with Fy,(a) = 0 implies that there
is § > 0 such that |F,,(z') — Fr(z")| < 1 whenever |z’ — z"| < 6, 2/, 2" € [a, ]
and for all n. Divide [a,b] into subintervals a = cp < ¢; < ---<en =b
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such that ¢; — ¢i—1 < 6/2 for each i,i = 1,2,... ,N. Let z € [a,b]. Then
T € [¢i—1,¢;] for some i. So

|Fo(2)| < |Fa(z) = Falcim1)l + ) _ |Fa(ck-1) = Fa(ck—2)| < N
k=2

and hence {Fy} is uniformly bounded on [a,b]. For condition (iv), {F,} being
equicontinuous, we have for € > 0 there is kg such that for k > ko, we have
O(Fn; ok, Bk) < €, for all n and so, for k > ko and for alln and z € (o, G|

1 f:k Fin(t) dt‘ < O(Fn;ak, Bk) < €. Hence

T—Qpg

T

Fi o (t) dt| = 0, uniformly in n.
k

lim sup |
k*wze(ak,ﬁk] T — 0k Jo

PROOF. Let H be the collection of all subintervals (a, 8) of [a,b] such that
the theorem holds on [, 8] and on all of its compact subintervals. Since {F,}
is UACG on |a,b], there is a subinterval I of [a,b] on which {F,} is UAC and
hence by Lemma 2 and Vitali’s theorem [6, page 152],

(17) 3&Ah=ﬁﬁ

So H is non-empty. Clearly if (o, 8) and (8,7) are in H, then so is (a,7) and
if (o, B) € H, then every open subinterval of (o, §) is also in H.

Now we shall show that if every proper open subinterval of (o, 3) is in H,
then (o, ) is also in H. Suppose every proper open subinterval of (¢, ) is
in H and @ < z < B. Let ¥n(t) = (D1) [2 fa, = <t < B. Since {F,} is
equi-D;-continuous at 3, {¢»} is equi-D;-continuous at 3 and so, for £ > 0,
there is 6 = 6(¢) > 0 and a measurable set Eg C [a, b] having § as a point of
density such that for all n

1 A 1 A
18 —(D / —e< <——(D / +e€
whenever y € EgN (8 - 6,0).
Since every proper open subinterval of (a, 3) is in H, we have for every
proper open subinterval (z',y’) C (e, 8), f is D;-integrable on [z’,y'] and

s [ 05

Let 9¥(t) = (D1) f: f, <t <. Then {¢,} is a sequence of D-integrable
function, and by (19) ¢, converges to ¢ everywhere on [z,3). Now for z <
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t<5,
s = | ' Fa(€)de = [ Ferae+ [ Fa(€)de
= [ R+ [ m@ac+ [0
= [ F@a+ B@e -+ [ valae
So
(20) | = Ifnlte) - ¢a(ts) = Fal@)(t2 — t1)

< ‘d"n(tZ) - ¢n(t1)| + IFn(x)”tZ - tlla

for ty,t2 € [z, 0]
Since {F,} is pointwise bounded on [a, b], there is M, > 0 such that
(21) |Fr(z)| < M; for all n,

and also since {¢n} is equicontinuous at every point on [a, b], by the compact-
ness of [a, b], for € > 0 there is § = §(¢) > 0 such that for all n

(22) |#n(z") — ¢n(z")| < €/2 whenever z’,z" € [a, b]

and |z’ — 2’| < 6. Let §' = min(6,e/2M,). Then from (20), (21) and 22),
|ftt1’ Yn| < €/2+ Mye/2M, = € whenever t1,t; € [z, 5] and |t — ;| < §, and
for all n. So the sequence of indefinite integrals of 1, is equicontinuous at
every point of [z, 8]. Also since {¢,} is UACG on |a, b], from (20) and (21) we
see that the sequence of indefinite integrals of ¥, is UACG on [z, 8]. Hence
by [1, page 40, Theorem 47|, we get

(23) in o[-0 [

Also (23) is true for every subinterval of [z, 8]. That is

B B
24 lim (D n = (D fi <y<p.
(24) Jm (D) [“4n=(0) ["grorz <y
From (18) and (24), we get

(D) [Pp—e < liminfaco Pn(B)

25
(25) limsup, o ¥n(8) < 55(D) fyﬁ‘/’ te

IN A
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whenever y € Eg N (B - 6, 06).

Letting y — B first and then € — 0 we see from (25) that lim,_ . ¥n(8)
and D; — lim¢—g9(t) exist and they are equal. Hence by Theorem C, we
have [° f = Dy — limy—p ¥(t) = limpro0 $n(B) = limposco [° fn- Similarly
JZ £ = limnco [Z fo. Hence [7 f+ [2 f = limnoo [[Z fo+ [ fa] . That is
JP £ =limp—oo [? fa- So (,0) € H.

Let E be a non-empty perfect subset of [a,b] and let all the contiguous
intervals of E be in H. We shall show that H contains some interval (o, 3)
such that (a, ) N E # 0. Since {F,} is UACG on [a,b], there is a portion
P = EN|a,p] of E on which {F,} is UAC. Therefore if {(ax,Bk)} are the
contiguous intervals of P in (e, 3), then for all n 3" |(Dy) [ f : fn| < o0, and
also from the hypothesis of the theorem (if there are infinitely many intervals
{(ak,Bk)}), we have for all n, limk—co SUPz¢(ay,p4] ﬁ f:k Fr . (t) dt‘ = 0.
Hence by Theorem H,

(26) (D) / C =) /P ot 0 / 5,

(273

for all n. Since {F,} is UAC on P, by Lemma 1, f, is Lebesgue integrable on
P for all n and the family {f,} has equi-absolutely continuous integrals on P
[6, p.152]. Hence by Vitali’s theorem [6, page 152, Theorem 2|, we get

(27) lim /P fo= /P /.

From the condition (iv) of the theorem, for € > 0 there is ko, independent of
n, such that for £k > kg and for all n

(28) sup
z€(ok,Bk)

T — Qg

(D) / " Fn(®) dt) <e

ax
where Fi ,(t) = (D1) f;k fn, ok <t < Bk. Since (ak,Bk) € H, fis D;i-
integrable on [ax, Bk] and on all of its compact subintervals and

t t
(29) Jm o) [ = [ 1 ast<p

(273

Let T = [, f, o <t < Bi. Then from (29), Fin — Tk on [ax, B]. Since

t ar t
balt) = / Fa(6)de = / Fo(€)de + Falon)(t — o) + / Fin(€)de,
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we have for t1,t2 € [, Bk

(30) | / " Fen(€)] < In(ta) — ént)| + |Falaw)lltz — 1l

31

Just as we deduced, using (20), (21) and (22), the equicontinuity of the se-
quence of the indefinite integrals of v, we deduce, using (30) and two other
relations that the sequence of the indefinite integrals of Fj , for fixed k is
equicontinuous at every point of [, G| and is also UACG on [ay, Bx|. Hence
by [1, page 40, Theorem 47}, T} is D-integrable on [ay, B and

(31) tim (D) [ Fkn (D) / Ty

n—00

Also (31) is true if B is replaced by t, ax <t < Bi. Hence from (28), for
k > Ko SUD.e(ay,54] l;_l—ak(D) I2 T(t) dt’ < ¢. Since ¢ is arbitrary,

(32) lim sup

k=0 z€(ak, B

(D) Tk<t) dt\

T — ag

Further as {F,} is UAC on P, for € > 0 there is a k; such that

(33) Z |(D1) f,,| <€, forall n.
k=k,

Since (ax, Bk) € H,

Bx B
(34 Jim 00 [ =00 [,
and so, from (33)
(35) S (D) / fl<e.
k=k;

So from (35) and (32), all the conditions of Theorem H are satisfied for the set
P and the contiguous intervals {(ax, Bk)} of P on [a, 8] and hence by Theorem
H, f is D;-integrable in [o, ] and

(36) /jf=2k:/:kf+/Pf‘
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From (33) and (35) ‘Zz‘;kl ff: fo— ek, ff: f| < 2¢ for all n and hence

@ wm 3 [Ch=3 s

k=k; vV ®k k=k; v ®k

So from (26), (27), (34), (37) and (36) limn—co [* fn = [ f. Thus H satisfies
all the conditions of Theorem R. Hence (a,b) € H. So the result.

Theorem 2 Let {f,} be a sequence of D-integrable functions on [a,b] and
let Fp(z) = (D1) f: frn, a <z <b. Let

(i) lim fp(z) = f(z) almost everywhere in [a,b],
(i) {Fn} is UACG on [a,b],
(i) {Fn} converges on [a,b] to a Dy-continuous function.
Then f is Dy-integrable on [a,b] and limy,_ (D) f: fn=(D1) f: f.

PROOF. Let [a,b] = U; X; where {X,} is a sequence of closed sets such that
{F.} is UAC on X, for each i. From the condition (iii), if F(z) is the limit
of F,,(z) then F(z) is D;-continuous on [a,b]. Also from (ii), F is ACG on
[a,b]. We will show that F,,(z) = f(z) almost everywhere on [a,b]. Let
Gr : [a,b] — R be such that G,(z) = Fr(z) for z € X; U {a} U {b} and G,
is linear in the closure of each interval of [a,b] ~ X;. Then {G,} is UAC
on [a,b] by Lemma 3. Let G(z) = F(z) for z € X; U {a} U {b} and G be
linear in the closure of each interval of [a,b] ~ X;. Then Gn,(z) converges
to G(z) everywhere in [a,b]. Write gn(z) = G, (z) for almost all z in [a, b]
and g(z) = f(z) when z € X; and g(z) = G'(z) elsewhere in [a,b]. Then
gn = G, = (Fn),, almost everywhere in X; and since f, is D;-integrable on
[a,b] for each n, we have (Fy,),, = fn almost everywhere in [a,b] and hence
gn = G, = (Fn)gp = fn almost everywhere in X;. Since f, converges to f
almost everywhere, g,(z) converges to f(z) = g(z) almost everywhere in X.
Also for almost all z € [a,b] ~ X;, gn(z) = GL(z) — G'(z) = g(z). Hence
gn(z) converges to g(z) almost everywhere on [a,b]. Now each g, is Lebesgue
integrable in [a,b] and the primitives G,, of g, are UAC on [a,b]. Hence by
Lemma 2, {G,} is a family of equi-absolutely continuous integrals on [a, b]
(cf. [6, p.152]) and hence by Vitali’s theorem [6, page 152, Theorem 2] g is
Lebesgue integrable in [a,b] and fora <z < b

@ [ o= tim (@) [ ga= lim Gulo) = 6(a).
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So G'(z) = g(z) almost everywhere in [a,b]. Thus F,,(z) = G'(z) = g(z) =
f(z) for almost all z in X;. So F,,(z) = f(z) almost everywhere in X;. Since
[a,b] = U; X; and F,(z) = f(z) almost everywhere in [a,b] and since F is
D, -continuous, ACG on [a, b], f is D;-integrable on [a, b] and F is an indefinite
D;-integral of f on [a,b]. Hence litp—c0(D1) J> fr = limpo0 Fu(b) = F(b) =
b

(D) [, £

Theorem 3 Let {f,} be a sequence of Dy-integrable functions on [a,b] and
let Fr(z) = (Dy) [ fa, a <z <b. Let

(i) limp—oo frn = f almost everywhere in [a,b],

(ii) for eachi=1,2,... there exist closed sets X; and D-integrable functions
Gi, H;, on [a,b] such that U2 | X; = [a,b],Gi, H; € VB(X;), with

Gi(v) = Gi(u) < Fr(v) — Fo(u) < Hy(v) — Hi(u)

for alln > i whenever u or v € X; and (in case there are infinite number
of contiguous intervals of X;)

t
(D) [ (Gulz) - Gilauw))dsl]

1
=0= lim sup
k—o0 t€(aix ,b"k] t— Qi

. 1
lim sup |
k—o0 t€(aik ,b.'k] t— Qi

t
(D) [ (Bi@) — Ei(ou))dal]

where {(aik, bik)} are the complementary intervals of X;,

(iii) lim, o Fn = F where F is D,-continuous, the convergence being uni-
form on the set of end points of contiguous intervals (aik, bik) of the set
X, i=1,2,... .

Then f is Dy-integrable in [a,b] and F is the D;-primitive of f.

PROOF. For each i the approximate derivatives (G;),, and (H;)g, exist almost
everywhere in X; and are Lebesgue integrable on X, and

(38) (Gi)ap(z) < fr(2) < (Hi)gp(x)

for almost all z € X; and for all n > i. Since X;’s are closed and U; X; = [a, }],
by Baire’s theorem there is an interval I contained in some X,,. Since D;-
integrable functions are measurable [5], by (38) and by the Lebesgue Domi-
nated Convergence Theorem f, and f are Lebesgue integrable on I and

(39) Jim = [
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Let a point x be called regular if there is an interval I containing = such
that f is Di-integrable in the closure of I with F' its primitive. By (39), and
by condition (iii) the set of all regular points is non-empty. Let X be the
set of all = € [a,b] such that z is not a regular point. The theorem will be
proved if we show that X is empty. If possible let X # 0. Since X is closed
and since U2, (X N X;) = X, by Baire’s theorem there is an interval (a, 3)
such that (o, 8) N X = (a,8) N X, # 0 for some p. Let [c,d] be the smallest
interval containing (o, 8) N X,. We shall show that f satisfies the hypothesis
of Theorem H in the interval [¢,d] with E = [¢,d] N X,,. By (38) and by the
Lebesgue Dominated Convergence Theorem f and f,, n > p, are Lebesgue
integrable in [¢,d] N X, and

(40) / f= lim fn.
[e,d)nX n=00 Jle,dlnX

Let (¢,d) ~ X = U (ck,dx). Note that f is D;-integrable on each [u,v] C
(ck,dk) with F its primitive. Since F is Dj-continuous, by Theorem C, f is
D, -integrable on each [ck, di] with F' its primitive. Since cx € X,, di € X,

|Fn(dk) — Fr(ck)| < |Gp(dk) = Gp(ck)| + |Hp(dk) — Hp(ck)]

for n > p and since G,, Hp € VB(X,), there is M such that for n > p

oo

> |Fa(di) — Falcx)l < M.
k=1

Hence for any positive integer K
K K
> IF(dk) — F(ex)| = lim Y |Fo(di) — Fu(ck)| < M.
k=1 nmee k=1

Since K is arbitrary, this gives Yz, |(D1) [ :i * f| < M. Finally it follows from
(ii) and (iii) that if z € (ck,dk), then

Gp(z) — Gp(ex) < F(z) — F(cx) < Hp(x) — Hp(ck)

and hence for ¢ € [ck, dk]
(D) / [F@)- Feoll < (D) [ [Hy(z) — Hy(ch))

+ (D) / (Gp(z) - Gplcr)]l
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and 50 limy oo SUPte ¢, a4 | 7255 (D) f:k [F(z) = F(ck)]| = 0. So by Theorem H,
f is Dy-integrable in [c, d] and

d S dr
(41) (0y) [ £=(0) [[ IRAD LY [
c c,djn. k=1 Ck

Since F is the primitive of f on each [c, dx] and since F, converges uniformly
to F on the set of end points of contiguous intervals (ck, di) of the set X, we
get from (40) and (41)
(42)
d
(D) J{ f

I

limy, o f[C,d]ﬁX fn+1limp oo Zl?;l [F" (dk) - Fn(Ck)]
imncol(D1) fs g I+ S5 (D) L2 )

limp, 00(D1) [ fn = liMp_soo [Fr(d) — Fr(c)]
F(d) - F(c).

(]

The relation (42) can also be established for every subinterval [u,v] C [c,d].
In fact, if u, v are in a single [ck, di] then F' being the primitive of f on [ck, d|
(42) is obvious for [u,v] and if u,v € X,, the proof is as above. Otherwise
we can break the interval [u,v] into two or three subintervals so that each
subinterval will come under one of these two cases. Hence F' is the primitive
of f on [c,d]. But this is a contradiction, since (¢,d) N X # 0. So X =0 and
the theorem is proved.

Remark 3 Note that the condition (iii) in Theorems 2 and 3 is weaker than
the uniform convergence of F,, to F by Lemma 4.

Example 1 Let

_ [ —gmcost if L <z<1
fa() {OI * z'f(1)"t<_x<l/n7r,

1 1
_J —zscosz  ifx#0
f (I) { 0 :: ¥ ifz=0
and ) )
_Jsinz if=<z<L1
Fo(z) = { 0o " zf(1)m§ z < 1l/nm.
Then Fy, is a D,-primitive of fn,. F, does not converge uniformly in [0,1)
but converges pointwise to F(z) =sinl, x # 0, F(0) = 0. Also it converges
uniformly on the set {X%,i=1,2,3,...}. Let
1 1

1 .
Xl—[;ylli.Xi—[Z?—r)m], 1—2,3,... .
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Then {0} U (UX;) = [0,1] and taking G; = H; = F;, the above theorem can be
applied to determine the D;-integrability of f on [0,1].

4. The C,D-integral

It is known that the C; P-integral of Burkill, which is equivalent to the C;D-
integral of Sargent [8] is included in the GM;-integral of Ellis [2]. It is clear
that the D;-integral is more general than the GM;-integral and hence more
general than the C; D-integral. Therefore the above results also give sufficient
conditions for the convergence of the C}D-integrals to a D;-integrable func-
tion. We deduce here with the help of the above results, that the limit function
is also C D-integrable.

We refer to [8] for the definition of the CjD-integral which needed the
concepts of AC* (Cy-sense) and ACG* (Cj-sense), which also can be found in
[8]. See also [9] for an equivalent definition.

Let F be D*-integrable in [a,b]. For convenience we write for z,y €
[a,8], = # 3, C1(F;z,y) = 722(D") [¥ F(¢) dt.

Definition 5 A sequence of functions {F,} is said to be UAC* (Ci-sense)
over a set E C |a,b] if for all n, F, is D*-integrable on [a,b] and for each
€ > 0 there is § = 6(e) > 0, independent of n, such that ), wn(ak,bx) < €
for every countable collection of non-overlapping intervals {(ak,bx)} with end
points on E satisfying > (bx — ax) < 8, where

wn(ak,bk) =
max sup |C1(Fn;ak,x) _Fn(ak)|7 sup |C1(Fn;bk,x) —Fn(bk)l}
ar <T<bg ar<z<bsk

and {F,} is said to be UACG* (Ci-sense) on [a,b] if there is a sequence of
closed sets E; such that [a,b] = UE; and {F,} is UAC* (C,-sense) on each
E;.

Considering the definition of the usual AC* and ACG* as in (7] one gets,
as in Definition 3, the definition of UAC* and UACG* for the sequence of
functions {Fy,}.

Definition 6 For each n let F, : [a,b] — R be D*-integrable and ¢,(t) =
(D*) f: F,,a<t<b. Letzx€ [a,b]. If for everye > 0 there is § = 6(¢) > 0

such that IW — F(z)| < € whenever 0 < |t — z| < §, for all n, then
{F.} is said to be equi-Cy-continuous at z.

Clearly equi-C1-continuity implies equi-D;-continuity.
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Lemma 5 Let {F,} be a sequence of D*-integrable functions on [a,b] and let
on(z) = (D¥) f: E,. Let

(i) limp,_o0 F, = F, where F is a C}-continuous function, everywhere on

[a, ],
(ii) {pn} and {F,} be respectively UACG* and UACG*-(C;-sense) on [a,b],

(iii) ¢, converge to a continuous function (or {¢,} be equi-continuous) on
a, b].

Then F is ACG* (C;-sense) on [a,b].

PROOF. Since {F,} is UACG* (C;-sense) on [a, b), [a,b] can be expressed as
countable union of closed sets on each of which {Fy} is UAC* (C,-sense). Let
E be such a closed set and {(ak, bx)} be a sequence of non-overlapping intervals
with end points on E. Since F,, — F where each F), is D*-integrable on |[a, ],
and {¢,} is UACG™ on [a, b] and ¢y, converge to a continuous function (or {¢n}
is equi-continuous), then from (3, pages 40-44, Corollary 7.7 or Corollary 7.9
applied on [ak,z] C [ak, bk] we have lim,_,o f:k F, = f:k F, ar <z < bg.
So limy,—,00 [C1(Fn; ak, ) — Fn(ak)] = C1(F;ak,z) — F(ax). Hence

liminf sup |Ci(Fp;ak,z)— Fn(ag)|

N=0 g, <z <bi

> liminf |C1(Fy; ax, z) — Fa(ak)|
= |C\(F;ak,z) — F(ax)l,

and so
liminf sup |C1(Fr;ak,z) — Fn(ak)|
N=0 g, <z<by
> sup |Ci(F;ak,x) — F(ax)|.
ax<zT<bi
Thus

Z sup |C1(F;ak,z) — F(ax)|

P <z<bk

< liminf Y sup  |Cy(Fn;ax,z) — Fo(ax)|

n—oo P <z<by

and similarly

S sup [Cy(F5be,z) ~ Fb)

k @k <z<bk

Slglnl{gfzk: sup  |C1(Fni b, ) — Fa (b))l

ar <z<bi
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Therefore since {F,} is UAC* (Ci-sense) on E, F is AC* (C;-sense) on E
and F' being C;-continuous in [a,b], F' is ACG* (Ci-sense) on [a,b].

Lemma 6 If {F,} is UACG* (C;-sense) in [a,b], then {F,} is UACG in
[a,b].

PROOF. Let [a,b] = UE; where E; is closed and {F,} is UAC* (C;-sense)
on E; for each i. Let € > 0 be arbitrary and let § = () be obtained by
applying Definition 5 on the set E;. Let {(ax,bx)} be a countable collection
of nonoverlapping intervals with end points on E; such that Y (bx — ax) < 6.
Then Y, wn(ak,bx) < € for all n. Since |Fn(bk) — Fn(ak)| < Hwn(ak,bk),
where H is a constant independent of n (See [8, Lemma III] and [9, Lemma
1].), we have Y, |Fn(bx) — Fn(ax)| < He. This shows that {F,} is UAC on
E;. This completes the proof.

Lemma 7 Let X C [a,b] be a closed set. Let F' : [a,b] — R be D-integrable
in [a,b] and D;-continuous on X. Let F € VB(X) and let

klim sup |Ci(F;ak,t) — F(ax)| =0
(43) 0 gp <t<bi
lim sup |Ci(F;bk,t) — F(be)| =0

k—00 g, <t<by

where {(ak,bx)} is the collection of contiguous intervals of X. (Here the inte-
gral in the definition of Cy(F,z,y) is taken as D-integral). Then F is contin-
uous on X relative to X.

PROOF. Let z € X. If z is an isolated point of X, there is nothing to
prove. So we suppose that z is a limit point of X, say, from the left. Since
F € VB(X), limy_,_ F(t) exists and is finite, the limit being taken relative
to X. We may suppose that lim;_,,_ F(t) = 0. We are to show that F(z) = 0.

Case I Let z be a limit point of U(ak,bx) from the left. Let € > 0. Then
there is 6 > 0 such that

(44) |[F(¢)|<eforfe(z—6,z)NX.

From the second of the relations (43) there is kg such that

bi
(45) /6 F = (b — €)F(be)| < e(bi — €) for k > ko and £ € (ag, by).

Let {(ak,.,bk,)} be the subcollection of {(ak,bk); k > ko} such that

UnZ ;i (@k, s bk,) C (z — 6, 2).
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Let z — 6o = infU,(ak,,bk,). Then 0 < §p < 6. Let t € (z — bo,z). If
t € U, (ak,,bk, ), then for some n = m say, t € (ak,,,bk,.) and so from (45)
and (44) we have
bk,
[ F
t

and for all intervals (ak,_, bk, ) with (ak,,bk,) C (¢, )
bk,
/ F
Ak,
If t € X, then for all intervals (ak,,bk,) with (ak,,bk,.) C (t,z), (47) holds.
Also if E = (t,z) N X, then from (44)

(46) < 2¢(bg,, —t)

(47) < 2e(bk, — ak,)-

(48) ‘ /E Fl < eu(E).

Hence adding all the relations (46), (47), (48) we have by using (7, page 257,
Theorem 5.1] | [;* F| < 2¢(z — t). This shows that

Since F is D;-continuous at z, F(z) = 0.

Case II Suppose z is not a limit point of U(ag,bx) from the left. Then
for € > O there is § > 0 such that |F(¢)] < ¢ for .£ € (z — é,z). Hence

=7 F‘ < e for t € (z — §,z) which shows that (49) holds and so F(z) =0

z—t
as above.

If z is a limit point of X from the right the proof is similar.

Remark 4 Lemma 7, which is used in Theorem 6, has some interest in itself,
since it gives a reasonably sufficient condition under which a D;-continuous
function (and hence a Ci-continuous function i.e. a derivative function) be-
comes continuous on a closed set.

Theorem 4 Let {f,} be a sequence of Cy D-integrable functions on [a,b] and
Fo(z) = (C1D) [ fn, ¢n(z) = (D*) [ Fa,a <z <b. Let

(1) limp— oo fn = f almost everywhere in [a, b],

(i) {Fn} be equi-Ci-continuous on [a,bd], '
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(i) {Fn} be UACG* (Cy-sense) and {¢n} be UACG* on [a,b] and {F,} be
pointwise bounded on [a, b],

(iv) for every perfect set in [a,b] having infinitely many complementary in-
tervals {(ak, Bk)}

1 z
lim sup D* / Fi n(t)dt| =0,
k=00 re(ax,Bx] Ix - ak( ) 78 n( )di

uniformly in n, and Fi n(z) = (C1D) f:k fry ar <z < Bk.
Then f is Cy D-integrable in [a,b] and lim,_,o(C1D) f: fn=(C1D) f: f.

PROOF. We shall show that under the hypothesis {¢,} is equicontinuous on
[a,b]. Let & € [a,b]. Since {F,} is equi-C;-continuous at &, for any € > 0
there is § = 6(¢) > 0 such that |x+E(D‘) f: F,.(t)dt — F,(€)| < € whenever
0 < |z —¢| <6, for all n. Hence |¢n(z) — ¢n(£)| < elz ~ £] + |Frn(§)llx —&|.
Since {F, ()} is bounded, letting 8o < min[é, 1,6/M] where M = M(¢) =
sup | F(€)|, we have |¢,(z) — #n(€)| < 2¢ whenever 0 < |z —&| < 8o, for all n.
So {¢n} is equi-continuous on [a,b]. Since UACG* (C;-sense) implies UACG
by Lemma 6 and also UACG* implies UACG and since equi-C1-continuity
implies equi-D;-continuity, by Theorem 1, f is D;-integrable on [a, b] and

b b
(50) Jm (@) [ g =y [ 1=F@)
where
(51) F(z) = (Dl)/z f, a<z<hb

To complete the proof we need to show that f is, in fact C; D-integrable. We
will first show that F is C;-continuous on [a,b]. Since (50) is true if b is
replaced by any z, a < £ < b, F, — F everywhere on [a,b]. Also {¢,} is
equi-continuous and UACG™* on [a,b]. So, by [1, page 40, Theorem 47], F is
D*-integrable in [a,b] and lim,_,oo(D*) [, : F, = (D¥) f: F. Since this is true
if b is replaced by any z, a < z < b, we have

(52) lim ¢ () = (),

where ¢(z) = (D*) [ F.
Let £ be arbitrary point in [a,b]. Since {Fy} is equi-C-continuous at &,
for any € > 0 there is § = §(¢) such that for all n

(53) ¢n($) — ¢n(§)

- — F,(&)| < € whenever 0 < |z —£| < é.
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Since F,(§) — F(&), we have from (52) and (53) letting n — oo |¢(z) —¢(@) _

F(£)| < € whenever 0 < |z — €| < 6. Hence F is Cj-continuous at § a,nd )

on [a,b]. Then by Lemma 5, F is ACG* (C;-sense) on [a,b]. Hence by 8,

Theorem III] we have from (51) C1DF(z) = F,,(z) = f(z) almost everywhere

on [a,b]. So f is C; D-integrable on [a, b] and from (50) lim,_,.(C1D) [ : fa=
b

(C1D) [, f.

Theorem 5 Let {f.} be a sequence of Cy D-integrable functions on [a,b] and

Fo(z) = (C1D) [ fa, #n(z) = (D*) [ Fa, a < z < b. Suppose

(i) limp—oco frn = f almost everywhere on [a, b)].
(ii) {Fn} and {¢,} be respectively UACG* (C,-sense) and UACG* on [a,b],

(iif) F, converge pointwise to a C)-continuous function and ¢, converge
pointwise to a continuous function (or{¢.} be equi-continuous on [a,b]).

Then f is CyD-integrable on [a,b] and limp_,oo(C1D) [, : fn=(C1D) f: f.

PROOF. From Lemma 5 we have F is ACG* (C;-sense) on [a,b] where F
is the limit of F,,. Since UACG* (C;-sense) implies UACG, by Lemma 6
and C)-continuity implies D;-continuity and C;D-integrability implies D;-
integrability with integrals equal, by Theorem 2, f is D;-integrable on [a, b]
and

b b
(54) m (D) [ f=0) [ 1

We are to show that f is indeed CjD-integrable on [a, b]. By the given condi-

tion the left hand limit is F(b). Hence (D) J, : f = F(b). This is also true if
b is replaced by any z, a < £ < b. Clearly F is ACG and D;-continuous on
[a,b] and so F is a D-primitive of f and hence F;, = f almost everywhere on
[a,b] and since F is ACG* (C;-sense) on [a,b], by [8, Theorem III], we have
C1DF(z) = F,,(x) = f(z) almost everywhere on [a, b]. So f is C; D-integrable

on [a,b] and hence from (54) limy,—,o0(C1 D) f: fn=(C1D) f: f.

Theorem 6 Let {f,} be a sequence of Cy D-integrable functions on [a,b] and
let F(z) = (C1D) f: fn, a <z < b. Suppose

(1) limp—oo frn = f almost everywhere in [a, b],

(ii) for eachi=1,2,... there ezists a closed set X; and D*-integrable func-
tions G;, H; on [a,b] such that [a,b] = UX;, G;, H; € VB(X;) with

(55) Gi(v) — Gi(u) < Fr(v) = Fr(u) < Hy(v) — Hi(u)
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for n > i whenever u or v € X; and (in case there are infinitely many
contiguous intervals of X;)

> k1 SUPze(ase bik] [C1(Gis @ik, ) — Gi(aw)| < o0

56
(56) D k1 SUPz oy bir) [C1(Gis ik, T) — Gi(bix)| < 00

where {(aik,bix)} are the complementary intervals of X;, with similar
relations holding when G; is replaced by H;,

(iii) limp, o F = F where F is Cy-continuous, the convergence being uni-
form on the set of end points of contiguous intervals (ak, bix) of the sets
X;,i=1,2,....

Then f is CyD-integrable in [a,b] and F is the CD;-primitive of f.

PROOF. Since (56) implies limk o0 SUP,,, <z<b,, |C1(Gi, @ik, T) — Gi(aiwx)| =0
with similar remark for H;, we conclude that all the hypothesis of Theorem
3 are satisfied and so by Theorem 3, f is D;-integrable in [a,b] and F is the
D;-primitive of f.

It follows from (ii) that if ¢ € (a, bik), then

Gi(t) — Gi(ax) < F(t) — F(aw) < Hy(t) — Hi(awx)
and therefore for z € (a, bix)

C1(Gi; aix, x) — Gi(aix) Ci1(F;aik,x) — F(aix)

<
< Ci(Hizai,z) — H(aw).
Hence

ZZ°=1 Supaek<x<bik ICI(F7 aik,.’l:) - F(aik)l
(57) S Zl?;l Supaek<z<bak Icl (Gi; ik, :B) - G'i(a'ik)l
+ il 8UPqg,, <z<bi [C1(His aik, T) — Hi(ask)| < oo

Similarly

[o ]

(58) > sup  [Ci(F;bik,z) — F(bix)| < 0o,

k=1 @ik <T<bik

From (55) and (iii), F € VB(X;) for each i. Since F is Cj-continuous in
[a,b], F is D;-continuous in [a,b]. The conditions (57) and (58) show that the
conditions (43) of Lemma 7 are also satisfied for the set X; and the contiguous
intervals {(aik, bix)}. Hence by Lemma 7, F is continuous on X; (relative to
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X;) for each i. Since F is a Di-primitive of f, F is ACG and hence F
satisfies Lusin condition (N) on [a,b] (cf. [7, page 225, Theorem 6.1]). Hence
F € AC(X;) for each i [7, page 227, Theorem 6.7]. So from (57), (58) and
[8, Theorem II] we conclude that F' is AC* (C;-sense) on X; for each i. Since
[a,b] = UL, X; and F is C;-continuous on [a b], F is ACG* (C;-sense) on
[a, b]. Smce F is D,-primitive of f, F, = f almost everywhere in [a,b].
Hence by [8, Theorem IIl] C;DF = f almost everywhere in [a,b]. So f is
C) D-integrable in [a, b] and F is its Cy D-primitive.

Remark 5 Analogous results hold for the GM-integral of Ellis [2]. It may
be noted that these results are known for the D*-integral (see [1], [3], [4] re-
spectively).
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