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 CONVERGENCE THEOREMS FOR
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 INTEGRAL

 1. Introduction

 We prove three convergence theorems for the approximate mean continuous
 integral, the D' -integral, which was recently introduced in [5] by the present
 authors and which is more general than the C'D- integral of Sargent [8]. Also
 in three other theorems results analogous to those for the CiD-integral are
 deduced.

 2. Preliminaries

 The Lebesgue measure will be denoted by ß. The general Denjoy integral and
 the special Denjoy integral will be denoted by D and D* respectively.

 Definition 1 A function F : E -»M, where M is the set of reals and E C M, is
 said to be generalized absolutely continuous or AC G on E if E can be expressed
 as countable union of closed sets on each of which F is absolutely continuous
 and is written F G ACG(E).

 This definition of ACG differs from [7, page 223] in that we are not using
 continuity.

 Definition 2 Let F be a real valued function defined on [a, b ] and let c G [a, &].
 Let F be D -integrable in some neighborhood ofc. If there is a finite real number
 L and a measurable set Ec C [a, 6] having c as a point of density (one sided
 point of density if c = a or c = b) such that for e > 0 there is 6 = 6(e) > 0
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 such that -^zz(D) F(t) dt - L < e whenever x € Ec and 0 < |x - c' < <5,
 then L is said to be D'-limit of F at c and we write Di-limt->cF(t) = L.
 The function F is said to be D'-continuous at c if Di-limt-+c F (t) = F(c).
 In other words F is Di-continuous at c G [a, 6] if F is D -integrable in some
 neighborhood of c and F(c) is the approximate derivative at c of its indefinite
 D -integral F is said to be D'-continuous on [a, 6] if it is D'-continuous at
 every point of [a, 6] .

 Definition 3 Let a sequence of functions {Fn} be defined on [a, 6], If E C
 [a, 6], then {Fn} is said to be absolutely continuous on E uniformly in n or
 U AC on E if for e > 0 there is 6 = 6(e) > 0 such that for every sequence of
 non-overlapping intervals {(aj t,/3fc)} with end points on E andJ2(ßk-&k) <
 we have J Zk I Fn(ßk) - Fn(cxk) | < £, for all n. Clearly if {Fn} is U AC on E,
 then it is U AC on every subset of E .

 The sequence {Fn} is said to be UACG on E if E = Xi closed
 and {-Fn} is U AC on each Xi. Clearly if {Fn} is UACG on E, then every
 closed subset of E has a portion on which the sequence {-Fn} is U AC.

 If c e [a, b] and if for every e > 0 there is 6 = 6(e) > 0 such that

 I Fn(x) - Fn(c)' < e whenever x e [a, 6], 'x - c| < <5,

 for all ni then the sequence {-Fn} is said to be equicontinuous at c. It is clear
 that if the sequence {Fn} is equicontinuous at each point of [a, 6], then by the
 compactness of [a, 6], for every e > 0 there is 6 > 0 such that

 |Fn(x') - Fn(x")' < e whenever x' x" e [a, 6] and 'x' - x"' < <5,

 for all n.
 Let each Fn be D-integrable in [a, 6] and let c e [a, 6] . If there is a measur-

 able set Ec C [a, 6] having c as a point of density (one sided point of density
 if c - a or c = b) such that for e > 0 there is 6 = 6(e) > 0 such that

 1 fx
 I
 X ~ C J c

 for all n, then the sequence {Fn} is said to be equi-D'- continuous at c.

 Definition 4 [5] A function f : [a, 6) - ► M is said to be D'-integrable on [a, Ď]
 if there is a D '- continuous, AC G function 0 : [a, 6] - > M such that <1>'ap = /
 almost everywhere in [a, b]. The function <j> is said to be an indefinite D'-
 integral of f and <f)(b) - 0(a) is the definite integral of f on [a, 6]. The definite

 integral is denoted by (D') f(t) dt or simply (D') f* f.
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 The function f is said to be D'-integrable on a measurable subset E of
 [a, 6] if f e is Di-integrable on [a, b] where /# is defined by

 fM = //(*)*/*€£ < JEW fM = <
 [0 if X £ E

 and we wńte f G D'(E). We shall take (D') JEf = ( D' ) /#.

 It follows that the Di-integral is strictly more general than the GM'-
 integral of Ellis and the CiD-integral of Sargent (cf. [5]).

 The following theorems will be needed later.

 Theorem C. (Cauchy property of the D i -integral). If f is D'-integrable in

 [a,ß' for every ß, a < ß < b, and if Di-limß_+b-(Di) f = L, then f is
 Di-integrable in [a, 6] and (D') fa f = L.

 Theorem H. (Harnack property of the D' -integral). Let E C [a, b] be a
 closed set with complementary intervals Ik = (a*;, òfc), fc = 1, 2, . . . . Let f e
 Di(E) and f e Di([ak, bk]) for each k with Fk{x) = (D') /a* /, <x <bk-
 Let (if there are infinite number of intervals Ik)

 (0 E£.il(2>i)JÍ/l<00

 (ii) limfc-,00 supl6(ajt)6fc] I jè^!âk Fk(t)dt' = 0.

 Then f is Di-integrable in [a, 6] and (D') f = (Di) JBf + J2k(D i) fa* /•

 Theorems C and H are proved in [5].

 Remark 1 It may be noted that Sargent [8] has obtained the Harnack property
 for the C'D -integral with the conditions (i) and (ii) replaced by

 °° ^ ļ ÇX
 (a) V* ^ sup

 k=lak<x<bk x~akJak

 oo ļ çbk
 iß) T sup  ajfc <x<bk v k % Jx

 (see [8 j property BJ). But (a) and (ß) together imply (i) and (ii) and so our
 conditions (i) and (ii) are more general In fact from [8, Lemma III] we get
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 that £r=i |/£ f(t)dt' = ZtLi I Fk(h) - Fk(ak)' < H^k(ak,bk) where H
 IS CL COTlStūTlt CLTìd

 I 1 fX
 Wfc(cifcA) = max-[ sup

 ūk<x<bk I x ak Jak

 sup T * ~ - f Fk(t) dt - Fk(bk) }. ak<x<bk * k x Jx

 Since Fk(ak) = 0; (a) and ( ß ) imply < 00 implying (i).
 Also convergence of the series in (a) implies (ii).

 We also need the following theorem of Romanovskii whose proof can be
 found in [1, page 36, Theorem 46].

 Theorem R. Let F be a non-empty system of open subinteruals of the bounded
 open interval (a, b) that has the following four properties:

 (1) if (a, ß) and (/J, 7) are in F then so is (<2,7);

 (2) if (a, ß) G F then every open subinterval of (a, ß) is also in F;

 (3) if every proper open subinterval of (a, ß) is in F then (a, ß) € F;

 (4) if all the contiguous intervals in (a, 6) of a non-empty perfect subset
 E of (a, 6) are in F , then F contains some interval (a, ß) such that
 (a, ß) fi E 0.

 Then (a, b) € F.

 3. Main Results

 Lemma 1 Let fn € Di([a,6]) and Fn(x ) = (D') f* /n, a < x < b, for each
 n and let {Fn} be U AC on a closed set E C [a, 6]. Let {{ctk,ßk)} be the
 contiguous intervals of E on [a, 6], F^n = (Di) J^k fn , &k < x < ßk and if
 there are infinitely many intervals {(otkißk)}, let

 (1) lim sup - - - (D) [ Fkin(t)dt =0 k-+°°x€(ak,ßk) X-ak Jak

 for all n. Then fn is Lebesgue integrable on E for all n and for € > 0 there
 is 6 = 6(e) >0 such that for all measurable set A, A C E with ß(A) < 6 , we
 have I (L) JAfn I < s for all n.
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 Proof. Since Fn is absolutely continuous on the closed set 25 , the function
 <fin where 0n = Fn on 25 and </>n is linear in the closure of all contiguous
 intervals [a*,/?*], is absolutely continuous on [a, 6]. Since (f)fn = ( Fn)fap almost
 everywhere on E and ( Fn)'ap = fn almost everywhere on [a, 6], (j)fn = fn almost
 everywhere on E and so the first part follows.
 Let e > 0. There is <5 > 0 such that for every sequence of non-overlapping

 intervals {[rp, sp ]} with end points on 25, and ^2p(sp - rp)<6 we have for all
 n

 (2) £ i (Di) r /„i = 1 - F"(r?)i < £/3-
 p rp p

 Let now A be a measurable subset of E with ß{A) < 6. We may suppose that
 each point of A is a limit point of E from both sides. Then there is a sequence
 of open sets {Gm} such that Gm D Gm+ 1 D A and lim™-^ /x(Gm) = ß(A).
 We may further assume that for each m the end points of the constituent open
 intervals of Gm are in 25. Let = U ifamiiVmi) i Em = U ¿(25 n [xmiì Umi)*
 Denote by ( amij,ßmij ) the contiguous intervals of 25m in [xmi,ymi]. Then
 Gm ^ Em = ^ij (ot-mij ? ßmij ) • Clearly Qimij i ßmij ^ 25* Choose Trio such that
 if m > 777-0 j then ¿¿(Gm) < Hence from (2) we have

 fVrni rßmij

 (3) y. i w J / /«i < £/3 and E iw / /«i < £/3 ¿ J &rni ij * Olmij

 whenever m > mo and for all n. Now if there is only a finite number of
 contiguous intervals of 25 n then

 rVmi r rßmij

 (4) (Dt) fu = {L) /n + EW/ fn.
 J Xmi ** ^n[lmt j ** OCmij

 So suppose there are infinitely many contiguous intervals of E fi [xmi,ymj'.
 Then from (1) we have for all n

 (5) lim sup I
 J x amij Jamij

 where Fmijtn = (£>i) f*mi. /„, amij < x < ßmij ■ Now from (3) and (5), the
 conditions (i) and (ii) of Theorem H are satisfied for the set E fi [ xmi , ymi ] and
 the contiguous intervals {amij,ßmij) of Er' [xmi,ymi] in [xmi, ymi). Hence by
 Theorem H we have (4). Thus (4) being true for all cases, by summing the
 expressions in (4) over i and taking m > mo, we have from (3) that

 (6) I (L) f fn' = '(L)[ fn' < 2e/3
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 for all n and all m> mą. Since fn is Lebesgue integrable on E, there is 6n > 0
 such that for every measurable subset B of E with ß(B) < <5n, we have

 (7) '{L)ļBfn <£/3-
 Since Gm D A and limm_0oM<2m) = ß{A), limm_oo ß(Em ~ A) = 0. So
 there is mi > mo such that ß(Em ~ A) < 6n for all m > mi- Since A C Emi,
 from (7)

 (8) (I) / /„ - (L) f fn = ( L ) f /„ < e/3.
 I J Emi JA J Emi ^ A

 So from (6) and (8) we have for all n, '(L) JAfn' < £•

 Lemma 2 Let fn be Lebesgue integrable on [a, 6] and Fn(x) = (L) f* /n, a <
 z < b, for each n and let {Fn} be U AC on [a, 6]. Then for e > 0 there is
 6 = 6(e) > 0 such that for each measurable subset A of [a, 6] with ß(A) < 6 ,
 we have |(L) fAfn' < £, for all n.

 This follows from Lemma 1.

 Lemma 3 Let X C [a, 6], X closed and let {Fn} be a sequence of functions
 on [a, b] which is U AC on X and let {Fn} converge to F on X U {a} U {&}.
 Let Gn be Fn on X U {a} U {6} and linear on the closure of each interval of
 [a, 6] ~ X. Then { Gn } is U AC on [a, b'.

 Proof. Clearly {Fn} is U AC on Xu{a}u{b}. Let {(a¿,6¿)} be the collection
 of intervals of [a, b] ~ X. Let e > 0 be given. Then there is 6 = 6(e) > 0 such
 that for every countable collection of non-overlapping intervals {(xj,x'j)} with
 Xj , x'j 6 X U {a} U {6} and YKx'j ~ xj) < we have for all n

 (9)

 Let N be such that - a¿) < à. So,
 oo

 (10)
 i=N

 Let M = maxi<¿<w-i{] F{biJ^ai) [}• Then for 1 < i < N - 1,

 I F(bi)-Fn(bj) I
 y. v I bi ļ ļ bi ai ļ J b{ - cii ļ

 + F{a')-fAa^) bi a i < M+ biQ-diQ . 2La , bi a i biQ-diQ .
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 where L = supnmaxi<i<N-i{'F(bi)-Fn(bi)'1 |F(a¿)-Fn(a¿)|} and bio-aio =

 mini^^-i (6¿ - Oí). Let 60 = min(¿, M(^°jj2L)- Let {(xj,xJ)} be any
 collection of non-overlapping intervals with Xj, x'j € [a, 6] and £(x^ - Xj) < So-
 We may suppose (if necessary, by breaking the interval (xj.Xj) into two or
 three subintervals) that either Xj , x¿ € X U {a} U {6} or (xj,xj) C [a¿, &i] for
 some i. Let JZi denote summation over all j for which Xj, iļ G I U {a} U {6}
 and £2 denote summation over the rest. Now for £2 eac^ 3 corresponds
 to an i by the correspondence (xj,xj) C [a¿, 6¿] . We further break £2
 two parts 5^3 and suc'1 ^at ^3 denotes summation over all j in £2 for
 which the corresponding i > N and denotes summation over all j in £2
 for which i < N. Then using (9), (10), (11),

 Ylj 'Gn(Xj) - Gn(xj) I
 = Ell Gn(Xj) - Gn(xj)l + £2|Gn(xJ) - Gn(Xj) I
 = EllGn(^) - Gn(Xj) I 4- £3|Gn(x;.) - Gn{xj)'

 (12) + E4I

 < Y,iWn{x'j) - Fn(xj) ' + 'Fn(bi) - Fn(a,i)'

 < 2e + M(i>v, °-o)+2¿ . 50 < 3e.
 °*0 ttiO

 Hence the result.

 Lemma 4 If for each n, Fn(x) is D 1- continuous atee [a, 6] and Fn(x) tends
 uniformly to F(x), then F(x) is Di-continuous at c.

 Proof. Let e > 0. There is n such that

 (13) 'Fn(x) - F(x) I < e/3 for x G [a, 6].

 Since Fn(x) is D 1 -continuous at c, it is D-integrable in some neighborhood of
 c. Let <pn(x) be the indefinite D-integral of Fn. By the .Di -continuity of Fn
 there is a set E = En having 0 as a point of density and a <5 = <5(£,n) > 0
 such that

 (14) <Mc + h) - 4>n(c) _ < {oih€EQ< |ń| < 6
 h

 Let h € E and 0 < |A| < 6. From (13), since Fn(x) is D-integrable, F(x) is
 Z)-integrable and

 <Mc+/t)-<Mc) _ jc+h dt
 (15) i

 = 'ji(D) i C h{Fn(t) - F(t)} dt' < e/3.
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 Hence from (13), (14) and (15),

 i rc+h

 (16) -(D) J F(t) dt - F(c) < e for h e E, 0 < 'h' < 6.

 Letting /i - > 0 we get from (16)

 ļ pc+h ļ rc+h
 F(c) - e < liminf-(P) / F(t) dt < lim sup T{D) / F(t)dt

 'i- >o h Jc h - >o h Jc
 < F(c)+£.

 Since e is arbitrary, lim/^o a>Pj¿ (D) f^h F(t) dt = F(c). So F(x) is D'-
 continuous at c.

 Theorem 1 Let {/n} be a sequence of D '-integrable functions on [a, 6] and
 let Fn(x) = ( Di ) /* /n, 4>n = ( D ) /* Fnì a<x<b. Let

 (i) lim n-Kx>/n = / almost everywhere in [a, b',

 (ii) {Fn} be equi-Di-continuous and {<j>n} be equicontinuous at every point
 of[a,b',

 (iii) {Fn} and {(f>n} be UACG on [a, b' and {Fn} be pointwise bounded on
 [a, 6],

 (iv) for every perfect set in [a, b] having infinitely many complementary in-
 tervals {(ak,ßk)}

 1 fx
 lim sup
 fc-x» xG(afc,/3fc] x ~ ak Jak

 where Fk,n(x ) = {Dx) f*k /n, ak < x < ßk.

 Then f is D'-integrable in [a, b] and limn_+00(Di) fn = ( D' ) f.

 Remark 2 For D -integral this is the result of [1, page Ą0, Theorem Ą7]. The
 last part of the condition (Hi) i.e. is pointwise bounded on [a, 6], and
 the condition (iv) are absent there since they are redundant for D -integral. In
 fact for D -integrály {Fn} is equicontinuous with Fn(a) = 0 implies that there
 is 6 > 0 such that 'Fn(xf) - Fn(x") ' < 1 whenever 'x ' - x"' < <5, x',x" G [a, 6]
 and for all n. Divide [a, 6] into subinterváls a = Co < c' < •• • < cn = b
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 such that Ci - c¿_i < 6/2 for each 2, z = 1,2,... , iV. Let x € [a, 6]. Then
 X e [ci_i,ci] for some 2. So

 i

 l^níaOI < 'Fn(x) - ^„(Ci-OI + Yi 'Fn(ck-i) - Fn(ck- 2)| < N
 k= 2

 and hence {Fn} is uniformly bounded on [a, 6]. For condition (iv), {Fn} being
 equicontinuous, we have for e > 0 there is ko such that for k > ko, we have
 0(Fn;ajfc,/3fc) < e, for all n and so, for k > ko and for all n and x e ( otkißk]

 Sak Fk,n{t) dt ^ °(Fn, oik , ßk) < £■ Hence

 1 fx
 lim sup I
 k-KX>xe(ak,ßk] X - Oik Jak

 Proof. Let H be the collection of all subintervals (a, ß) of [a, 6] such that
 the theorem holds on [a, ß' and on all of its compact subintervals. Since {Fn}
 is UACG on [a, 6], there is a subinterval I of [a, 6] on which {Fn} is U AC and
 hence by Lemma 2 and Vitali's theorem [6, page 152],

 (17) n^°° lim J [ fn= [ f- n^°° J i J i

 So H is non-empty. Clearly if (a, ß ) and (/?, 7) are in if, then so is (a, 7) and
 if (a, ß) e H , then every open subinterval of (a, ß) is also in H.

 Now we shall show that if every proper open subinterval of (a, /3) is in H ,
 then (a, /3) is also in H. Suppose every proper open subinterval of (a, ß) is

 in H and a < x < ß. Let ipn{t) = (£>1) /j/n> x < t < ß. Since {Fn} is
 equi- Di -continuous at /3, {tpn} is equi-Di-continuous at ß and so, for e > 0,
 there is 6 = 6(e) >0 and a measurable set Eß C [a, b] having ß as a point of
 density such that for all n

 (18) ^{D)1y^n~£<^niß)<j^{D)1yi;n+£
 whenever y € Eß n (/3 - 6, /3).

 Since every proper open subinterval of (a, /3) is in if, we have for every
 proper open subinterval (x* ,y') C (a, /3), / is £>i-integrable on [s', y'] and

 /•2/ rv'

 (19) n-,°° lim 7i- / /„ = / /. n-,°° 7i- 7i'

 Let m = {Dùflf, x < t < ß. Then {ipn} is a sequence of D-integrable
 function, and by (19) ipn converges to ip everywhere on [x,/3). Now for x <
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 t<ß,

 <t>n(t) = f Fn(OdZ= f Fn(Ç)dÇ + J f* Fn(t)dÇ Ja Ja J X

 = f* Fn(Ç)dÇ + J [tFn(x)d^+ Ja J X J X

 = Í Fn(Ç)dÇ + Fn(x)(t - x) + Í tpn(Ç)d£.
 Ja J X

 So

 /2Q' Itļ = |0n(^2) - - Pn (x)(t2 ~~ ¿l)|
 < '<t>n(t2) - 4>n(ti)' + |F„(«)||t2 - *l|,

 for ti,t2 G [x,ß].
 Since {Fn} is pointwise bounded on [a, 6], there is Mx > 0 such that

 (21) |jFn(x)| < Mx for all n,

 and also since {4>n} is equicontinuous at every point on [a, 6], by the compact-
 ness of [a, 6], for e > 0 there is <5 = 6(e) > 0 such that for all n

 (22) '<t>n{xr) - <t>n(x")' < e/2 whenever x' ,x" e [a, 6]

 and 'x' - x"' < 6. Let 6f = min(<5, e/2Mx). Then from (20), (21) and 22),

 I Iti ^nl < £/2 ^x£/2Mx = e whenever t',t2 G [x,/3] and 't2 - ti| < <$', and
 for all n. So the sequence of indefinite integrals of iļ)n is equicontinuous at
 every point of [x, ß). Also since {<f>n} is UACG on [a, 6], from (20) and (21) we
 see that the sequence of indefinite integrals of ipn is UACG on [x,ß'. Hence
 by [1, page 40, Theorem 47], we get

 (23) lim(£>) [%n = (D) /V n_>0° Jx Jx

 Also (23) is true for every subinterval of [x, ß'. That is

 rß rß

 (24) lim (D) / ýn = (D) / foi x < y < ß.
 71 *°° J y J y

 Prom (18) and (24), we get

 (25) ly tp ~ £ - liminfn-.oo ^n(ß)
 < lim sup^^ V„(/ 3) < ;aèj (D) ¡y 4> + e
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 whenever y G Eß fi (ß - <5, ß).
 Letting y - ► ß first and then e - ► 0 we see from (25) that lim^oo V>n(/3)

 and Dļ - ļimt-»/? ip(t) exist and they are equal. Hence by Theorem C, we

 have fx f = Dl ~ limt-/3 V'(i) = limn_oo ipn(ß) = limn_oo /.f fn. Similarly

 /a / = limn-oo /* fn- Hence f*f + fff = limn^oo [/* fn + /„] . That is
 f£ f = limn_00 /„. So (a, ß) S H.
 Let £ be a non-empty perfect subset of [a, b] and let all the contiguous

 intervals of E be in H. We shall show that H contains some interval (a, ß)
 such that (a, ß) fi E ^ fy. Since {Fn} is U AC G on [a, 6], there is a portion
 P = E n [oi,ß' oí E on which {Fn} is U AC. Therefore if {(ak.ßk)} are the
 contiguous intervals of P in (a, /3), then for all n ^2 I (Al) fn' < oo, and
 also from the hypothesis of the theorem (if there are infinitely many intervals

 {(<**> /3fc)})> we have for all n, lim/^«, supxe(Qti/3fc] f*k Fk,n(t)dt = 0.
 Hence by Theorem H,

 (26) (D,) f0 fn = ( L ) f fn + £(Z> i) J i"* fn Ja JP J otk

 for all n. Since {i^} is U AC on P, by Lemma 1, fn is Lebesgue integrable on
 P for all n and the family {/n} has equi-absolutely continuous integrals on P
 [6, p. 152]. Hence by Vitali's theorem [6, page 152, Theorem 2], we get

 (27) lim i fn= Í f.
 n~>0° Jp JP

 Prom the condition (iv) of the theorem, for £ > 0 there is fco, independent of
 n, such that for fc > fco and for all n

 (28) sup - - - (D) [ Fk,n(t)dt <e
 x€(a k,ßk' x ak Jotk

 where Fk<n(t) = ( £>i ) f*k fn, <*k < t < ßk. Since ( ak,ßk ) 6 H, f is Di-
 integrable on [ak,ßk' and on all of its compact subintervals and

 (29) lim (Di) í fn= [ f, OLk<t<ßk.
 n~¥°° Jak J ak

 Let Tk = flk f, ak < t < ßk. Then from (29), Fk,n Tk on [ak,ßk]. Since

 ft rak rt
 4>n(t)= / Fn{t)dt= / Fn(Ç)dt + Fn(ak)(t-ak) + / **,„(0#. Ja Ja J ak
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 we have for t',Î2 € [ak, 0k]

 (30) I Í Fk,n{€)' < '<t>n(t2) - <t>n(t')' + |^n(Ofjk)||Í2 ~ *l|-
 Jt i

 Just as we deduced, using (20), (21) and (22), the equicontinuity of the se-
 quence of the indefinite integrals of tpn, we deduce, using (30) and two other
 relations that the sequence of the indefinite integrals of Fk,n for fixed fc is
 equicontinuous at every point of [ak,ßk' and is also UACG on [ak^ßk]- Hence
 by [1, page 40, Theorem 47], Tk is D- integrable on [a*,/?*] and

 rßk rßk

 (31) lim (D) / Fk<n = (D) / Tfc. n~~>°° Jak Jak

 Also (31) is true if ßk is replaced by £, < t < ßk- Hence from (28), for

 fc > fco supx€(a4)/3ltļ jr^(D) f*k Tk(t) dtļ < e. Since e is arbitrary,

 1 fx
 (32) lim sup

 x-ak Jak

 Further as {Fn} is U AC on P, for e > 0 there is a k' such that

 °° rßk

 (33) Yi l(-°i) Jak / fn I < e. for all n. fc=fci Jak

 Since (ak,ßk) € H,

 (34) lim (D1) fßk fn = (Di) Í ßk f,
 n-*°° J otk Jak

 and so, from (33)

 ~ rßk

 (35) £ |(£>0 / /I < £.
 k = kl J0tk

 So from (35) and (32), all the conditions of Theorem H are satisfied for the set
 P and the contiguous intervals {(a^, ßk)} of P on [a, ß' and hence by Theorem
 H, / is D i -integrable in [a, ß] and

 (36) /VE/V//- J a Jak JP J a fc Jak JP
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 From (33) and (35) ££Lfcl /„ - Efctfc, if" f' < 2e for all n and hence

 00 tßk 00 /-/3t

 <37> ä E J Jafc '»- £ J J /• Ac=A:i Jafc k=k' J

 So from (26), (27), (34), (37) and (36) limn_>oo fn = f. Thus H satisfies
 all the conditions of Theorem R. Hence (a, b) G H. So the result.

 Theorem 2 Let {fn} be a sequence of D '-integrable functions on [a, 6] and
 let Fn(x) = (Di) f* /n, a < X <b. Let

 (i) lim/n(x) = f(x) almost everywhere in [a, 6],

 (ii) {Fn} is U AC G on [a, b],

 (iii) {Fn} converges on [a, b' to a D continuous function.

 Then f is D'-integrable on [a, 6] and J ^ fn = (D i) f.

 Proof. Let [a, 6] = U íXí where {Xi} is a sequence of closed sets such that
 {Fn} is U AC on Xi for each i. From the condition (iii), if F(x) is the limit
 of Fn(x) then F(x) is Di-continuous on [a, b'. Also from (ii), F is AC G on
 [a, 6]. We will show that F'av{x) = f(x) almost everywhere on [a, 6]. Let
 Gn : [a, 6] - ► M be such that Gn(x) = Fn(x) for x e Xi U {a} U {b} and Gn
 is linear in the closure of each interval of [a, b] ~ Xi. Then {Gn} is U AC
 on [a, b] by Lemma 3. Let G(x) = F(x) for x € Xi U {a} U {6} and G be
 linear in the closure of each interval of [a, 6] ~ Xi. Then Gn(x) converges
 to G{x) everywhere in [a, 6]. Write gn(x) = G'n(x) for almost all x in [a, 6]
 and g(x) = f(x) when x € Xi and g(x) = G'{x ) elsewhere in [a, 6]. Then
 gn = G'n = (Fn)'ap almost everywhere in Xi and since fn is D' -integrable on
 [a, 6] for each n, we have ( Fn)'ap = fn almost everywhere in [a, 6] and hence
 gn = G'n = ( Fn)fap = fn almost everywhere in Xi. Since fn converges to /
 almost everywhere, gn(x) converges to f(x) = g(x) almost everywhere in Xi.
 Also for almost all x e [a, b' ~ Xi , gn(x) = G'n(x) - > G'(x) = g(x). Hence
 gn(x) converges to g(x) almost everywhere on [a, 6]. Now each gn is Lebesgue
 integrable in [a, 6] and the primitives Gn of gn are U AC on [a, 6], Hence by
 Lemma 2, {Gn} is a family of equi-absolutely continuous integrals on [a, 6]
 (cf. [6, p.152]) and hence by Vitali's theorem [6, page 152, Theorem 2] g is
 Lebesgue integrable in [a, b] and for a < x < b

 (L) [ g = lim (L) [ gn = lim Gn{x) = G(x).
 Ja n"*°° Ja n-*°°
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 So G'(x) = g(x) almost everywhere in [a, 6]. Thus Ffap(x) = G'(x) = g(x) =
 f(x) for almost all x in Xi. So F'ap{x) = f(x) almost everywhere in Xi. Since
 [a, 6] = (J i Xi and F'ap{x) = f(x) almost everywhere in [a, b' and since F is
 £>i-continuous, AC G on [a, 6], / is Di-integrable on [a, 6] and F is an indefinite

 ^-integral of / on [a, b'. Hence limn_^oo(Z)i) J * fn = lim^oo Fn{b) = F(b) =

 (A)/a6/.

 Theorem 3 Let {fn} be a sequence of D ' -integrable functions on [a, 6] and
 let Fn(x) = (Di) f* fn , a < x <b. Let

 (i) lim^oo/n = / almost everywhere in [a, 6],

 (ii) for each i = 1,2,... ¿/¿ere exist closed sets Xi and D -integrable functions
 Gì, Hi, on [a, 6] such that = [^, e VB(Xi), with

 Gi(v) - Gi(u) < Fn(v) - Fn{u) < Hi{v) - H^u)

 for alln >i whenever u or v E Xi and (in case there are infinite number
 of contiguous intervals of Xi)

 lim sup [- ^ - I (D) f (Gi(x) - Gi(aik))dx |]
 *-°°t€(aifclfcfc] t-aik J aik

 = 0 = lim sup [- - - I (D) [ ( Hi(x ) - Hi(aik))dx' ] t-aik Ja.k

 where {( )} are the complementary intervals of Xi,

 (iii) limn_>00 Fn = F where F is D i- continuous, the convergence being uni-
 form on the set of end points of contiguous intervals (a¿^, bik) of the set
 Xi j i - 1,2,... .

 Then f is D'-integrable in [a, b] and F is the Di-primitive of f.

 Proof. For each i the approximate derivatives (Gi)'ap and (Hi)'ap exist almost
 everywhere in Xi and are Lebesgue integrable on Xi and

 (38) (Gi)'ap(x) < fn(x) < (Hi)'ap(x)

 for almost all x G Xi and for all n > i. Since X^s are closed and U = [a, 6],
 by Baire's theorem there is an interval I contained in some Xm. Since re-
 integrable functions are measurable [5], by (38) and by the Lebesgue Domi-
 nated Convergence Theorem fn and / are Lebesgue integrable on I and

 (39) lim Í fn = Í f.
 n->°° J i J i
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 Let a point x be called regular if there is an interval I containing x such
 that / is i?i-integrable in the closure of I with F its primitive. By (39), and
 by condition (iii) the set of all regular points is non-empty. Let X be the
 set of all x € [a, 6] such that x is not a regular point. The theorem will be
 proved if we show that X is empty. If possible let X ^0. Since X is closed
 and since U¿S1(X H Xi) = X, by Baire's theorem there is an interval (a, ß)
 such that (a, ß)C' X = (a, /3) fl Xp ^ 0 for some p. Let [c, d ] be the smallest
 interval containing (a, ß) D Xp. We shall show that / satisfies the hypothesis
 of Theorem H in the interval [c, d] with E = [c,d] D Xp. By (38) and by the
 Lebesgue Dominated Convergence Theorem / and /n, n > p, are Lebesgue
 integrable in [c, d] fl Xv and

 (40) [ f= n_>0° lim f fn. J[c,d]r'X n_>0° i[c,d]nx

 Let (c, d) ~ X = U kLiick.dk)' Note that / is Di-integrable on each [u,v] C
 (ck.dk) with F its primitive. Since F is Di-continuous, by Theorem C, / is
 Di-integrable on each [cfc,dfc] with F its primitive. Since Ck € Xp , dk G Xp

 'Fn(dk) - Fn(ck) I < |GP(4) - Gp(Cfc)| + I Hp(dk) - Hp(ck)'

 for n > p and since GPi Hp € VB(XP), there is M such that for n>p

 oo

 ^2'Fn(dk) - Fn(ck)' < M.
 k- 1

 Hence for any positive integer K

 K K

 V I F(dk) - F(cjt)| = Um Y] I Fn(dk) - Fn(ck) I < M.
 ' * TL - >00 ' *
 k=l k= 1

 Since iť is arbitrary, this gives K-^i) /I - M. Finally it follows from
 (ii) and (iii) that if x € (ck.dk), then

 Gp(x) - Gp(ck) < F(x) - F(ck) < Hp(x) - Hp(ck)

 and hence for t € [ck.dk]

 |(D) f[F(x)-%)]| < '(D)
 JCk Jck

 + '(D)f[Gp(x)-Gp(ck)}'
 Jck
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 and so lim*-,«, supť€(Cfc)dfc] 'jz^;(D) fCk [F(x)-F{ck)' ' = 0. So by Theorem H,
 / ģis Di -integrable in [c, d] and

 (41) {Di) ídf = (Di) Í / + i**" f.
 Je j[c,d) nx fc=1 Jck

 Since F is the primitive of / on each [e*;, dk] and since Fn converges uniformly
 to F on the set of end points of contiguous intervals (cfc, dk) of the set Xpi we
 get from (40) and (41)

 (42)

 (Dl) fc f = limn-^oo ĄC (Ąnx fn + ^mn-+oo [-Rií^fc) Fn(Ck )]
 = lim„_00[(I)1) J ' fn + EZi(Di) St fn]
 = lim^oo (A) /; fn = limn^oo[Fn(d) - Fn(c)]
 = F(d)-F(c).

 The relation (42) can also be established for every subinterval [u,v] C [c, d].
 In fact, if u , v are in a single [e*;, dk] then F being the primitive of / on [c*, dk)
 (42) is obvious for [u, v] and if u,v € Xpi the proof is as above. Otherwise
 we can break the interval [u,v] into two or three subintervals so that each
 subinterval will come under one of these two cases. Hence F is the primitive
 of / on [c,d]. But this is a contradiction, since (c,d) fi X ^ 0. So X = 0 and
 the theorem is proved.

 Remark 3 Note that the condition (Hi) in Theorems 2 and 3 is weaker than
 the uniform convergence of Fn to F by Lemma Ą.

 Example 1 Let

 f M ^ = ( ~ŽCOSi ^ ' = ļ 0 2/0<X<l/n7T,

 f(x' = J -Źcosi ifx^O
 f(x' * = ' 0 if X = 0

 and

 p ,x) = í sin i if ±<x< 1
 ' 10 ifO<x<l/n7T.

 Then Fn is a Di-primitive of fn. Fn does not converge uniformly in [0,1]
 but converges pointwise to F(x) = sin^, x ± 0, F(0) = 0. Also it converges
 uniformly on the set {^, ż = 1,2,3,...}. Let
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 Then {0} U (U Xi) = [0, 1] and taking Gì = Hi = Fi, the above theorem can be
 applied to determine the Di-integrability of f on [0, 1].

 4. The CiD-integral

 It is known that the CiP-integral of Bur kill, which is equivalent to the Ci re-
 integrai of Sargent [8] is included in the G Mi -integral of Ellis [2]. It is clear
 that the Di-integral is more general than the GMi-integral and hence more
 general than the Ci-D-integral. Therefore the above results also give sufficient
 conditions for the convergence of the CiiMntegrals to a Di-integrable func-
 tion. We deduce here with the help of the above results, that the limit function
 is also CiLMntegrable.

 We refer to [8] for the definition of the CiD-integral which needed the
 concepts of AC * (Ci-sense) and AC G * (Ci-sense), which also can be found in
 [8]. See also [9] for an equivalent definition.

 Let F be D*-integrable in [a, 6]. For convenience we write for x, y €
 {a,b],x¿y, C'(F]x,y) = ^(D*) F(t) dt.

 Definition 5 A sequence of functions {iļi} is said to be U AC* (Ci-sense)
 over a set E C [a, 6] if for all n, Fn is D* -integrable on [a, 6] and for each
 e > 0 there is 6 = 6(e) > 0, independent of n, such that Y^ku^ak->^k) < £
 for every countable collection of non- overlapping intervals {(afcî&fc)} with end
 points on E satisfying ^2(bk - ak) < 6, where

 Wn(o<k,bk) =

 max < sup ICiiFn^aj^x) - Fn(ak)l sup |Ci(Fn; bk,x) - Fn(bk)' >
 I ak<x<bk CLk <x<bk J

 and {i^n} is said to be UACG * (C'-sense) on [a, 6] if there is a sequence of
 closed sets Ei such that [a, 6] = U Ei and {-Fn} is U AC* (Ci-sense) on each
 Ei .

 Considering the definition of the usual AC * and ACG* as in [7] one gets,
 as in Definition 3, the definition of U AC* and UACG* for the sequence of
 functions {-Fn}-

 Definition 6 For each n let Fn : [a, 6] - ► M be D* -integrable and <f>n(t) =

 C D*)flFn , a <t <b. Let x e [a, b'. If for every e > 0 there is 6 = 6(e) > 0
 such that - Fn(x)| < e whenever 0 < 't - x' < <5, for all n, then
 {Fn} is said to be equi-C'- continuous at x.

 Clearly equi-Ci-continuity implies equi-Di -continuity.
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 Lemma 5 Let {in} be a sequence of D* -integrable functions on [a, 6] and let
 <j>n{x) = {D*)f*Fn. Let

 (i) limn^oo Fn = F j where F is a C'- continuous function , everywhere on
 [a, 6],

 (ii) {<t>n} and {Fn} be respectively UACG* andU AC G* -(C'- sense) on [a, 6],

 (iii) (j)n converge to a continuous function (or {<f>n} be equi-continuous) on
 [a,b].

 Then F is ACG * (Ci-sense) on [a, b'.

 Proof. Since {Fn} is UACG* (Ci-sense) on [a, 6], [a, 6] can be expressed as
 countable union of closed sets on each of which {Fn} is U AC* (Ci-sense). Let
 E be such a closed set and {(a^, 6^)} be a sequence of non-overlapping intervals
 with end points on E. Since Fn - ► F where each Fn is D "-integrable on [a, 6],
 and {< fin } is U ACG * on [a, 6] and <pn converge to a continuous function (or {<f>n}
 is equi-continuous), then from [3, pages 40-44, Corollary 7.7 or Corollary 7.9]
 applied on [afc,z] C [ak,bk] we have limn_oo /a* Fn = /o* F, ak < x < bk.
 So limn_oo 'Ci{Fn'ak,x) - Fn(ak)' = Ci{F;ak,x) - F(ak). Hence

 liminf sup |Ci(Fn;0fc,i)-F„(0jfe)|
 n->0° ak<x<bk

 > liminf |Ci(Fn; ak,x) - Fn(afc)|
 n - >oo

 = |Ci(F;afc,x)-.F(afc)|,

 and so

 liminf sup 'Ci(Fn;ak,x) -Fn(afc)|
 n->°° ak<x<bk

 > sup |Ci(F;afc,x) -F(afc)|.
 ak<x<bk

 Thus

 ^2 SUP 'Ci(F;ak,x) - F(afc)|
 ķ ak<x<bk

 < liminf V* sup 'Ci(Fn;ak,x) - Fn{ak)'
 n->°° k ak<x<bk

 and similarly

 £ sup I C^F-^x) - F(bk)'
 jç ak<x<bk

 < liminf V sup 'Ci(Fn-,bk,x) - Fn(bk)'.
 n",0° ak<x<bk



 Convergence Theorems 451

 Therefore since {Fn} is U AC* (Ci-sense) on E, F is AC * (Ci -sense) on E
 and F being Ci-continuous in [a, 6], F is ACG * (Ci-sense) on [a, 6].

 Lemma 6 If {Fn} is U ACG* (Cļ-sense) in [a, 6], then {Fn} is U ACG in
 [a, 6].

 Proof. Let [a, 6] = U Ei where Ei is closed and {Fn} is U AC* (Ci -sense)
 on Ei for each i. Let e > 0 be arbitrary and let 6 = 6(e) be obtained by-
 applying Definition 5 on the set Ei. Let be a countable collection
 of nonoverlapping intervals with end points on Ei such that ^2(bk - ak) < 6.
 Then Y,kun{o>k,bk) < £ for all n. Since 'Fn(bk) - Fn(ak)' < Hun(ak,bk),
 where if is a constant independent of n (See [8, Lemma III] and [9, Lemma
 1].), we have I Fn(bk) - En(ak)' < He. This shows that {Fn} is U AC on
 Ei. This completes the proof.

 Lemma 7 Let X C [a, b] be a closed set. Let F : [a, 6] - ► M be D-integrable
 in [a, 6] and D'-continuous on X. Let F G VB(X) and let

 lim sup 'Ci(F;akìt) - F(ak) | = 0
 1 /joļ ' k->oo ūk<t<bk 1 /joļ ' lim sup 'C1(F]bk,t)-F(bk)' = 0

 ak <t<bk

 where {(aklbk)} is the collection of contiguous intervals of X. (Here the inte-
 gral in the definition ofC'(F, x, y) is taken as D -integral). Then F is contin-
 uous on X relative to X.

 Proof. Let x e X. If x is an isolated point of X , there is nothing to
 prove. So we suppose that x is a limit point of X, say, from the left. Since
 F G VB(X)Ì limt_x_ F(t) exists and is finite, the limit being taken relative
 to X. We may suppose that limt->x- F(t) = 0. We are to show that F(x) = 0.

 Case I Let x be a limit point of U(akibk) from the left. Let e > 0. Then
 there is 6 > 0 such that

 (44) |F(£)| < £ for f £ (x - <5, x) n X.

 From the second of the relations (43) there is fco such that

 (45) |/ F -(bk- (,)F(bk) < e{bk - £) for k > k0 and £ € (afc, bk ).
 Let {(akri,bkn)} be the subcollection of {(afc,òfc); k > fco} such that

 u£U(afc,> AJ c (x - 6, x).
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 Let X - 60 = inf U£Ļļ(afcn,6fcn). Then 0 < ¿o < S. Let t € (x - 60, x). If
 t € U~=1 (ūk„ , bfcTl), then for some n = m say, t € (afcm,6fcm) and so from (45)
 and (44) we have

 (46) IC"1 F
 and for all intervals (akn,b¡ tn) with (ûfcn , ) C (£,x)

 (47) / F < 2£(bkn -akn)'
 'Jakri

 If t e X, then for all intervals (aknibkn) with (afcn,6fcn) C (¿,2;), (47) holds.
 Also if E = (£, x) D X, then from (44)

 (48) I/ f| < ep(E).
 Hence adding all the relations (46), (47), (48) we have by using [7, page 257,
 Theorem 5.1] |/tx F| < 2e(x - t). This shows that

 (49) lim - - i' F = 0.
 t-x- X-t Jt

 Since F is ^-continuous at x, F(x) = 0.
 Case II Suppose x is not a limit point of U (ak,bk) from the left. Then
 for e > 0 there is 6 > 0 such that |F(f)| < e for .£ G (x - <5, x). Hence

 ít F I < £ for t e (x - <5, x) which shows that (49) holds and so F(x) = 0
 as above.

 If x is a limit point of X from the right the proof is similar.

 Remark 4 Lemma 7, which is used in Theorem 6, has some interest in itself,
 since it gives a reasonably sufficient condition under which a D'-continuous
 function (and hence a C'-continuous function i.e. a derivative function) be-
 comes continuous on a closed set.

 Theorem 4 Let {fn} be a sequence of C'D -integrable functions on [a, 6] and
 Fn(x) = (Cl D) fax fn, 4>n{x) = (D*) f* Fn, a< x <b. Let

 (i) limn_oo/n = / almost everywhere in [a, 6],

 (ii) {-Fn} be equi-Ci-continuous on [a, 6],
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 (iii) {jFn} be UACG* (Cásense) and {<f>n} be UACG* on [a, 6] and {Fn} be
 pointwise bounded on [a, 6],

 (iv) for every perfect set in [a, 6] having infinitely many complementary in-
 tervals {(ak,ßk)}

 lim sup I - - - (D*) f Fk,n(t)dt'=Oi
 fc- 1 >°° x€(akißk] x J ak

 uniformly in n, and Fk,n(x) = (C'D) /*fc /n, a* < x < ßk-

 Then f is C' D -integrable in [a, 6] and limn_00(Cřii3) /a6/n = (Ci -D) f-

 Proof. We shall show that under the hypothesis {<f>n} is equicontinuous on
 [a, 6]. Let £ E [a, 6]. Since {Fn} is equi-Ci-continuous at £, for any e > 0
 there is <5 = 6(e) > 0 such that '-¿zj(D*) Fn(t)dt - iļi(OI < 6 whenever
 0 < |x - £| <6, for all n. Hence | <f>n(x) - 0n(O| < e'x - £| + |Fn(OI|z - CI-
 Since {Fn(£)} is bounded, letting ¿o < min [6, l,e /M] where M = M(Ç) =
 sup |Fn(C)|, we have '<pn(x) ~ <Pn( 01 < whenever 0 < 'x - £| < <5o, for all n.
 So {(¡)n) is equi-continuous on [a, 6]. Since UACG * (Ci-sense) implies UACG
 by Lemma 6 and also UACG * implies UACG and since equi-Ci -continuity
 implies equi-Di-continuity, by Theorem 1, / is D i- integrable on [a, b] and

 (50) lim (C'D) i' fn = (Dx) f f = F(b) n->°° Ja Ja

 where

 (51) F(x) = (Di) Í /, a <x <b.
 Ja

 To complete the proof we need to show that / is, in fact C'D- integrable. We
 will first show that F is Ci -continuous on [a, b'. Since (50) is true if b is
 replaced by any x, a < x < 6, Fn - > F everywhere on [a, 6]. Also {0n} is
 equi-continuous and UACG * on [a, 6]. So, by [1, page 40, Theorem 47], F is
 Z)*-integrable in [a, b] and limn_00(D*) Fn = (D*) F. Since this is true
 if b is replaced by any x, a < x < 6, we have

 (52) lim <¡>n(x) = <ļ>(x),

 where <ļ)(x) = ( D *) f* F.
 Let £ be arbitrary point in [a, 6]. Since {Fn} is equi- C' -continuous at £,

 for any e > 0 there is 6 = 6(e) such that for all n

 (53) finfe) - ^n(0 _ < £ whenever 0 < 'x - £| < 6.
 x -Ç
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 Since Fn(£) - ► -F(£)> we have from (52) and (53) letting n - ► oo -
 F(0' < £ whenever 0 < 'x - £| < 6. Hence F is Ci -continuous at £ and so
 on [a, 6]. Then by Lemma 5, F is ACG* (C' -sense) on [a, 6]. Hence by [8,
 Theorem III] we have from (51) C'DF(x) = F'ap{x ) = f(x) almost everywhere

 on [a, b]. So / is C' D-integrable on [a, b] and from (50) limn_00(Ci-D) fa fn =

 (CiD)JÏf.

 Theorem 5 Let {fn} be a sequence of C' D -integrable functions on [a, 6] and
 Fn(x) = (CiD) J 'I fn, (fin (x) = (£>*) f* Fn, a <x <b. Suppose

 (i) limn_oo fn = f almost everywhere on [a, b] .

 (ii) {Fn} and{<f)n} be respectively U ACG* (Ci-sense) andUACG * on [a, 6],

 (iii) Fn converge pointwise to a C'-continuous function and <pn converge
 pointwise to a continuous function ( or{(j)n } be equi-continuous on [a, b').

 Then f is C'D -integrable on [a, 6] and limn_oo(CiD) fn = ( C'D ) f.

 Proof. Prom Lemma 5 we have F is ACG * (C' -sense) on [a, 6] where F
 is the limit of Fn. Since U ACG* (Ci-sense) implies U ACG, by Lemma 6
 and Ci-continuity implies D' -continuity and CiD-integrability implies D'-
 integrability with integrals equal, by Theorem 2, / is Di -integrable on [a, b]
 and

 (54) n^°° lim (CiD) f fn = (Dl) ff. n^°° Ja Ja

 We are to show that / is indeed Ci-D-integrable on [a, 6]. By the given condi-

 tion the left hand limit is F(b). Hence ( D' ) f*f = F(b). This is also true if
 6 is replaced by any x, a < x < b. Clearly F is ACG and Di-continuous on
 [a, b] and so F is a Di-primitive of / and hence F'ap = / almost everywhere on
 [a, b] and since F is ACG* (Ci-sense) on [a, 6], by [8, Theorem III], we have
 C'DF(x) = F'ap(x) = f{x) almost everywhere on [a, 6]. So / is Ci-D-integrable
 on [a, 6] and hence from (54) limn_00(Cii)) fn = ( C'D ) /.

 Theorem 6 Let {/n} be a sequence of C'D -integrable functions on [a, ò] and
 let Fn(x) = ( C'D ) f* fn, a < x <b. Suppose

 (i) limn_-oo/n = / almost everywhere in [a, 6],

 (ii) for each 2 = 1,2,... there exists a closed set Xi and D* -integrable func-
 tions Gi,Hi on [a, 6] such that [a, b' = U G¿, Hi e VB(Xi) with

 (55) Gi(v) - Gi(u ) < Fn(v) - Fn(u) < Hi( v) - ff^u)
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 for n > i whenever u or v e Xi and (in case there are infinitely many
 contiguous intervals of Xi)

 /cgs 2fc=l SUPxG(aifc,&ifc] 1^1 (GiiaikiX) - Gi(ūik) I < oo
 EfcLi suPx€[a,t ,*») 'Ci{Gi;bik,x) -Gi(bik)' < oo

 where {(aik,bik)} are the complementary intervals of Xif with similar
 relations holding when G i is replaced by Hi}

 (iii) limn_00Fn = F where F is C'- continuous, the convergence being uni-
 form on the set of end points of contiguous intervals (a^, bik) of the sets
 Xi, i - 1,2,....

 Then f is C' D -integrable in [a, 6] and F is the C D'-primitive of f .

 Proof. Since (56) implies limfc^ooSupa.fc<:r<:b.fc 'Ci(Gi,aik,x) - Gi(aik)' = 0
 with similar remark for Hi, we conclude that all the hypothesis of Theorem
 3 are satisfied and so by Theorem 3, / is D' -integrable in [a, b] and F is the
 J3i-primitive of /.

 It follows from (ii) that if t e (aikì bik), then

 Gi{t) - Gi(aik) < F(t) - F(aik) < Hi(t) - Hi(aik)

 and therefore for x € ( ūikibik )

 G'(Gi' Q>ik, x) - Gi(ūik) < Ci (F' ūiki x) - F(ūik)
 ^ G i {Hf, aikì x) - H(ūik).

 Hence

 Er=isupaifc<x<6ifc 'Ci(F;aik,x) - F(aik)'
 (57) < Sfc=l suPai|s<x<6i* 'Cl{Gi' ūļk, x) - Gi(ūik) I

 + E^=isuPoik<x<í,iJc'i(-ff¿;Oife^) - Hi{aik)' < 00.

 Similarly

 oo

 (58) sup - F(bik)' < °o,
 k=l aik<x<bik

 Prom (55) and (iii), F G VB(Xi) for each i. Since F is Ci -continuous in
 [a, 6], F is D' -continuous in [a, b]. The conditions (57) and (58) show that the
 conditions (43) of Lemma 7 are also satisfied for the set Xi and the contiguous
 intervals {(a^, bik)}. Hence by Lemma 7, F is continuous on Xi (relative to
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 Xi) for each i. Since F is a -Di-primitive of /, F is ACG and hence F
 satisfies Lusin condition (N) on [a, 6] (cf. [7, page 225, Theorem 6.1]). Hence
 F e AC(Xi) for each i [7, page 227, Theorem 6.7]. So from (57), (58) and
 [8, Theorem II] we conclude that F is AC* (Ci-sense) on Xi for each i. Since
 [a, 6] = U iZiXi and F is Ci-continuous on [a, 6], F is ACG * {C' -sense) on
 [a, b]. Since F is Di-primitive of /, F'ap = / almost everywhere in [a, 6].
 Hence by [8, Theorem III] C'DF = / almost everywhere in [a, 6]. So / is
 CiD-integrable in [a, 6] and F is its C' D-primitive.

 Remark 5 Analogous results hold for the GM'-integral of Ellis [2], It may
 be noted that these results are known for the D* -integral (see [1], [3], [Ą] re-
 spectively).
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