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 CONTINUITY OF MULTIFUNCTION

 Abstract

 This paper summarizes the results related to the study of the con-
 tinuity of multifunctions, separate and joint continuity, selection theo-
 rems, limits of multifunctions and generalized derivatives. The concept
 is based on the notion of Baire continuity and its connection to the
 topics mentioned above is given.

 1. Introduction

 In recent years a considerable amount of research has been devoted to ques-
 tions involving many types of generalized continuity. Perhaps the notion of
 quasi-continuity has been studied most intensively. The main reason for this
 study is a close connection to other continuity types and various applications
 in topology, mathematical analysis, and probability. Among the papers let
 us mention the topical survey of T. Neubrunn [0], giving comprehensive in-
 formation concerning quasi-continuity. Making a slight generalization in the
 definition of quasi-continuity we obtain a new notion of continuity (so called
 ß-continuity or Baire-continuity) which was introduced and studied for its
 deep connection to the following topics:

 • continuity points

 • the Baire property

 • selection theorems

 • dense representation of multifunctions

 • inclusion relations

 Key Words: quasi-continuity, cliquishness, selection, path derivatives
 Mathematical Reviews subject classification: Primary: 54C60, 26A24
 Received by the editors September 7, 1993

 394



 Continuity of Multifunctions 395

 • limits of multifunctions

 • separate and joint continuity

 Our goal is to give a survey of results about Baire-continuity of multi-
 functions mainly those which concern the topics mentioned above. Despite
 the fact that Baire-continuity is more general than quasi-continuity we can
 consider this work as a continuation of those papers which are devoted to the
 latter because both are very closely related. We hope that our survey will
 give new information about approaches to the study of generalized types of
 continuity.

 The proofs are usually included in cases when, according to our opinion, the
 results are not known. Otherwise the reader is referred to the corresponding
 papers as well as to the papers which contain further information concerning
 a given topic.

 2. Notation and Basic Definitions

 Throughout this work, X , Y denote topological spaces and M denotes a metric
 space. If A C X, we use the notation cl(A)ìint(A)ìD(A) for the closure, the
 interior and the set of all points at which A is of second category, respectively.
 By S€(A) we denote an e - neighborhood of A C M, e > 0 i.e., Se(A) = {z £
 M : d(z, A) < e} where d is a metric for M . If A = {z}, we briefly write S€(z).
 If (M, d) is separable, by we denote a metrizable compactification of
 (M,d) (see [7, p.-328, Th.-3, p.-337, Corollary of Th. 19]).

 A multifunction F : X -> V(Y) is a set valued mapping which assigns to
 each element x of X a, set F(x) € V(Y) = {A C Y : A / 0}. For a function /
 (i.e., a single valued mapping) as a rule we write / : X - ► Y . If we consider
 a closed (compact) valued multifunction, we use notation F : X - > C(Y)
 (F : X - ► K>(Y)) where C(y) (/C(y)) denotes the set of all non-empty closed
 (non-empty compact) sets.

 The upper (lower) inverse image F+(A) (F~(A)) is defined for any set
 AC Y as F+(A) = {x e X : F{x) C A}, F~(A) = {x e X : F(x) fi A ¿ 0}.
 Identifying {f{x)} with f(x) we have f+(A) = f~(A) = f~1(A) = {x :
 f(x) e A}. A selection of F : X - ► V(Y) is any function / : X - ► Y such that
 f {x) € F(x) for any x G X.

 Definition 1 (The Baire continuity) Let B be a family of subsets of X such
 that Ö C B C Br U Ö where O = {A C X : A is non-empty open} and
 Br = {A C X : A is of second category having the Baire property }. A
 multifunction F : X - ► P(Y) is lower-B- continuous (upper-B- continuous)
 (briefly l-B- continuous (u-B- continuous)) at a point x if for any open sets
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 V , U with F(x) D V 0 (F(x) C V) there is a set B e B such that B C
 F~(V) fi U (B C F+(V) D U). F is B-continuous at x if it is lower and
 upper B-continuous at x. F is lower B-continuous, upper B-continuous , B-
 continuous if it is so at any point, respectively .

 For B = O we have the well-known notion of upper (lower) quasi-continuity.
 If F is both lower and upper quasi-continuous, then we say that F is quasi-
 continuous. Supposing X is Baire, Ö C Br hence quasi-continuity can be
 considered as a special case of Br- continuity.
 The assumption that F is 1-ßr-continuous (u-ßr-continuous) implies that
 X is a Baire space. The similar situation arises in the setting of l-X>-continuity
 (u-P-continuity) where V = {A C X : A is of second category} (i.e., F is 1-
 P-continuous (u-P-continuous) at a point x if x e D(F~(V)) (x € D(F+(V))
 for any open V with V D F(x) ^ 0 (V C F(x)). Dealing with these cases the
 assumption that X is Baire will be omitted.
 As for historical background, a function of two variables being quasi-
 continuous under the assumption that it is continuous in each variable was
 first mentioned by Volterra (see [3]). A generalization for the case X =
 Y = R can be found in [17]. Another generalization for topological spaces as
 well as for multifunctions was studied in [39], [40], [45]. Further survey infor-
 mation concerning quasi-continuity and its applications can be found in [0].
 Perhaps the first definition of ß-continuity of multifunction and its systematic
 study were introduced in [22], [23], [10]. The reader will be referred to further
 papers in the corresponding sections below.

 3. The Baire Continuity and Other Continuity Types

 It is evident that upper (lower) quasi-continuity implies u-ß-continuity (1 -B-
 continuity). The converse is not true as the following example shows.

 Example 2 Let X = Y = [0,1] with the usual topology and B = Br. Define
 F,G : X -> JC(Y) as

 jp( s _ i {0} if x is irrational
 ^ ' _ ~ ' [0, 1] if x is rational

 v _ J {0} if x is rational
 ^ ' ļ [0,1] if x is irrational.

 On the other hand, within the single valued multifunctions, the following
 theorem holds.
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 Theorem 3 Let Y be regular. If f : X - ► Y is B-continuous , then f is
 quasi-continuous.

 Proof. Suppose that / is not quasi-continuous at p. Since Y is regular,
 there are open sets V, U with p G U, f(p) G V such that f~l{Y ' cl(V)) n U
 is dense in U. f is ß-continuous at p, hence there is a set B G B such that
 B C U n/_1(V). B G BrUÖ , hence B is either open or B = (G'I)UJ where
 G is an open set of second category and 7, J are of first category. If B is open,
 then f~l(Y ' cl(V)) n U D B ^ 0 what is a contradiction with the inclusion
 BcUnf-^V).

 Let B = (G ' I) U J. Since G is of second category, U OG fl int(D(G)) ^ 0.
 Let X e U r'Gnint(D(G))f)f~1(Y'cl(V)). Since / is ß-continuous at x, there
 is a set Bi G B such that B' C UnGr'int(D(G))Df~1(Y'cl(V)). That means
 B i is either open or of second category. Since B' C int(D(G)), B' is of second
 category in both cases. Thus 0 ^ Bi 'I C U n((G'7)U J) C) f~l (Y ' cl(V)) =
 U C'Bnf"1(Y'cl(V)) what is a contradiction to the inclusion B C U n/_1(V).

 The multifunction version of the previous theorem was proved in [22, Th.-
 2.5].

 Theorem 4 Let X be a Baire space and Y be a second countable regular one.
 A multifunction F : X - ► JC(Y) is B-continuous if and only if it is quasi-
 continuous.

 Using the notion of a semi-open set [20] the quasi-continuity can be for-
 mulated as follows.

 Theorem 5 ([38]). Let Q be a family of all semi-open subsets of X (i.e.,
 A C X is semi-open (or quasi-open) if A C cl(int(A)) or equivalently A =
 N U G where G is open and N is nowhere dense such that N C cl(G) ). A
 multifunction F : X - > V(Y) is upper (lower) quasi- continuous iff F+(V) €
 Q (F~(V) G Q) for any open V C Y . That means , the family Q gives a
 characterization of the global lower quasi-continuity and upper quasi-continuity
 (the case B = O).

 In the case B = Br we can obtain similar equivalence [34, Corollary 4].

 Theorem 6 Let X be a Baire space and let Bs = {A C X : A = (G ' I) U J
 where G is an open set , /, J are of first category and J C cl(G) }. If F : X - ►
 K(M), then the following conditions are equivalent

 (i) F is u-Br- continuous (l-Br -continuous),

 (ii) F is u-B s -continuous (l-B s -continuous) ,
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 (iii) F+(V) € Bs ( F~(V ) £ Bs) whenever V is open.

 In connection with the family of semi-open sets as well as the family Bs
 we can consider other ones which have been discussed e.g. in [38], [5].
 Let Vs = {A c X : A is pseudo-open i.e., A = G U N where G is open and
 N is of first category}.
 S = {A C X : A is simply-open i.e., A = G U N where G is open and N is
 nowhere dense}.
 We can see immediately that VPs, 1-5, 1 -Q (u -Vs, u-«S, u-Q) continuities
 in the sense of Definition 1 are equivalent. Owing to this fact, the pseudo and
 simple-continuity are defined as follows in literature.

 Definition 7 A multifunction F : X - > V(Y) is said to be lower (upper)
 pseudo- continuous (lower (upper) simply- continuous) if

 F'{V) € Vs {F+{V) e Vs) (F~{V) G 5 ( F+{V ) e S))

 for any open V C Y .

 Besides the basic relation between quasi, simple, and pseudo-continuity
 (given by Q C S C V) we would like to mention in this section a decomposition
 theorem. Further results will be included in the next sections.

 Theorem 8 ([22, Th. 1.1], [38]). Let Y be second countable and X Baire.
 F : X - y V (Y) (F : X - ► IC(Y)) is lower (upper) quasi- continuous if and only
 if it is lower (upper) pseudo- continuous and l-V -continuous (u-V -continuous).

 The proof follows from [22, Th. 1.1], [30, Th. 6] and Theorem 5. Con-
 sequently, for u-P-continuous (1-D-continuous) multifunction, the following
 equivalences hold [30, Corollaries 13, 14].

 Theorem 9 Let M be a separable metric space and X be a Baire one. Let
 F : X - » V{Y) (F : X - ► JC(Y)) be u-V -continuous (l-V -continuous). Then
 the following conditions are equivalent

 (i) F is upper quasi- continuous (lower quasi-continuous),

 (ii) F is upper simply- continuous (lower simply- continuous),

 (iii) F is upper pseudo- continuous (lower pseudo-continuous).

 Another type of generalized continuity which will be discussed in our paper
 is cliquishness. As for the cliquishness of functions the reader is referred e.g.
 to [4], [12], [46]. The cliquish multifunctions were studied in [32], [33], [8].
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 Definition 10 ([32]). A multifunction F : X - > V(M) is said to be B-cliquish
 at a point p € X if for any e > 0 and any neighborhood U of p there is a set
 B G B such that p| Se(F(x)) ^ 0. F is cliquish if it is cliquish at any point

 x£B

 For a function / : X - > M and B = O Definition 10 is equivalent to that
 of original notion of cliquishness.

 Definition 11 A function f is cliquish atp if for any e > 0 and any neighbor-
 hood U ofp there is a non-empty open set B CU such that d(/(xi), /(£2)) < €
 for any £1, X2 € B where d is a metric for M.

 The main result concerning the cliquishness of functions can be found in
 [12, Th.-l].

 Theorem 12 Let X be a Baire space. A function f : X - > M is O-cliquish
 if and only if the set of continuity points of f is residual.

 More general results were proved in [33, Corollaries 1, 3].

 Theorem 13 ([33, Corollary 1]). Let X be a Baire space. For a function
 f : X - > M (M -separable) the following conditions are equivalent

 (i) f is B-cliquish,

 (ii) the set of B -continuity points of f is residual,

 (iii) the set of B -continuity points of f is dense.

 Theorem 14 ([33, Corollary 3]). Let X be a Baire space. A function f :
 X - ► M (M -separable) is Br -cliquish if and only if f has the Baire property
 i.e., f~l{V) has the Baire property for any open V cY.

 Further results concerning the cliquishness of multifunctions and their se-
 lections will be discussed in section 6.

 Some generalized continuity notions such as a-continuity, somewhat con-
 tinuity, almost continuity, almost quasi-continuity are also related to Baire
 continuity but they are not included in this work. The reader is referred to
 the corresponding papers [13], [15], [39], [41], [42], [43], [48].

 4. The Sets of Upper and Lower Semi-Continuity Points

 In this section we will recall the notion of semi-continuity of multifuntions and
 the structure of the set of semi-continuity points will be discussed.
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 Definition 15 [19, p. 32], [0]. A multifunction F : X - > V(Y) is lower
 (upper) semi-continuous at x e X (briefly Is.c. (u.s.c.)) if x € int(F~(V))
 (x e int(F+ (V))) for any open V C Y such that V n F~(V) ^ 0 (V C
 F+(V)). The set of all points in which F is lower (upper) semi- continuous
 will be denoted by Ci(F) ( CU(F )). Further, put Di(F) = X'Ci(F) ( DU(F ) =
 X'Cu(F)).

 A fundamental result concerning the set of continuity points of quasi-
 continuous functions is due to Levine [20]. A generalization for multifunction
 can be found in [11], [16]. Perhaps, the most general results were proved in
 [22], [23],

 Theorem 16 ([22, Th. 2.1 and 2.2]). Let Y be a second countable regu-
 lar space. If F : X - > V(Y) (F : X - ► JC(Y)) is u-Br- continuous ( l-Br -
 continuous), then Ci(F) ( CU(F )) is residual.

 Theorem 17 ([23, Th. 1 and 2]). If F : X - » /C(M) is u-B- continuous
 (l-B- continuous), then Di(F) ( DU(F )) is of first category.

 Theorem 18 ([30, Th. 6, 7]). Let Y be a second countable topological space.
 A multifunction F : X - > V(Y) (F : X - > /C(Y)) is lower (upper) pseudo-
 continuous if and only if D i(F) ( DU(F )) is of first category.

 From the previous two theorems follows:

 Theorem 19 Let M be a separable metńc space. If F : X - > /C(M) is u-B-
 continuous (l-B -continuous), then F is lower (upper) pseudo-continuous i.e.,
 F~(V) = GU/ (F+(V) = G U I) for any open V C Y where G is open and I
 is of first category.

 In connection with the structure Di(F) ( DU(F )) of a lower (upper) quasi-
 continuous multifunction we mention the results of Ewert and Lipiński [6].

 Theorem 20 ([6, Th. 15, 16]). Let Y be a second countable space. If
 F : X - > V(Y) is lower quasi- continuous (F : X - > 1C(Y) is upper quasi-
 continuous), then Di(F ) ( DU(F )) is of first category.

 As we can see from Example 2 an analogous theorem does not hold for
 l-#-continuity (u-#-continuity).

 Further results concerning Di(F) and DU(F) will be discussed in section 8
 that is devoted to the limits of multifunction .
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 5. The Baire Property

 In this section we will deal with the Baire property of multifunctions which also
 has a deep connection with the Baire continuity. First we recall a definition.

 Definition 21 A multifunction F : X - » V(Y) has the Baire property if
 F~(V) has the Baire property for any open V C Y .

 This well-known result in this direction says that a function / has the Baire
 property if and only if there is a residual set A such that f/A is continuous.
 Using the Baire continuity concept we can obtain another characterization.

 Theorem 22 ([22-1, Th. 3.3]). Let X be a Baire space and M be a separable
 metric. Then for a multifunction F : X - ► JC(M) the following conditions are
 equivalent.

 (i) F has the Baire property,

 (ii) F is l-Br- continuous except for a set of first category ,

 (iii) F is u-Br- continuous except for a set of first category ,

 (iv) F is Br-continuous except for a set of first category.

 The next characterization is based on the closed connection between the

 Baire property and the upper semi-continuity and the lower quasi-continuity
 in the following sense:

 Theorem 23 ([22, Corollary 2 of Th. 5.6]). Let X be a Baire space and M
 be metric compact. A multifunction F : X - > JC(M) has the Baire property
 if and only if there is a lower quasi- continuous and u.s.c. multifunction G :
 X - > JC(M) such that the set {x € X : F(x) G(x)} is of first category.

 Using selection methods and dense representation we can obtain another
 equivalent set of conditions for the Baire property. These will be discussed in
 section 6. Here we recall only one case which seems to be the most natural.

 Theorem 24 ([1Ą, Th. 5.6]). Let M be a separable metric space and X be a
 topological one. Let F be a multifunction with complete values. Then F has
 the Baire property if and only if there is a sequence {/n}^=i of selections of

 oo

 F having the Baire property such that F(x) = cl( (J {/n(^)}) for any x G X.
 71=1
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 6. Selection Theorems

 The definition of Baire continuity was motivated by the idea of existence of
 quasi-continuous selection [22]. As we will see below, u-ß-continuity which
 is more general then upper quasi-continuity implies the existence of quasi-
 continuous selection. Consequently, within functions, ß-continuity is equiva-
 lent to quasi-continuity as we proved in Theorem 3. This section will also be
 devoted to cliquish and pseudo-continuous selections [29]. A dense representa-
 tion of multifonctions and selections having the Baire property will be given,
 too.

 Perhaps the first result in this direction was proved in [22, Th.-5.3].

 Theorem 25 Let M be a metńc compact space and X be a Baire space. If
 F : X - ► /C(M) is u-Br- continuous, then there is a quasi-continuous selection
 of F .

 A generalization of the previous theorem can be found in [33, Corollary-5].

 Theorem 26 Let M be separable metńc and X be a Baire space. If F : X - ►
 /C(M) is u-B -continuous then it has a quasi- continuous selection.

 Considering a multifunction F : R - » V(R) ( R - the real line with the
 usual topology) defined as: F(x) = {^} for x ^ 0 and F( 0) = R, we see that
 the compactness of values of F is essential.

 A dense representation of a multifunction F : X - > V(Y) is any sequence

 {fn}n =i °f selections of F such that F(x) = cl( (J {/n(z)}) for any x e
 n=l

 X. A dense representation {fn}??=i is called quasi-continuous if fn is quasi-
 continuous for any n.

 The questions concerning a quasi-continuous dense representation were
 studied in [22] where quasi-continuity in the Hausdorff metric on JC(M) was
 considered. The situation is different from that described in Definition 1.

 Recall that the Hausdorff metric h¿ on /C(M) is defined as

 hd(A , B) = max{supx^Bd(xì A ), supx€^d(x, £)}

 where d is metric for M .

 Now we consider A^-quasi-continuity of a multifunction F : X - > JC(M) in
 such a way that we consider F as a quasi-continuous single-valued mapping
 into (/C(M), hd).

 It is easy to see that if F : X - ► K{M) is /i^-quasi-continuous, then it is
 lower and upper quasi-continuous and the converse is not true [41, 1.2.7].



 Continuity of Multifunctions 403

 Theorem 27 Let X be a Baire space and M be a separable metric one. If
 F : X - > IC(M) is hd-quasi-continuous, then it has a quasi- continuous dense
 representation.

 Proof. Considering F as a multifunction into 1C(M°) the proof follows from
 [22, Th.-5.6].

 It is evident that an upper quasi-continuous multifunction need not have a
 quasi-continuous dense representation. It is sufficient to consider multifunction
 F : [0,1] - ► [0,1] defined as F(x) = {0} if x ^ 1 and F( 1) = [0,1]. As for a
 lower quasi-continuous multifunction we have no information about existence
 of its quasi-continuous dense representation.

 Another interesting question concerning selection theorems is the existence
 of cliquish selection. Next theorem concerns a sufficient and necessary condi-
 tion for a ^-cliquish selection.

 Theorem 28 ([33, Th. 1, Corollary 1]). Let X be a Baire space and M be
 a separable metric one. Then for F : X - > JC(M) the following conditions are
 equivalent

 (i) F is B- cliquish,

 (ii) F has a selection which is B -continuous at any x G S where S is residual,

 (iii) F has a selection which is B-continuous at any x eT where T is dense.

 The first part of the following Corollary follows from Theorem 22 and the
 second one from Theorems 12, 18.

 Corollary 29 Under the same conditions on X, M and F as in Theorem 28
 the following conditions hold

 (i) F is Br -cliquish iff F has a selection having the Baire property ,

 (ii) F is O-cliquish iff F has a pseudo- continuous selection.

 For the u-P-continuous multifunctions we can find a sufficient and neces-

 sary condition for existence of quasi-continuous selection.

 Theorem 30 ([33, Th. 2]). Let X be a Baire space and M be a separable
 metric one. Let F : X - > K, (M) be u-V- continuous. Then F has a quasi-
 continuous selection if and only if F is B- cliquish.

 The well-known fact that a function being continuous on a dense set is
 continuous on a residual set can be formulated in multifunction setting as
 follows.
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 Theorem 31 Let X be a Baire space and M be a separable metric one. If
 F : X - > /C(M) is UB- continuous on a dense set, then it has a selection
 which is B-continuous on a residual set Consequently , if F is lower quasi-
 continuous on a dense set (F has the Baire property), then F has a selection
 which is continuous on a residual set (which has the Baire property).

 Proof follows from [33, Corollary 4] and Theorem 12.
 Note that a multifunction being 1-ß-continuous on a dense set need not

 have the Baire property. It is sufficient to consider F : R -> IC(R) defined as
 F(x) = {0} if X is rational, F(x) = [0,1] if x € R ' A and F(x) = [-1,0] if
 X e A, where A is a subset of irrational numbers with D(A) = D(R' A) = R.
 Prom this point of view Theorem 31 seems to be rather general.

 7. Inclusion Relations

 In this section we will deal with inclusion relations between Baire continuous

 multifunctions and quasi-continuous (semi-continuous) ones. In a certain sense
 (as for u-ßr-continuity) we find a nice multivalued selection which is equal
 to a given multifunction on a residual set. Similar results connected with
 multivalued selections can be found in [47].

 By F C G we denote the fact that F(x) C G(x) for any x G X.

 Theorem 32 Let X be Baire and M .be metric compact. If F : X - > IC(M),
 then the following conditions are equivalent

 (i) F is l-Br- continuous (u-Br- continuous),

 (ii) there is a lower quasi- continuous and u.s.c. (lower and upper quasi-
 continuous) multifunction G : X - ► JC(M) such that G = F except for a
 set of first category and F C G (G C F) .

 Proof follows from Theorems 1, 2, 5 of [34].

 Theorem 33 Let X be a Baire space and M be separable metric. If F :
 X JC(M) is u-Br -continuous, then there is a sequence {/n}£Li of quasi-

 oo

 continuous selections of F such that cl( (J {/n(^)}) = F(x) except for a set
 n=l

 of first category.

 Proof. Considering F as a multifunction into JC(M°) the proof follows from
 ' [34, Th. 4].
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 8. Limits of Multifunctions

 J. Ewert [9] has investigated the set CU(F) ( Ci(F )) of multifunction which is a
 limit of sequence of lower (upper) quasi-continuous compact valued multifunc-
 tions. The similar questions were studied in [21] for limits of c-quasi-continuous
 multifunctions. In both papers, convergence in the Hausdorfï metric was con-
 sidered. As we shall see the results can be generalized in two directions. The
 lower quasi-continuity will be replaced by 1-ß-continuity and convergence in
 Hausdorff metric can be replaced by upper Kuratowski limit [27], [35].

 Note that the upper (lower) Kuratowski limit [18, p. 241] of a given se-
 quence of sets is defined as the set of all points x such that every
 neighborhood U of x the set {n : An fi U ^0} ({n : An fi U = 0}) is infi-
 nite (finite). The upper (lower) Kuratowski limit of {An}^=1 will be denoted
 by Ls(An ) ( Li(An )). We say that a multifunction F : X - ► V(Y) is upper
 (lower) Kuratowski limit of a sequence of multifunctions Fn : X - ► V(Y) if
 F(x) = Ls(Fn(x)) (F(x) = Li(Fn(x ))) for any x e X. We write F = LsFn
 (F = LiFn).

 The main result proved in [9] says that if FnìF : X - ► JC(M) {X- topo-
 logical space, M-separable metric) are multifunctions such that Fn are lower
 (upper) quasi-continuous and F = LsFn = LiFn , then DU(F) ( D¡(F )) is of
 first category. There are example in [9] that Di(F) ( DU(F )) need not be of
 first category.

 As for a sequence of 1-ßr-continuous multifunctions one can find a gener-
 alization of Ewert result in [27].

 Theorem 34 ([27, Th. 1 and Remark lc]). Let X be a T'-Baire topological
 space, Y be a compact metric one. If F = LsFn, where Fn : X -+V(Y) are
 l-Br -continuous, then DU(F ) is of first category.

 As the following example shows an upper Kuratowski limit of a sequence
 of upper quasi-continuous multifunctions need not be l.s.c. at any point.

 Example 35 There is a sequence of quasi- continuous functions fn : [0,1] - >
 [0,1] such that Ci(F) = 0 where F = Lsfn. The interval [0,1] is considered
 with the usual topology. Moreover, every selection of F is discontinuous at
 any point.

 Proof. Let A = { ak }fcLi, B = {b^^Ļi be dense disjoint subsets of (0,1).
 Let fn : [0,1] - ► [0,1] be a continuous function such that fn{o>k) = 1 and
 fn(bk ) = 0 for k < n. Then F(x) = Lsfn(x) is non-empty compact subset
 of [0,1] for any x G [0, 1]. Since F(x) = {1} for x e A and F(x) = {0} for
 xeB, Q(F) = 0.
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 Despite the fact that the behavior of the multifunction F from Example
 35 is very "bad" there is a multivalued selection of F which is "nice" as we
 will see from the following theorem.

 Theorem 36 Let X be a Ti-Baire topological space , M be a compact metric
 one. Let a multifunction F : X - y /C(M) be an upper Kuratowski limit of
 a sequence {Fn : X - ► V{M)}^=1 of u-Br -continuous multifunction. Then
 there is a multifunction G : X - y K(M) such that G C F and the sets {x G
 X : F(x) ± C7(x)} and DU(G ) are of first category.

 Proof. Define cl(Fn) : X - ► /C(M) as cl(Fn)(x) = cl(Fn(x)) for any x and
 any n. It is easy to prove that cl(Fn) is u-ßr-continuous and Lscl(Fn) =
 F. By Theorem 33, for any n = 1,-2,... there is a lower quasi-continuous
 multifunction Gn : X - > IC(M) such that Gn C cl(Fn) and An = {x G X :

 oo

 Gn(x) = cl(Fn(x))} is residual (more precisely Gn(x) = cl( (J {fh(x)}) where
 i=i

 {fn)i^i is from Theorem 33). It is clear that for any x e X Ls(Gn(x)) is a
 non-empty closed subsets of F(x). Since F(x) is compact for any x G X, a
 multifunction G = LsGn is compact valued and by Theorem 34, DU(G ) is of

 oo

 first category. Moreover, G(x) = F(x) for any x G fi Ai-
 71=1

 The next theorem is perhaps the most general result concerning the exis-
 tence of selection with the Baire property.

 Theorem 37 Let X be Baire and M compact metric. Let F :X - >JC ( M ) be
 an upper Kuratowski limit of a sequence {Fn : X - ► of Br -cliquish
 multif unctions. Then F has a selection having the Baire property.

 Proof. By Corollary 29, Fn has a selection fn having the Baire property.
 Since M is compact, a multifunction G = Lsfn C F is non-empty and compact
 valued. It is easy to prove that G has the Baire property. By Theorem 31, G
 has a selection having the Baire property.

 9. Separate and Joint Continuity

 One of the nicest results concerning the quasi-continuity is the Kempisty's
 theorem [17] and its generalization. Under some general conditions on the
 spaces X , Y, M the quasi-continuity of x-sections and y-sections implies the
 quasi-continuity of f : X x Y - > M. Recall, if F is a multifunction defined
 on the product space X x Y, we call an x-section (y-section) for given x G X
 (y G Y) the multifunction Fx : Y - y M (Fy : X - > M) defined as Fx(y) =
 F(x,y) (Fy(x) = F(xiy)). Another result in this direction was proved by
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 Neubrunn [40] dealing with the quasi-continuity of multifunctions. Roughly
 speaking the upper (lower) quasi-continuity of Fx and both upper and lower
 quasi-continuity of Fy implies the upper (lower) quasi-continuity of F. There
 is the example in [40] that the lower (upper) quasi-continuity of Fy cannot be
 omitted. For example, the upper quasi-continuity of Fx and Fy for any x G X,
 y G Y does not imply the upper quasi-continuity of F. As we shall see below
 it implies the existence of quasi-continuous selection of F .
 Another direction connected with the separate properties is the problem

 of finding the assumptions on spaces X, Y , M and the sections /x, fy such that
 f : X xY - ► M has at least one point of joint continuity. A recently published
 result [46, Th. 2] is very close to that of [12, Th.-3], assuming the cliquishness
 of fx and the quasi-continuity of fy. Corollary 40 below generalizes both these
 results. The notion of order upper (lower) quasi-continuity of real functions
 raises another questions concerning separate and joint quasi-continuity [41 3].
 A 7T-base ([44, p.-56], [46]) for a space (Y, T) is a subset H of T' {0} such

 that every non-empty set U of T contains a non-empty set G of H.

 Definition 38 Let d be a metric for M. A multifunction F : X - ► /C(M) is
 said to be hd-cliquish at a point x G X (where is the Hausdorff metric on
 K{M) induced by d) if for any e > 0 and any neighborhood U of x there is a
 non-empty open set B C U such that hd{F(a),F(b)) < e for any a, 6 G B. F
 is hd-cliquish if it is so at any x G X. By other words hd- cliquishness of F
 is understood as the original cliquishness of F considered as a function into
 ( K.(M),hd ) (see Definition 11).

 Theorem 39 ([MA 11 , Th. 3]). Let X be a Baire space and Y be locally
 of 7T- countable type (i.e., each open non-empty subset of Y contains an open
 non-empty subset having a countable ir-base). Let F : XxY - > JC(M). If Fx is
 hd-cliquish for any x £ S (S C X of first category) and Fy is u-B- continuous
 for any y G Y, then F is O -cliquish.

 The following consequence of Theorem 39 is a generalization of [46, Th.-2]
 as well as [12, Th.-3].

 Corollary 40 Under the same conditions on X , Y, M as in Theorem 39, the
 Ö -cliquishness of x -sections (except for a set of first category) and the quasi-
 continuity of y -sections implies the O -cliquishness of a function f : X x Y - >
 M. Moreover, if XxY is Baire, f is continuous on a residual set, by Theorem
 12.

 The main result of [32] concerns the existence of a quasi-continuous selec-
 tion.
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 Theorem 41 ([32, Th. Ą]). Let X be a Baire space and Y be Baire locally of
 TT-countable type. Let M be a separable metńc space. If F : X xY - > K(M)
 is a multifunction such that Fx is upper quasi- continuous for any x £ S (S
 is of first category) and Fy is u-B- continuous for any y G Y , then F has a
 quasi- continuous selection.

 Note that u-#-continuity of Fy in Theorem 41 cannot be replaced by 1 -B-
 continuity (see [MA-11, Example]). Further, the multifunction F from Theo-
 rem 41 need not have the Baire property. Consider F : Āx R - ► K,(R) defined
 as F(p) = {0} if p € A and F(p) = [0,1] if P G R ' A where A C R x R is a
 set of second category such that any section of A contains at most two points
 (see [44, Theorem 15.5]). Moreover, A does not have the Baire property [44,
 Theorem 15.4]. It is clear that Fx and Fy are upper quasi-continuous for any
 x,y.

 Using Theorems 34 and 41 we have:

 Theorem 42 Let X be a Baire space and Y be Baire locally of n- countable
 type such that XxY is T'-Baire. Let M be compact metric and let F = LsFn
 where Fn : X x Y - ► /C(M),n = 1,2,... Then upper quasi- continuity of x-
 sections (except for a set of first category) and u-B -continuity of y -sections
 of Fn implies the existence of a multifunction G : X xY - ► JC(M) such that
 G C F and DU(G) is of first category. (Note G = Lsfn where fn are quasi-
 continuous selections of Fn, by Theorem Ą1.)

 Theorem 43 Let X , Y, M,Fn,F be from Theorem Ą2. Then h¿-cliquish- ness
 of x-sections (except for a set of first category) and u-B -continuity of y -sections
 of Fn implies the existence of a selection of F having the Baire property.

 Proof. By Theorem 39, Fn is (9-cliquish, n = 1,2, ... Colloraly 29 implies the
 existence of a selection fn of Fn having the Baire property. It is easy to prove
 that a multifunction G = Lsfn C F has the Baire property. Finally, there is
 a selection of G having the Baire property, by Theorem 31.

 10. Generalized Derivatives

 This section is devoted to an application of multifunction approach to dif-
 ferentiation of the real functions based on the concept of path system which
 was introduced in [2]. The main results include the semi-Borel and projective
 classification of the multifunction of all path derived numbers, its measur-
 able properties as well as the search for a Borei selection of the mentioned
 multifunction.
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 The path system differentiation gives a unified method of the study of a
 number of generalized derivatives. A collection E = {E(x) : x e R} ( R -
 real line) is a system of paths if each set E(x) C R has x as a point of
 accumulation. It can be considered as a multifunction E : R - > V{R),x >- ►
 E(x). By Ef : R - > JC(R*) ( R * - the extended real line with the topology of
 two-point compactification) we denote the following non-empty and compact
 valued multifunction of all ¿^-derived numbers of a given function f : R-> R
 defined as Ef(x) = {y € R* :3a sequence {xn}^°=1 in E(x)'{x} such that
 lim xn = x and lim Xn x = y}- The upper and lower ¿^-derivatives of n- >00 n- »00 Xn x

 f at x are defined as fE = sup Ef(x) and fE = inf Ef(x).
 The Borei and semi-Borel classification of Ef were given in [24] and [26],

 generalizing the results from [1]. We will mention only the main results (for
 more detailed information see [24], [25], [26] containing also the classification
 of approximate and qualitative path derivatives).

 Definition 44 A multifunction F : R - ► V{R*) is said to be of lower (up-
 per) class a, if F~{G) (F+(G)) is in the Borei additive class a for any open
 G C R*. A function f : R - > R* is said to be of lower (upper) class a , if
 /_1((a, 00 >) (/_1(< -00, a))) is in the Borei additive class a.

 Theorem 45 ([31, Th.-5]). Let f be a function of class a. IfGr(E) =(graph
 00

 Of E )= U An x 5|ļ ^ "A-xi ^ 2>n the addtttve Borei class oc, JBf 1 C! jRj then Ejj
 n=l

 is a multifunction of upper class a + 1 and f E (fE) is a function of upper
 (lower) class a + 1.

 Theorem 46 ([31, Th.-6]). If f is Baire 1 and Gr(E) is an Fa-set, then Ef

 is a multifunction of upper class 2 and f E (f'E) is a function of upper (lower)
 class 2.

 Theorem 47 ([31, Th.-7]). Let E be a l.s.c. multifunction and f be a con-

 tinuous function. Then Ef is a multifunction of upper class 1 and fE {fE) is
 a function of upper (lower) class 1. Consequently, Du(Ef) is of first category,
 by [21, Lemma 8].

 In the paper [1] one can find the Laczkovich's example of a function / of
 class 2 and a l.s.c. system of paths E such that f E is not Borei. Hence the
 multifunction Ef is not Borei measurable. As we can see from the following
 theorem Ef has a "nice" selection.

 Theorem 48 ([28, Th. Ą and Corollary 6]). Let E be a closed valued system
 of paths of lower class a {a > 1) and f be a function of class ß (ß > 0). Then
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 (i) there is a multifunction S : R - * of upper class a + ß + 1 such
 that S C Ef,

 (ii) Ef has a selection of class a + ß + 2,

 (iii) if f has E-derivative (i.e., f'E = f ), then it is of class a + ß + 1.

 As for the measurability of Ef the main results can be found in [31]. Given
 a family M of subset of R, we say that a multifunction F : R - ► V(R*) is
 ^-measurable if F~(G) G M for any G open in i?*.

 Theorem 49 [31, Th. 22]). Let E have closed values. If f and E are A4-
 measurable where M is a a -algebra closed with respect to operation A (see

 [KU-1, p.-4]), then fE, f , Ef are M-measurable.

 Corollary 50 Let E have closed values. If f and E are Lebesgue measurable

 (have the Baire property ), then f E, fE, Ef are Lebesgue measurable (have the
 Baire property).

 Theorem 51 ([31, Corollary 18]). If f is Borei measurable and Gr(E) is a
 Borei set, then EJ(K) is an analytic set for any closed K C R* .

 Theorem 52 ([31, Corollary 2Ą]). Let E be Lebesgue measurable with closed
 values. IfGr(E) belongs to a a -algebra generated by {Ax B : A, B are Lebesgue

 measurable }, then fE, f , Ef are Lebesgue measurable.

 Without quoting we note that the paper [31] also contains the projective
 classification of Ef and the extreme ^-derivatives.
 We will close this section by a solution of Mišik's problem concerning the
 Lebesgue measurability of primitive function [37]. An extended real number
 a is the E- approximate derived number of a function / : R - > R at a point
 p , if the outer upper density of {x e E(p) ' {p} : ^ *s Pos^ive
 at p for any open G C R* such that a e G. The upper (lower) extreme E-
 approximate derivative is defined as the supremum (infimum) of the set of all
 ^-approximate derived numbers, respectively.

 Theorem 53 ([26, Corollary 5.4])- Let E a one-sided system of paths such
 that E{x) is Lebesgue measurable for any x. If a function f has one of the
 extreme E -approximate derivatives finite except for a set of Lebesgue measure
 zero , then f is Lebesgue measurable.
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