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 Abstract

 Over the last decade considerable progress has been made in develop-
 ing extensions of the Lebesgue integral which provide the Gauss-Green
 theorem for noncontinuously differentiate vector fields and remain in-
 variant under groups of transformations including diffeomorphisms. One
 particular extension, an averaging process defined by W. F. Pfeffer, ac-
 complishes this in the setting of bounded sets of bounded variation - the
 most general class of sets for which the notions of "surface area" and
 "exterior normal" can be profitably defined. In this survey article we
 recover all of the notable geometric features behind Pfeffer 's extension
 in the less forbidding (vs. bounded sets of bounded variation) setting of
 figures, i.e. finite unions of compact intervals.
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 360 Jeff Mortensen

 1. Introduction

 Let M be an ra-dimensional compact oriented C 1 manifold with boundary,
 and let u; be a differentiable (ra - l)-form on M. If u is continuously differen-
 tiable, then using Stokes' theorem, we can recover fdM u from du by means
 of ordinary integration:

 [ U = [ du. JdM JM

 However, if u is merely differentiable, the integral fM du need not exist (even
 in the Lebesgue sense). Yet, fdM u is still uniquely determined by du. Indeed,
 if rj is a differential form on M with dr¡ = du , then d(rj - u) = 0, and it follows

 from Stokes' theorem that JdM rj = JdM u. Thus a natural problem is to find
 an averaging process on M that enables us to calculate fdM u from du for any
 u which is differentiable, but not necessarily continuously.

 The desired global averaging process can be obtained by standard means
 from a local geometric integral , i.e., an integral in Rm which

 1. extends the Lebesgue integral;

 2. integrates partial derivatives of differentiable functions so that the Gauss-
 Green theorem is satisfied;

 3. is coordinate free, i.e. invariant with respect to a group containing all
 diffeomorphisms.

 For dimension one this question has been resolved for some time. In this
 article we are concerned with a recent extension given by W. F. Pfeffer. Doubt-
 less, the most useful version of the integral is obtained when as in [3] it is
 defined using the family BV of bounded sets of bounded variation; these sets
 afford a very general notion of "surface area" and "exterior normal". The
 family BV also has an important compactness property which has been used
 to solve variational problems of geometric measure theory. But the technical
 difficulties connected with the local behavior of BV sets tend to obscure the

 simple geometric ideas behind the integral.
 For this reason, we here confine ourselves to a version defined by means

 of such simple geometric objects as figures (finite unions of compact inter-
 vals). After some preliminaries - familiarity with the Lebesgue theory as well
 as with Hausdorff measure is presumed - we start with a treatment of the
 one-dimensional HK-integral developed independently by R. Henstock [3] and
 J. Kurzweil [3] in the 1950 's. While the HK-integral possesses all the properties
 of a geometric integral in Ä, its natural extension to Rm does not. The very
 fact that the (unrestricted) Fubini theorem holds [3] precludes property 2 of a
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 geometric integral [3, section 11.1]. Consequently, two refinements are intro-
 duced: first the gage integral (sections 4. and 7.) which satisfies properties 1
 and 2 of a geometric integral, and then the final version in section 8..

 In the preparation of this survey I benefited greatly from several discussions
 with Washek Pfeffer.

 2. Preliminaries

 All functions are real valued and the set of all real numbers is denoted by R.
 Our ambient space is the ra- fold Cartesian product of ii, denoted by i?m; here
 m is a positive integer. For x = (£i, ...,£m) and y = (771, ...,77™) in Äm, we let

 m

 x-y = ^2£jT)j , ||x|| = Vx-x, and |x| = max{|£i|, |£m|} .
 j = 1

 In Rm we use exclusively the metric induced by the norm |x|. If E C Rm then
 ci E, E° , d E , and d(E) denote, respectively, the closure, interior, boundary,
 and diameter of E. For x G Rm and e > 0, we set U(x,e) = {y G Rm :
 'x - y' < e}. The fc-dimensional (outer) Hausdorff measure Hk in Rm is
 defined so that it agrees with the fc-dimensional Lebesgue measure in Rk C
 Rm for k = 1 H° is the counting measure in Rm. A set E C Rm
 with Hk(E) = 0 is called Hk -negligible. We say two sets C, D C Rm are
 nonoverlapping if C D D is 7im-negligible.

 By an interval we always mean a compact nondegenerate subinterval of
 Äm, i.e. the product K = where dj < bj are real numbers for j =
 1, . . . , m. A dyadic cube is an interval of the form [fcj2~n, (kj + l)2~n] where
 n, fci, fc2, • • • are integers. If C and D are dyadic cubes, then either C C D,
 D C C or they are nonoverlapping, i.e. have disjoint interiors. Consequently,
 if C is a family of dyadic cubes it can be replaced with a nonoverlapping
 subfamily JC such that (J/C = |JC. A figure in R171 is a finite (posssibly empty)
 union of intervals in Rm .

 3. Partitions

 A partition in R771 is a collection (possibly empty)

 P = {(Ai, xi ),..., (Ap, Xp)}

 where . . . , Ap are nonoverlapping sets in Rm and x¿ G Ai for i = 1, . . . ,p.
 Throughout sections 3 to 7 the sets Ai will always be intervals; in section 8
 they will be figures. The points xi, . . . ,xp are called the anchor points of P,
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 and the set of all anchor points (called the anchor of P) is denoted by anP; if
 anP C E , we say P is anchored in E. Given a function / on a set E C Rm and
 a partition P = {(Ai,xi), ..., ( Apixp )} anchored in ¿5, we define the Stieltjes
 sum

 a(f,P) = Zf(xi)Hm(Ai).

 If 6 is a nonnegative function on a set E C Pm, then a partition P = {(Ai, xi),
 ...,(Ap,Xp)} anchored in E is called 6-fine whenever d(Ai) < ¿(x¿) for i =
 l,...,p; if ¿(x) = 0, then x cannot occur as an anchor point of a ¿-fine
 partition.

 The set (J?=1 is called the body of P, denoted by (J P. We say that P is
 a partition in A whenever [jP C A, and a partition of A whenever (J P = A.

 Lemma 3.1 Let A C Rm be an interval. For each positive function d on A
 there is a 6-fine partition P = {(j4i,xi), (Ap,xp)} consisting of intervals.
 In particular y if A = n£Li[r¿> si' where r i , s» o,re integers , then we may assume
 P consists of dyadic cubes .

 Proof. Suppose there is no ¿-fine partition of A. Then there is a nested
 sequence {Ai} of subintervals of A (with decreasing diameters) such that each
 Ai has no ¿-fine partition. By the nested intervals theorem fiSi Ą = {x} for
 some x e A. Now we have a contradiction: Certainly d(Ai) < 6(x ) for some
 i and consequently {(^4¿,x)} is a ¿-fine partition of A{. This proves the first
 statement; the specialization to dyadic cubes is similar. □

 If ¿ is not positive on all of A we have recourse to a result of E. J. Howard [3,
 Lemma 5].

 Lemma 3.2 Let A = where are integers. If T C A, S is a
 positive function on A - T, and C is any collection of dyadic cubes contained
 in A with T C (UO°> then there is a finite nonoverlapping subcollection V of
 C and a 6-fine partition {(Ai,xi), ..., ( Apixp )} (consisting of dyadic cubes ) in
 A such that

 Ae{Jp = {Jv.

 Proof. We may assume that C is nonoverlapping. Set

 Í 6(x) if xeA-T
 M*) = <

 ( min {d(C) : C G C, x G C} if x G T.

 Let {(j4i,xi), (j4r,xr)} be a ¿+-fine partition of A consisting of dyadic
 cubes. Define V = {C G C : Ai C C for some %). Now since C is nonover-
 lapping, V is finite. If Ai overlaps with D G P, then either Ai d D ox D
 is a proper subset of by the property of dyadic cubes. The latter case
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 is impossible since D contains an Aj that does not overlap with A^ So for
 i = 1, 2, . . . , r either C (J P or Ai overlaps with no D e V. Thus for some

 J C {1,2, (JD = Reordering, we obtain |J^ = U[=p+i^
 for some p with p <r.
 Define P = {(i4i,xi), (Ap,xp)}. Then anP c A - T, as T C (U^)°

 and the definition of 5+ implies Ai c'JV if Xi e T. □
 If ¿ on [0,1] is given by 6 : x x, then it is clear that no ¿-fine partition of

 [0, 1] exists. How Lemma 3.2 above addresses such a situation can be seen as
 follows. Suppose A C Pm is an interval and ¿ is positive on A - T. If T C A is
 Wm-negligible, then given any positive number rj we can find a dyadic covering
 C of T such that Hm('jC) < r'. Applying the lemma above, there is a ¿-fine
 partition P in A such that 0 (J P) < V - Our actual use will be similar
 but more demanding.

 4. The Henstock-Kurzweil integral

 Throughout this section A will be a subinterval of R . Also, for any partition
 {(Ai, xi), ..., ( Ap,Xp )} the sets A', . . . ,AP are intervals.

 Definition 4.1 A function f defined on A is HK-integrable in A if there is a
 real number I with the following property: given any e > 0 there is a positive
 function 6 on A such that

 W(fi P) - I' < €

 for each 6 -fine partition P of A.

 Uniqueness of the number I above follows from the existence of ¿-fine
 partitions (Lemma 3.1); it is called the integral of / on A and designated
 by ( HK ) fA f. The family of all HK-integrable functions on A, denoted by
 HK(A), is a linear space and the map / (HK) JAf is a nonnegative linear
 functional on HK(A). The proof of the following test for integrability is left
 to the reader.

 Lemma 4.2 (Cauchy Criterion) A function f is HK-integrable in A if and
 only if for each e > 0 there is a positive 6 on A such that

 a(/,P)-a(/,Q) < e

 for all 6-fine partitions P and Q of A.

 Using the easily established fact that any ¿-fine partition in A can be
 enlarged to a ¿-fine partition of A and the Cauchy Criterion, the next lemma
 follows.
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 Lemma 4.3 Let f be HK-integrable in A, then f is HK-integrable in each
 subinterval B C A.

 It is certainly desirable that the HK-integral of a function / be unaffected
 when the values of / are changed on a W 1 -negligible set; the lemma below will
 be useful in establishing this and other facts about the HK-integral.

 Lemma 4.4 Let E C Rm be Hm -negligible and let € > 0. There is a function
 a defined on all subsets of Rm which satisfies the following conditions :

 1. 0 < a(B) < e for each B C Äm;

 2. a(B U C) = oc{B) + a (C) for each pair of nonoverlapping Lebesgue mea-
 surable sets B,C C Rm ;

 3. given x € E and an integer n > 1, there is a 6 > 0 such that a(B) >
 nHrn{B) for each B C U(xi6).

 Proof. Find a decreasing sequence {Uk} of open sets containing E so that
 Wm(^) < £2-/c for k = 1,2, ... , and set

 a(B) = jr/Hm(BnUk)
 k= 1

 for each B C Rm. Clearly, the function a satisfies the first two conditions.
 Given x e E and a positive integer n, find 6 > 0 so that U(x,6) C Un. Now
 if ßC f/(x, <5), then

 oo

 a(B) = nHm{B) + ^ Um{B n Č7*) > nUm{B).
 fc=n+l

 □

 Proposition 4.5 If f is zero Hl -almost everywhere on A, then f e WC(A)
 and ( HK)Ja f = 0.

 Proof. Suppose / is zero outside a Hl -negligible set E C A. Let e > 0 be
 given and choose a according to Lemma 4.4 for e and E. For each x e E
 there is a 6X such that a (B) > 'f(x)'H1(B) whenever B is an interval such
 that d(B) < 6X and x G B. Set

 ( 6X if x e E
 6(x) = ' x m

 [ 1 otherwise. m
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 If P is a 6-fine partition of A, then

 'a(fiP)-0'<a(A)<s.

 Corollary 4.6 Let f and g be functions defined on A such that f(x) = g(x)
 for H1- almost all x G A. Then f belongs to WC(A) if and only if g does , in
 which case

 (HK)ļ f = (HK)ļ 9.
 We now state and prove an important technical tool known as Henstock}s

 lemma. It gives the connection between the Riemann sum characterization of
 the integral found in Definition 4.1 and the indefinite integral characterization
 found in Proposition 4.9. The latter formulation is the proper setting for a
 study of the relation between integral and derivative - one ought to look at
 the proofs of Theorems 4.13 and 4.15.

 Lemma 4.7 Let f be HK-integrable in A. Given any e > 0, there is a positive
 function 8 on A such that

 ¿ fixiWHAi) - ( HK ) [ f <e
 ¿=1 ^

 for each 6-fine partition {(Ai,xi), ..., ( Ap,xv )} in A.

 Proof. Let <5 be a positive function on A such that

 v(f,P)-{HK)Jj'<e/3
 for each ¿-fine partition P of A. Choose any 6-fine partition {(j4i, xi), ...,
 (APi xp)} of A and reorder it so that f(xi)H1(Ai) - (HK) fAf is nonnegative
 for i = 1, • • • , k and negative for i = k + 1, • • • ,p where k is an integer with
 0 < k < p. Let Pi be a 6-fine partition of so that |cr(/, P¿) - (HK) fA_ /| <
 e/3p. If Q = UU+i Pi> then P = {(4i>zi)> - - - , (Ak,xk)} U Q is a 6-fine
 partition of A and

 I > |a(/,P)-(ffü0jT/|

 > ^[/(xOW1^*) - (HK)1a /] - I E [^P') - (HK)ļA f]

 7ťl J Ai I 3P



 366 Jeff Mortensen

 Similarly, one can establish that

 ¿ fixJH'iAi) - (HK) f 3 iÜbíi I 3p
 Adding these two inequalities yields

 ¿/(xi)W1(J4¿)-(tfíO/' /I < e i=i J* I

 for each ¿-fine partition {(j4i,xi), ..., ( Apixp )} of A.
 Since any 6-fine partition {(Ai,xi), ( Ap,xp )} in A can be enlarged to a

 6-fine partition of A , we are done. □

 Proposition 4.8 Let B and C be nonoverlapping intervals whose union is an
 interval A, and let f be a function on A. If f is HK-integrable in B and C,
 it is HK-integrable in A and

 (. HK)[ f = (HK)[ f + (HK) Í f . Ja Jb Jc

 Proof. Suppose D C A is an interval and P = {(i4i,xi), ..., ( Ap,xp )} is any
 partition of A. Then we can define a partition

 Pd = {(Ai D D , Xi) : Xi e D and Ai D D° ^ 0}

 in D. Further, given any positive function Íd on an interval D C A, we can
 find a positive function 6'D < 6 d on D with the property that x G D° implies
 U(x,6'd(X))cD°.

 Choose e > 0 and set I = (HK) fBf + (HK) fc f. Find a positive function
 6b on B such that

 <r(f,Q)-(HK)¡ f'<e Jb I

 whenever Q is a <5ß-fine partition of B. Similarly, choose such a 6c on C and
 define

 r 6'b(x) if xeB-C
 6(x) = < 6q(x) if x G C - B

 min{6/B(x),6/c(x)} ifxeBoC.

 By our choice of <5, we have that Pb is a <5ß-fine partition of B whenever P is
 a (5-fine partition of A. Of the course the same holds for Pc whence
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 '<r(f, P) - I' = 'a(f, PB U Pc) - 1'

 < a(f , PB) - (HK) f /1+ a (/, Pc) - ( HK ) f f' < 2e. JB I JC I

 Thus the proposition is proved. □
 We say F is an additive function (of intervals) in a set S C R if

 F(B U C) = F(B) 4- F(C)

 whenever B and C are nonoverlapping subintervals of S. It follows from
 Lemma 4.3 and Proposition 4.8 that if / is HK-integrable in an interval A ,
 then B (HK) fB f is an additive function in A ; we call it the indefinite
 integral of / in A.

 Proposition 4.9 A function f defined on A is HK-integrable in A if and only
 if we can find an additive function F in A satisfying the following condition:
 given e > 0, there is a positive function 6 on A such that

 p

 ^fixJH'iAJ-FiAi) < s
 2=1

 for each 6-fine partition {(Ai,xi), ..., (Av,xp)} in A.

 If F is an additive function defined on the (nondegenerate) subintervals of
 A = [a, 6], we define the associated point function

 ( F([a, x]) if a < X < b
 G(x) = <

 [ 0 if X = a.

 Conversely, if G is a point function on [a, b) , then we can recover an additive
 function, called the associated interval function, by setting F([c,d]) = G(d) -
 G(c) for each [c, d] C [a, b].

 Proposition 4.10 Let f be an HK-integrable function in an interval [a, b',
 set G (a) = 0 and G(x) = (HK) f* f for each x G (a, 6]. Then G is continuous
 in [a, 6].

 Proof. Choose an e > 0 and an x G [a, 6]. By Proposition 4.9 there is a
 6 > 0 such that

 f(x)(y-x)-[G(y)-G{x)} <e
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 for each y G [a, b] with | y - x' < 6. Making 6 smaller so that f(x)(y - x) < £,
 we obtain 'G(y) - G(x)| < 2e whenever 'y - x' < 6. □

 Let F be the indefinite integral of / G H1C(A). Since A is compact, its
 associated point function G is uniformly continuous and F inherits this as:

 Corollary 4.11 If F is the indefinite integral of f G WC(A), then F is contin-
 uous in the following sense: given e > 0 there is an rj > 0 such that |F(i?)| < e
 whenever B C A is an interval with Ttl(B) < rj.

 We say a sequence {Bi} of intervals shrinks to a point x if d(Bi) - ► 0 as
 i - ► oo and x G Bi for each i. An additive function F is differentiate at x if
 for each sequence (Bi) shrinking to x,

 r W)
 H^Bi)

 exists; in this case all such limits have the same value called the derivative of
 F at x and written -F'(x). It is not difficult to show that F is differentiate
 at x if and only if the associated point function is differentiate at x in which
 case the derivatives are equal.

 Proposition 4.12 Let f G WC(A) and let F be the indefinite integral of f.
 Then F'(x) = f(x) for almost all x G A.

 Proof. Let En be the set of points x G A with the property that there is a
 sequence {Bi} shrinking to x and satisfying

 (1) F(Bi)-f{x)U'Bi) >?í1(S¿)/n

 for i = 1, 2, • • • . The set |Jn En is precisely the set of points where F is either
 not differentiate or F'(x) ^ f(x).

 Our task is to show that ?ť1(£,n) = 0 for each positive integer n. To this
 end, let e > 0 be given. By the integrability of / there is a positive function
 <5 on A such that

 (2) ¿ /(x¿)W1(Ai) - F(Ai) < e/n
 Í= 1

 for each <5-fine partition {(Ai,xi), ..., ( Ap,xp )} in A.
 For x G En let £x denote the collection of intervals satisfying inequality 1

 with diameters less than S(x). Then UxeE £r covers En in the sense of Vitali
 and by the Vitali covering theorem there is a disjoint collection of intervals /C
 for which H^En - 'JJC) = 0.
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 Let T C /C be finite; for each C G F there is at least one xc 6 En which
 makes {(C, xc)}ce? & ¿-fine partition. Inequalities 1 and 2 imply

 < n 53 /(xc)«1^) - F(C) < e
 CEF

 and consequently Hl(En) < Hl{En - |J/C) + ^flJ/C) < £• As e is arbitrary,
 W1(En)=0. □

 Theorem 4.13 (The fundamental theorem of calculus) If F is differentiable
 in an interval A = [a, 6], then F' e W/C([a, b ]) and

 (. HK ) ¡ F' = F(b) - F (a) . Ja

 PROOF. Let G be the interval function associated with F, i.e. G([c,d]) =
 F(d) - F(c). Let e > 0 be given. Since F is differentiable in A , there is
 a positive number 6X such that |F'(x)W1(B) - G(B) | < whenever
 d(B) < 8X and x e B. Letting 6(x) = Sx for each x e A, we obtain

 ¿ /(Xi)«1^) - G(Ai) < en1 (A)
 i= 1

 for each 6-fine partition {(Ai,xi), ..., (Ap,xp)} in A. Now apply Proposi-
 tion 4.9.

 We turn our attention to the relationship between the family Ll(A) of
 Lebesgue integrable functions on A and WC(A). If / € Ll(A), its Lebesgue
 integral will be written ( L ) fA f or sometimes (L) JAfdTi for clarity.

 Proposition 4.14 If f e HK(A), then f is measurable.

 PROOF. Notice G(x) = ( HK ) f* f is measurable by Proposition 4.10 and

 /(x) JK J = lim G(x + 1)-G(X) JK J n-too l/n
 almost everywhere in [a, 6] by Proposition 4.12. □

 The proof of the next theorem highlights the interplay between differentia-
 tion and locally fine partitions - the classical Riemann integral uses uniformly
 fine partitions.

 Theorem 4.15 Ll{A) C HJC(A) and

 C HK)J f = (L)j f

 for each f € LX(A).
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 Proof. Let / G Ll(A) and e > 0. Define the additive function F : B ^
 (L) fB f. Then F is differentiate with derivative Ff(x ) = f(x) at each x
 outside some W ^negligible set E. Thus at each x € A - E, there is a positive
 number 6X such that

 I f(x)n1(B)-F(B)'<sn1(B)

 whenever B is an interval with d(B) < 6X and x G B.
 Now there is an open set U containing E such that 'F(U)' < e and for

 each x G E there is a 7X such that B C U whenever d(B) < and x £ B.
 Set

 ( 6X if x e A- E
 6(x) = {

 ļ 7x if xeE.
 Invoking Corollary 4. 6, we assume for convenience that / is zero on E. If
 P = {(Ai,xi), ( Apixp )} is ¿-fine, then

 ¿/(xiWM-FiAi) = X F(Ai) + Y, /(xi)W1(^)-F(Ai)
 i- 1 XiGE Xi£E

 < 2'F{U)' + en'A) <e{2 + n1(A)).

 □

 Theorem 4.16 / G Ll(A) if and only if f, |/| G WC(A).

 Proof. Suppose /, |/| G HIC(A). Set gn = min(|/|,n), then since gn is
 bounded and measurable, gn G Ll(A) C H)C(A). Upon applying the monotone
 convergence theorem we obtain:

 (L)J l/l = lim (L)jA9n = lim (HK) j gn < ( HK ) j |/| < -foo

 which implies that |/| G Ll(A). The other implication follows from Theo-
 rem 4.15.

 A function / defined on E C R 771 is almost differentiable at x G E° if

 y-+x 'y-x'

 If E C A° and / (defined on A) is almost differentiable at all x e E, then /
 is differentiable almost everywhere in E by Stepanoff's theorem [3, Theorem
 6.6.8]. We could now easily give an analog of Theorem 4.13 for a function
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 F almost differentiable in A but an apparent change in the definition of the
 HK-integral affords the even better result realized in Theorem 4.18 below.

 Let <5 be a nonnegative function on A. The null set of 6 is the set

 Z6 = {x e A : 6(x) = 0}.

 Should be countable, then 6 is called a gage.

 Definition 4.17 A function f defined on A is gage integrable if we can find
 an additive continuous function F (the indefinite integral) in A satisfying the
 following condition : given € > 0, there is a gage 6 on A such that

 v

 Y, - F{Ai) <e
 ¿=1

 for each6-fine partition {(Ai, x' ),..., (Ap,xp)} in A.

 In the case that / is gage integrable in A with indefinite integral F, the integral

 of / on A is (g) fAf = F (A). The family of all gage integrable functions defined
 on A is denoted by G(A). Uniqueness of the indefinite integral will be resolved
 shortly.

 Theorem 4.18 (The fundamental theorem of calculus: version two)
 Let T C R be a countable set. If F is a continuous function almost differ-

 entiable at each x € [a, b] - T, then F' is gage integrable and

 0 g ) íbF' = F(b)-F(a).
 J a

 PROOF. We let F stand for both the point function and its associated interval
 function. By Stepanoff 's theorem there is a H 1 -negligible set E such that F is
 differentiable outside E. Thus for each x 6 A - E there is a 7X > 0 such that

 I F{B) - F'(x)H1(B)' < eWł(B)

 whenever d(B) < 7X and x € B.
 Let a be chosen for E and e according to lemma 4.4. For x e A - E U T

 there is a cx > 0 and a ßx > 0 such that

 |F(B)| < cxHl{B) and a(B) > cxH'. B )

 whenever d(B) < ßx and x e B.
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 Set
 7x if X e A - E

 6(x) = < ßx if X e E - T

 0 otherwise
 '

 and observe that 6 is a gage. To make the estimates simpler, we employ an
 analog of Corollary 4.6 and assume F'(x) = 0 whenever x G E. Suppose
 P = {(Ai, xi), ..., (Ap,Xp)} is a ¿-fine partition in A , then

 ¿ 'f(x - F(Ai)' = £ |*W| + ^ l/íx,)«1^) - f (i4,)|
 i=l XiEE Xi£E

 < ^2 a(^i) + ^1^»)
 Xi€E Xi <1E

 < a{A)+e%l{A) <e(l+H'A)).
 □

 It is immediate that HK(A) C 5(^4) and (J/Ä") fAf = ( g)fA f when / €
 WC(A). We show WC(A) = G (A) and coincidentally resolve uniqueness of the
 indefinite gage integral.

 Proposition 4.19 If f is gage integrable in A , then f is HK-integrable in A.

 Proof. Suppose that / is gage integrable with indefinite integral F. Let
 € > 0 be given, then there is a gage <5 on A such that

 v

 <e

 i= 1

 for each ¿-fine partition {(j4i,xi), ..., (Apixp)} in A. Since F is continuous
 and Z s is countable, there is a positive function ß defined on such that
 £?_i l*WI < e whenever {(<Ai,xi), ..., (Ap,xp)} is a /3-fine partition an-
 chored in Zs ; making ß smaller - but keeping it positive - we may assume
 that i l/(xi)|W1(^i) < s as well. Define a positive function on A

 [ 6(x) if x 4. Zs
 A(x) = {

 [ ß(x) otherwise.

 For any A-fine partition {(Ai,xi), ..., (^4p,xp)} in A , we obtain
 p

 ^fWHHAÙ-FiAt) < Se
 i- 1
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 courtesy of the triangle inequality and the above estimates. □
 We round out this section with a change of variables theorem. Let E C Rm

 be a figure. A map <£ : E - ► Rn is called Lipschitz if there is a positive number
 c such that | $(y) - $(x)| < c'y - x' for all x, y G E; the least such c exists
 and is called the Lipschitz constant of $ and denoted by Lip($). An injective
 Lipschitz map $ : E - ► Rn with Lipschitz inverse is called a lipeomorpism. If
 E C R is an interval and $ : E - > jR is a lipeomorphism, then $> is a monotone
 function on E. By standard real variable theory such a $ is differentiate
 almost everywhere in E . For consistency with later notation we define

 {$'(:r) 0 otherwise. if $ is differentiate at x 0 otherwise.

 Theorem 4.20 Let A , B be intervals and let $ : A - ► B be a lipeomorphism.
 If f is HK-integrable in B , then f o $ • | det$| is HK-integrable in A and

 [ /o$.|det*| = f f
 Ja JB

 Proof. We give a proof which generalizes well. Choose e > 0, by [3, Theorem
 7.2.4] there is a set N C A with ?ť1(iVr) = 0 and a positive function A on A
 such that

 |/o$(x)|. |det®(s)| Hl(C)-H'*{C)) <eH1(C)

 for each x G A - N and each interval C C A with x e C and d{C) < A(x).
 According to Corollary 4.6 we may assume that / is zero on which set
 is Hl -negligible since $ is Lipschitz.

 Let F be the indefinite integral of / in B and choose 6b according to
 Proposition 4.9 so that

 2=1

 for each ¿-fine partition {(Bi^i/i), ..., ( Bp,yp )} in B. Define

 , fißO$
 S* = mln(LÎRÏ)'A> ,

 and let {(j4i,ii), (Ap,xp)} be any é^-fine partition in A, then

 mAjMxi)),--- , mo, *(*„))}
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 is a <5ß-fine partition in B and

 v

 Y, f(*M) ■ I detfcfo)!«1^) - FWAi))
 i= 1

 < ¿ |/(*(s<))| • |det$(xi)| tfM-tfWAi))
 i= 1

 1=1

 < e(7ťx(i4) + l)

 An application of Proposition 4.9 shows that / o $ • ļ det $| is HK-integrable
 in A with indefinite integral F o $. □

 5. Continuous additive functions

 On an interval A C R the difference between. L1 (A) and HiC(A) can be likened
 to that between absolutely and conditionally convergent series.

 Example 5.1 Let A = [0, 1] and for i - 1, 2, • • • define the function fi : x «- ►
 (-1)*2 1 /i on the interval Ai = [1/21, l/2l~1]. Observe that

 F : B " E J / ^ i=1 J AiC'B

 is an additive function on the subintervals of A which is differentiate in
 the interior of Ai for each i. Furthermore, the conditional convergence of

 (""!)* A implies that F is continuous in the sense of Corollary Ą.11 and
 so by Theorem Ą.18, F' G WC(A). On the other hand , since 1)*A * s
 not absolutely convergent , |F'| £ Ll{A) and consequently F' £ Ll(A). □

 The previous example shows the extension Ll(A) C WC(A) is proper and
 that an indefinite HK-integral F is not (in general) absolutely continuous.
 Evidently, if B is a finite union of nonoverlapping intervals, then in order to
 guarantee that 1^(^)1 is small we must regulate not only Hl{B), but also
 the number of components of B ; consider B = UiLfc An for various positive
 integers k < n in Example 5.1.

 Recall that a figure B C Rm is a finite (possibly empty) union of intervals
 in Rm. We define the perimeter of B as ||jB|| = Hm~1(dB ); if m = 1, then
 II-® II = W°(9S) - twice the number of components of B. We now reinterpret
 our observations about continuity using the perimeter.
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 Definition 5.2 F is an additive function (of figures) in a set E C Rm if

 F(B U C) = F(B) + F{C)

 whenever B, C C E are nonoverlapping figures. ( Note each additive function
 of intervals has a unique extension to an additive function of figures.)

 An additive function F (of figures) in a bounded set E C Rm is continuous
 if given e > 0 there is an > 0 such that |jF(C)| < e for each figure C C E
 with ||C|| < 1/e and Hm(C) < 77.

 We now relax the restriction of the previous section that A is always a
 subinterval of R. Let T be the collection of all figures in Rm and set

 Tn = {A e T : A C [-n, n]n and || A'' < n}.

 If we define the metric

 p{A, B) = Hm((A - B) U (B- A))

 on T, then an additive function on the family T continuous in the sense of Def-
 inition 5.2 is p-continuous on Tn for each n. However, such a function will not
 generally be /^continuous on T since this is equivalent to absolute continuity.
 The correct topology on T compatible with Definition 5.2 is the largest topol-
 ogy r on T for which each of the embeddings T is continuous - it
 is a nonmetrizable topology induced by a uniformity and convergence has the
 characterization:

 (3) An - ► A & (lim p(An, A) = 0 and sup ||An|| < 00 )
 71 n

 We next consider the completion of {T,p). This first lemma follows from [3,
 Theorem 5.1]

 Lemma 5.3 There is a positive constant Km with the following property: if
 E C Rm and Hm~1(E) < a , then for each 77 > 0 we can find a sequence
 of cubes {Cn} with diameters less than r) and such that E C |Jn C n an d
 1 ~2n ll^nll < Kma-

 Proposition 5.4 Let E C Rm be a bounded set with HTn~1(dE) < a. Then
 there is a positive constant Km (depending only on the dimension m) and a
 sequence {An} of figures such that An C E° ||An|| < Kma for n = 1,2, • • • ,
 and lim 7ťm(£ - An ) = 0.

 PROOF. The compactness of dE and Lemma 5.3 imply there are cubes
 C' . . . ,Cfc each with diameter less than 1/n and such that dE C U¿=i
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 and 2¿=i librili < KmQ" Observe that An = cl(E - Ui=1 Q) ls a subfigure of
 E° with

 «"(£ - A.) < t < i . ¿ ± lian < ì .
 i= 1 Ż=1

 and ||i4n|| < Kma □
 Define the solids S = {E C Rm : E bounded and Hm~l(dE) < oo}.

 Proposition 5.4 then says that each solid E is the limit of a sequence of figures;
 this is convergence in the sense given in (3) above.
 We extend Definition 5.2 to solids. F is an additive function (of solids)

 in a set E C Rm if F(B U C) = F(B) + F(C) whenever B, C C E are
 nonoverlapping solids. An additive function F (of solids) in a bounded set
 E C is continuous if given e > 0 there is an 77 > 0 such that 'F(C)' < e
 for each solid C C E with Hm~l(dC) <l/e and Hm(C) < 77.

 Remark 5.5 Definition 5.2 employed the perimeter in the definition of con-
 tinuity. The proper definition of the perimeter of Lebesgue measurable sets
 should be based upon the measure theoretic boundary [ 3 , Sections 5.1,5.8 J;
 while for a figure B this is the same as the topological boundary dB - this
 is not true for solids. Although it is preferable to continue the use of perime-
 ter in defining continuity, we yield to convenience ; for our present purposes it
 is not cńtical.

 For figures A and B , define a new figure A © B = cl(A - B ) and observe
 that II A 0 B II < ||j4|| + ||¿?||. If F is an additive continuous function defined
 on the family of all subfigures of E and {A}, {Bj} are two (not necessarily
 distinct) sequences of subfigures of E converging to E , then the estimate

 I F{Ai) - F(Bj)' = 'F(Ai QBj) - F{Bá 0 A{)' < 'F(Ai ©Ą)l + 'F(Bj eA>)'

 implies that | F(Ai) - F(I?j)| - ► 0 as i,j - ► 00. It is now routine to verify:

 Proposition 5.6 Each additive continuous function F defined on the family
 of all subfigures of a solid E has a unique extension to an additive continuous
 function on the family of all subsolids of E .

 In fact, the completion of (T, r) is much larger than (<S, r); it is the geo-
 metrically rich space of bounded Caccioppoli sets - bounded sets of bounded
 variation - which we denote BV. Although we will not use these sets here,
 some comments are appropriate. First, the obvious analog of Proposition 5.6
 holds for these sets. Indeed, by [3, Theorem 1.24] each bounded Caccioppoli
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 set can be approximated in the sense of (3) by special solids, namely C°° man-
 ifolds. Consequently, every bounded Caccioppoli set can be approximated by
 figures. That the completion of (T, r) is no larger than (5 V, r) follows from [3,
 Theorem 1.9].

 The next lemma lays the foundation for a uniform characterization of ad-
 ditive continuous functions in a figure A' a result which is crucial in proving
 the multiplier theorem (Theorem 9.2).

 Lemma 5.7 If F is an additive continuous function defined on the family of
 all sub figures of a figure A, then

 lim ĘrĘir = 0 and sup 'F(B)' < +oo
 IIBIH+oo ||£|| ||J3||<c

 for each c > 0.

 PROOF: Let 0 = (0, ... ,0) be the origin of Äm, and find an r > 0 with
 A C 17(0, r). If a = 2mrm~1, then the 7ťm_1 measure of each face of t/(0,r)
 equals a/2. Given c > 1, choose a positive e < l/[c(l -I- 2a)] and find an 77 > 0
 so that |F(S)| < e for each figure B C A with ||B|| < 1/e and Hrn{B) < 77.
 Select an integer p > (2 r)m/rj and for i = 1, ... ,p, let

 Ai= -r + (i - 1) - , -r + i - ļ X [-r.r]171'1 . L p , p)

 If C is a subfigure of A and ||C|| < c, then

 Hm(C0Ai) <7ťTO(i4i)<»7 and ''C © Ai'' < ||C|| < c < ^

 for i = 1, . . . ,p. Thus I F(C)' < ® M) I < P£, and the second claim
 is proved.

 To prove the first claim, choose a figure Cciso that ||C|| > max{p, 1/e},
 and for each t G (- r, r), let

 C-(t) = C O ([-r,t) X [-r, r]m_1) and C+(t) = C O ([¿,r] x [- r, r]m_1) .

 Then C is the disjoint union of figures C±(t), and it is easy to see that

 ||C-(t)|| + ||C+(t)||<||C||+a.

 Notice that t ||C_(¿)|| is an increasing function on (- r,r), which increases
 from 0 to ||C||. Since

 lim ||C_(t)|| - lim l|C-(í)ll < a
 t- >r+ t - >t -
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 for each r e (-r,r), there is a 6 e (- r,r) such that ||C||/2 < ||C_(0)|| <
 ||C||/2 + a. We conclude that ||C±(0)|| < ||C|| /2 + a. Next find an integer
 n > 1 with

 !!£!!< 2n I _ 2„ < ~ ią, 2n~1 2n e ~ 2n~1

 and proceeding inductively, construct nonoverlapping figures C' , . . . , Cy*. whose
 union is C and such that

 llctllsS + g«<M + 2o<i.
 j= 0

 Note that the inequality 1 < l/e - 2 a yields 2n~ 1 < ||C||. For i = 1, . . . ,p and
 k = 1, . . . ,n, we have *

 Hm(Ą0Cfc)<r(Ą)<ri and ''Ai (D Ck'' < ''Ck'' < 1/e.

 By construction, the collection

 {AiOCk : i = l,...,p; fc = 1, . . . , 2n}

 contains at most 2n + p - 1 nonempty figures whose union is C. Therefore

 incoi < E E ° c*)i < £(2n + p - 1) < £(2iicii + p) -
 2=1 fc=l

 and hence

 • 'im<£(2+jL.'<3£ ''c'' l lícily
 □

 Lemma 5.8 (Uniformity Lemma) An additive function F defined on the fam-
 ily of all subfigures of a figure A is continuous if and only if the following
 condition is satisfied : given e > 0, there is a 6 > 0 such that

 'F(B)'<eHm(B)+e(''B'' + l)

 for each subfigure B of A.

 Proof. As the converse is obvious, assume that F is continuous and choose
 an e > 0. According to Lemma 5.7, there are positive numbers b and c such
 that |jP(S)| < £||-B|| and ļi^C)! < b whenever B,C are subfigures of A such
 that ||2?|| > c and ||C|| < c. We can find an 77 > 0 so that |-F(C)| < £ for each
 subfigure C of A for which ||C|| < c and Hm(C) < 77. Now if ||C|| < c and
 Hm(C) > 77, then 'F(C)' < b < (b / 7y)7ťm (C) . Letting 9 = Ò/77, the previous
 alternatives yield the desired inequality. □
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 Example 5.9 Let A C R m be a figure and let v : A - ► Rm be a continuous
 vector field. If B C A is afigure , then uq is the usual exterior normal , defined
 H™'1 -almost everywhere on dB. We let

 F(B) = (L) [ vnBdHm ~l ,
 JdB

 for each sub figure B C A. Clearly F is additive, we show that it is continuous.
 Choose an e > 0 and find a continuously differentiate vector field w : Rm - ►
 Rm so that ||v(x) - w(x)|| < € for each x G A. Let 9 be a positive upper bound
 for 'divw' on A. The Schwarz inequality and standard divergence theorem
 applied to w over B yield

 I (L) f vnBdHm-x < (L) [ 'divw'dHm + (L) [ ||v - w||
 I JdB Jb JdB

 < enm(B)+e''B''.

 □

 6. Gages and calibers

 We call T C thin if it has cr-finite Hm~ ^measure. Let S be a nonnegative
 function on a set E C R 771 . As before, the null set of 6 is the set

 Zß = {x G E : 6(x) = 0}.

 If Z s is thin, then <5 is called a gage ; note that a countable set has cr-finite
 W°-measure so this is consistent with our earlier usage.

 By a caliber we mean a sequence rj = {77^ } of positive numbers. For a given
 e > 0 and a caliber 77, we say B is (e, r;)-small if B can be written as a union
 of figures Si, • • • , S& such that Hm(Bi) < rji and ||S¿|| < 1/e for i = 1, • • • , k.
 A partition P is a partition of A mod (e, rj) if A 0 (J P is (£, ^)-small.

 Proposition 6.1 Let A C Rm be a figure and let 6 be a positive function on
 A - T, where T is a thin set. Then there is a positive constant X, depending
 only on the dimension m , with the following property: for each positive e < À
 and each caliber 77 there is a 6-fine partition {{Aii xi), ..., (Ar, xr)} of A mod
 (e, rj) such that Aļ, . . . , Ar are dyadic cubes.

 PROOF. Let À = l/(2«m) where is the constant of Lemma 5.3, and select a
 positive e < X. We first suppose A is an interval with integer endpoints. As T

 has cr-finite Wm_1-measure, we can write T = (J^li Tj where Wm-1(X¿) < 2.
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 By Lemma 5.3 there are countable collections Cj of dyadic cubes with diame-
 ters less than rjj /nm and satisfying

 Tj C ( (J C)° and £ ||C|| < 2/cm.
 cecj cecj

 Further, eliminating redundancies, we require that Cj1 n Cj2 - 0 whenever
 j i 7^ 32- Set C = Uj Cj and apply Lemma 3.2 to find a partition P = {(Ai, xi),
 ..., ( Ap,xp )} in A such that A&'JP = [jV with V C C. To complete this first
 part, define the (nonoverlapping) figures Dj = |J {DnCj) and notice that there
 are only finitely many Dj which are nonempty since V is finite. Observing
 that

 < ^- Km E [^r-1 < ¿raKm E ii^ii ^ v> Km ceo, ¿raKm C6Cj

 it is easy to check that A 0 |J P = (J . Dj is an (e, ryj-small figure.
 For a general interval A, enclose it in a larger interval K with integer

 endpoints and define a new function on K

 {min{<5(x), dist{x , d A) dzs£(x, d A)} if if x x e e A K dist{x , d A) if x e K - A.

 By the first part there is a A-fine partition Q = {(Ai,xi), ..., (Ap,xp)} of K
 mod (£, 77). Notice that if B is (e, 77)-small, then ¿3 fi A is (e, r/)-small - this is
 true since A is an interval. Thus P = {(j4¿,x¿) : x¿ G A} is a ¿-fine partition
 of A mod (£, 77).

 For the case where A = a finite union of intervals, apply the
 foregoing to the intervals Bk , calibers {rļni-k+i}^, and e/2k. □

 Lemma 6.2 Let F be a continuous additive function in a figure A C Rm.
 Given e > 0, there is a caliber rj such that 'F(B)' < e whenever B C A is an
 (s ,77) -small figure.

 Proof. By the continuity of F, for each e/2 1 (z a positive integer) there is
 a positive number r]i such that 'F(B)' < e/22 whenever B is a figure with
 nm(B) < Vi and ||£|| < 1/e. Let 77 = {77J. □

 Uniqueness of the gage integral in dimension one followed from its equiv-
 alence to the HK-integral. We now give a direct proof which generalizes to
 higher dimensions.

 Proposition 6.3 The indefinite gage integral is unique.
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 PROOF. Let Fi, F2 be two continuous additive functions which satisfy Defini-
 tion 4.17 with respect to a function / defined on an interval A. Let € > 0 be
 given and choose a gage 6 so that ]C¿=i - Fj(Ai)' < e whenever
 Q = {(Ai, xi), ..., (Ap,xp)} is a ¿-fine partition in A ; j = 1,2. Pick a caliber
 77 according to Lemma 6.2 so that 'Fj(C)' < e whenever C is an (e, ry)-small
 figure; j = 1,2. Choose any interval B C A and apply Proposition 6.1 to
 5, B , and 77 to obtain a partition P = {(2?i, yi), ..., (Bq, yq)} of B mod {6,7]).
 We have the inequality

 |£(B)-F2(B)|
 < |Fi(B)-a(/,P)| + |F2(B)-a(/,P)|

 < ¿ /(yi)Hm(ßi) - Fx (Bi) + ¿ /(2/i)Wm(Bi) - F2(BÍ)
 i=l Í= 1

 +|F1(Be(Jp)| + |F2(Be(Jp)|
 < 4e.

 □

 7. The Gauss-Green theorem

 One of the main features of the HK-integral in dimension one is the generality
 of the Gauss- Green theorem it affords, i.e. the fundamental theorem of calcu-
 lus. As the obvious generalization of the Henstock Kurzweil integral to Rm no
 longer provides this, we next state an infinitesimal version of the Gauss-Green
 theorem and use it to outline an alternate proof of Theorem 4.18. In this set-
 ting, it becomes clear how the mode of approximation - the allowable partition
 sets in the Stieltjes sum - must be altered in order to retain the generality of
 Theorem 4.18.

 Lemma 7.1 Let v be a continuous vector field on a figure A C j Rm that is
 differentiate at x G A° . Given € > 0, there is a number 6X > 0 such that

 divv(x)Hm(B) - (L) f vnBďh m_1 < £d(B)''B''
 J dB

 for each figure B C An U(xi 6X) for which x e B.

 Proof. Choose an e > 0, and let w(y) = v(x) + Dxv{y - x) for each y e R771;
 here Dxv is the differential of v at x. Then divw(y) = divv(x) for all y € Äm,
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 and there is a 6X > 0 such that | v(y) - w(y) ' < e'y - x' for all y G A with
 'y - x' < 6X. Now if B is as in the statement of the lemma, then

 divv(x)Hm(B) - (L) [ v • 7iBdHm~l
 J dB

 = |(L) [ divw(y)Hm - (L) Í V'UßdH171'1 I JB J dB

 = I (L) [ (w-v)- nBdnm-l' < ed(B)''B''
 I JdB I

 by the usual Gauss-Green theorem for the linear vector field w. □
 Theorem (The fundamental theorem of calculus) If F is differentiable in an
 interval A = [a, 6], then F' G HIC ([a, 6]) and

 (HK) f F' = F(b) - F(a) .
 Ja

 Proof. Set v = F, then F' = div v. Using Lemma 7.1, given e > 0 we
 can find a 6 such that if P = {(Ai,xi), ..., ( Ap,xp )} in A is 5-fine, we obtain

 p p p
 y: divv(xi)H1{Ai) -(L) v - UAi dH° < < 2eHl(A),
 1=1 ^dAi i=l

 since ||JB|ļ = 2 and d(B) = V}{B) for each interval B C A C R. Thus
 the indefinite HK-integral of F' is the function B ^ (L)fdßv • nßdH0 =
 F (d) - F(c) where B = [c,d'. □
 As the relationships ||B1| =2 and d{B) = 7 íx{B) in the previous proof do

 not hold for intervals B C RTn when m > 2, we must somehow restrict the
 intervals entering into a partition. The previous proof suggests this should be
 done by means of a number

 ( Hm(B) .f ß ^ J 0 r(B) = ' .f ß ^
 [ 0 otherwise

 associated to each figure B , and called the regularity of B. We simply say a
 partition P = {(Ai,xi), ..., (Ap,xp)} is e-regular if r(Ai) > e for each interval
 Ai.

 Definition 7.2 Let A C Rm be a figure. A function f defined on A is gage
 integrable if we can find an additive continuous (Definition 5.2) function F in
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 A satisfying the following condition: given e > 0, there is a gage 6 on A such
 that

 ¿ - F{Ai) <e
 2=1

 for each 6-fine e-regular partition {(^4i,xi), (Ap,xp)} in A.

 As before, if / is gage integrable in A with indefinite integral F (unique by

 Proposition 6.3), the integral of / on A is (g) fAf = F (A) and the family of
 all gage integrable functions defined on A is denoted by G (A). Observe that
 for any interval B C J?, we have r(B) = 1/2 and consequently the present
 definition of the gage integral coincides with that given previously in section
 4.

 Remark 7.3 Sometimes the shape s(B) = /Hm(B)/[d(B)]m of a figure B C
 Rm is used in place of the regularity (cf. [3, Theorem 11.Ą.9]). Since

 [2 mr(B)]m < s(B) < 2 mr(B)

 for any interval B, this variation is of no consequence. We note, however , that
 there is a significant difference between the shape and regularity when figures
 are involved (see [ 3 , Remark 12.1.7]).

 Theorem 7.4 (Gauss-Green theorem) Let T C Rm be a thin set , and let v
 be a continuous vector field on a figure A that is almost differentiable at each
 X € A0 - T. If f is a function on A such that f(x) = divv(x) for every
 X € A° -T at which v is differentiable , then f 6 G (A) and

 (g)ff = (L)f v • nA dHm~l .
 JA J d A

 Proof. For each figure B C A, let F(B) = (L) fdB v • ub dH m_1 . Then the
 additive continuous (by Example 5.9) function F is the natural candidate for
 the indefinite integral of /.

 By the Stepanoff theorem there is a Hm -negligible set E C A° -T such that
 v is differentiable at each x G A0 - (E U T). By Corollary 4.6 we may assume
 that / is zero at each point of E. Choose e > 0 and let a be associated with
 e and E according to Lemma 4.4. For each x e E there are positive numbers
 cx and Sx such that

 ||v(y) - u(z)|| < cx'y - x| and a(B) >
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 for every y e AC'U(x, 6X) and every B C An U(x,6x). As a consequence, for
 each X e E,

 |F(B)| = I (L)f v(y)-nB(y)ďHm-'y)' JdB

 = IW [ [ v(y ) - v(x)] • nB(y) d7im~1(y)'
 JdB

 < I (L)[ cx'y - x'dnm~Hy)' JdB

 < cxd(B)''B'' < ^ nm(B ) < a(B)

 whenever B C A D U(x, Sx ) is a figure with r(B) > e.
 If X e A° - (E U T) then Lemma 7.1 yields a 6X > 0 such that

 |/(x)7ťm(B) - F(B) I < e2d{B)''B'' < s7ím{B)

 for every e-regular figure such that B C AnU(x16x) and x e B.
 Define a gage on A

 ( 6X if xeA°-T
 6(x) = ļ

 [ 0 otherwise.

 If P = {(Ai, xi), ..., ( Ap,Xp )} is a 6-fine e-regular partition in A , then

 ¿ I - F(A) I = £ l*WI + E I - *wi
 i= 1 Xi€E Xi£E

 < 5>(^)+ E£Wm(^)
 Xi€E Xi£E

 < a(A) 4- eWm(A) < e(l + Wm(A)).

 □

 8. A geometric integral

 Recall that by a (local) geometric integral we understand an integral in Rm
 which

 1. extends the Lebesgue integral;
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 2. integrates partial derivatives of differentiable functions so that the Gauss-
 Green theorem is satisfied;

 3. is coordinate free, i.e. invariant with respect to a group containing all
 diffeomorphisms.

 Z. Buczolich has shown in [3] that the gage integral of the previous section
 is not rotation invariant. As indicated by the title of this section, we now
 define an integral which meets all the criteria of a geometric integral.
 An T-partition in E is a collection P = {(Ai,xi), ..., (Apixp)} where

 -Ai, . . . , Ap are nonoverlapping subfigures of E and x¿ G Ai for i = 1, . . . ,p.
 Given e > 0 and a gage 6 on E, we say that P is e-regular or 6- fine if r(Ai) > e
 for i = 1, . . . or d(Ai) < 6(xi) for i = 1, . . . ,p, respectively.

 Definition 8.1 Let A be a figure and let f be a function defined on A. We
 say that f is F -integrable (or simply integrable) in A if there is an additive
 continuous function F defined on the family of all sub figures of A having the
 following property: given e > 0, we can find a gage 6 on A so that

 tl/WTTW-WKe
 i- 1

 for each 6-fine e-regular T -partition {(j4i,xi), ..., ( Ap,xp )} in A.

 The function F is called the indefinite integral of / in A and the number

 fAf = F (A) the integral of / on A. The family of integrable functions is
 denoted by J7 {A). It is clear that J7 (A) C G (A) and fA f = ( g ) fA f whenever
 both are defined; thus uniqueness of the indefinite integral is already resolved.

 We state the next two theorems for completeness. The proofs are the same
 as for their counterparts Theorem 4.15 and Theorem 7.4.

 Theorem 8.2 Ll(A) C ^F(A) and

 JA f f = (L)[ JA f JA JA

 for each f G Ll(A).

 Theorem 8.3 (Gauss-Green theorem) Let T C Rm be a thin set , and let v
 be a continuous vector field on a figure A that is almost differentiable at each
 X G A° - T. If f is a function on A such that f(x) = div v(x) for every
 X G A° -T at which v is differentiable , then f G T{A) and

 f f = (L)[ vnA<mm~l.
 JA J d A
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 The proof given for coordinate invariance of the HK-integral (Theorem 4.20)
 depends upon the fact that intervals (in R ) are stable under lipeomorphisms,
 i.e. the lipeomorphic image of an interval is again an interval. Consequently,
 partitions are mapped to partitions by a lipeomorphism. Except in jR, an
 ^"-partition is certainly not mapped to an ^-partition, but by using the ap-
 proximation result in Proposition 5.4 we can give almost the same proof for
 the invariance theorem below.

 Let E C Rm be a figure. If $ : E - > Rm is Lipschitz, det$ denotes, as
 before, the determinant of the differential D$ of $. By the Rademacher and
 Kirszbraun theorems [3, Corollary 10.4.8 and Theorem 10.3.3], the function
 det $ is defined almost everywhere in E° and hence in E. The following change
 of variables theorem has been established in [3].

 Theorem 8.4 Let $ : A - > B be a lipeomorphism from a figure A onto a
 figure B, and let f be an integrable function in B. Then f o $ • |det$| is
 integrable in A and

 [ / o $ • I det $| = / /.
 Ja Jb

 Proof. There are positive constants a and /? such that

 a'x - x'' < |$(x) - $(2/)| < ß'x - x''

 for all x,x' e A. If C is a subfigure of A, then it follows from [3, Lemma 1.8]
 that $(C) belongs to S and satisfies the inequalities

 Hm[${C)' > am/HTn(C) and TT1"1 [94(C)] < ßm-l''C''.

 By Proposition 5.6, the indefinite integral of / in B has a unique additive
 continuous extension F to the family of all subsolids of B. In view of the above
 inequalities, the map G : C 1- ► F[$(C)] is an additive continuous function
 defined on all subfigures of A. We show the function G is the indefinite integral
 of / o det $| in A. Choose e > 0, by [3, Theorem 7.2.4] there is a set N C A
 with Hl(N) = 0 and a positive function A on A such that

 |/o$(x)|- |det$(x)| Hm{C)-Hm($(C)) <eHm(C)

 for each x G A - N and each figure C C A with x G C, r(C) > e and
 d(C) < A(x). By an easy analog of Corollary 4.6 we may assume that / is
 zero on $(iV), which set is 7ťm-negligible since 4 is Lipschitz.

 Since / is integrable in B , there is a gage 6b on B such that

 ¿ - F(Bi) <e
 2=1
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 for each <5ß-fine e-regular partition {(Bi,yi), ( Bp,yp )} in B. With no loss
 of generality, we may assume that 6ß(x) = 0 for each x G dB. Let e' =
 (/3/a)mK;m£ where Km is the constant of Proposition 5.4 and define a gage 6 a
 on A by setting 6a = min{<5ß o $//3, A}. Choose a ¿^-fine ¿'-regular partition
 {(Ai, xi), ..., (Ap,xp)} in A. For i = l,...,p, let = 9 (Ai) and yi = $(xť),
 and observe that d(Ki) < 6b(Ví) and

 - V n j
 It follows from Proposition 5.4 and Proposition 5.6 that each Ki contains a
 figure Bi such that

 r(Bi) > e, |/(2/0l ■ - Hm(Bi) | < e/p, |G(j4<) - F(£,)l < e/p-

 As the figure Bi may not contain the point y i , an additional adjustment is
 necessary. Fix an integer i with 1 < i < p, and observe that yi G B° by the
 choice of 6ß> Thus we can select nonoverlapping cubes Ci, . . . , C2™. contained
 in B whose common vertex is the point t/¿. If {ji, . . . , j^} is the set of all
 indexes j for which Xi G Aj, then 1 < k < 2m and we let

 B'js = cl'(Bj,UCs)-{JCr
 r^s

 for 5 = 1, . . . , k. Since yi e Ki, the cubes Ci, . . . , C2 m can be chosen so small
 that d(B'i) < 6ß(y%) and the above inequalities hold when Bi is replaced by
 BĻ Thus

 v

 £ /($(*<)) • I det *(*i)| TC1 {AO - G(Ai )
 Ì= 1

 < ¿|/(ł(®i))|- Idet^xOITf»^)-«"1^)
 1=1

 1=1

 + E - F(B[) + ¿ F(S-) - G(A¿)
 i- 1 2=1

 V

 < y£nm(Ai)+p-+£ + p-<s[Hm(A) + S],
 7ťi PP
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 since {(B[ìyi)ì . . . , ( B'pì yp)} is a ¿B-fine e-regular partition in B. □
 For dimensions greater than one Buczolich's example [3] and Theorem 8.4

 imply J7 (A) is properly contained in G {A). Surprisingly, even in dimension
 one the containment is proper [3, Example 12.3.5].

 9. Multipliers

 A multiplier for a family 8 of functions on a set £ is a function g on E such
 that fg G S (pointwise product) whenever / G £ . For the family L1([0, 1]) of
 Lebesgue integrable functions defined on [0, 1], bounded measurable functions
 are multipliers. Recall the notation of Example 5.1 and let g =
 then it is clear that gF' ^ W/C([ 0, 1]). Repeating the argument in Example 5.1
 (using the Gauss-Green theorem of section 8. in place of Theorem 4.18), it
 is clear that F' G ^*([0,1]) C WC{[ 0,1]). Consequently, bounded measurable
 functions are not generally multipliers for ^*([0,1]). Recently, B.Bongiorno
 and V. Skvortsov [3] showed that functions of bounded variation are multipliers
 for F {A) when A is a subfigure of Ä, but it is not known at this time whether
 the result extends to subfigures of Rm.

 In this section we show that the Lipschitz functions on a figure A are
 multipliers for the family F (A) in any dimension (see [3] for this in the context
 of BV sets). This is accomplished by constructing the indefinite integral of
 fg from the indefinite integral of /. We first outline the ideas behind this
 construction.

 For C C jRm+1 and t G Ä, let Cť = {x G Rm : (x,£) G C}. Suppose that
 a Lipschitz function g on a figure A maps A into the unit interval I = [0, 1],
 and observe that for each figure B C A, the subgraph £# = {(x,t) G B x I :
 t < g(x)} of g is a solid. Choose an f e F(A), and let (/ (8) l)(x, t) = f(x) for
 every (x,t) G A x I. Assuming that / <8> 1 belongs to F{Ax I) and applying
 formally Fubinťs theorem, we obtain

 [ fgdH™ = [ 'f(x) [9{X) <ml(t) dHm(x)= [ / <g) 1 dHrn+1
 JB JB I Jo J Jeb

 = f'f f(x)dHm(x) ďH'ť).
 Ji [JÍZbY

 Although the Fubini theorem does not hold for this integral we show that
 the function

 G : B / / f(x)dHm(x) dH't)
 Ji [J&bV

 is still the indefinite integral of fg.
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 Given an additive function F on the family of all subfigures of a figure A ,
 let

 F(C)= [ F(Ct)dH1(t)
 Jr

 for each subfigure C C A x R. Note that t F(Cť) is a step function and
 therefore the integral is well defined.

 Lemma 9.1 If F is an additive continuous function on the family of all sub-
 figures of a figure A , then F is an additive continuous function on the family
 of all subfigures of Ax [0, 1] .

 PROOF. As the additivity of F is clear, choose an e > 0 and find a 6 > 0
 associated with F and e according to the Uniformity Lemma (Lemma 5.8). If
 C C A x [0, 1] is a figure, an appeal to the Fubini theorem yields

 f1 ll^ll dHl(t) < ||C||. Jo

 The estimate

 'F(C)'< [ IFiC^dH^t) < e f wr {&)*&$)+ e [ (1 + ||Cť||) dH't) Jo Jo Jo

 <0Wm+1(C)+£(l + ||C||),
 implies the continuity of F. □

 Theorem 9.2 Let g be a Lipschitz function on a figure A. If f belongs to
 F (A), then so does fg.

 PROOF. Avoiding a triviality, suppose that HTn{A) > 0. Since g is bounded
 and T(A) is a linear space containing the constant functions, we may assume
 that g maps A into the unit interval I = [0, 1]. For each figure B C A, let

 Sß = {(x,í) e B x I :t < g(x)} and Tb = (OM) € B x I :t = g(x)}.

 Set c = max{l, Lip(p)}, and observe that Wm(rß) < crn7ím(B) [3, Lemma
 1.8]. Estimating the perimeter of the base, sides and top of £#, we obtain

 Wm(9EB) < wm(£) + ||B|| + nm{ rB) < (1 + cm)Hm{B) + || J3|| < +oo

 thus £# is a solid. Select an / G f(A) and denote by F the indefinite integral
 of / in A. Let F be as in Lemma 9.1 and using Proposition 5.6 extend F to
 an additive continuous function on the family of all subsolids of A x [0,1], still
 denoted by F. Then G : B F(Eb) is a additive continuous function on
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 the subfigures of A. Using a technique similar to that in [3, Theorem 6.8], we
 show that G is the indefinite integral of fg.

 To this end, choose an e > 0 and find an rj > 0 so that |-F(C)| < e for each
 solid C C Ax I with ||C|| < (1 +cm+c/e)Wm(,4) andWm+1(C) < rļ[cHm(A)].
 There is a gage <5 on A such that

 i= 1

 for each ¿-fine e-regular ^-partition {(Ai,xi), ..., ( Apixp )} in A. With no loss
 of generality, we may assume that 6 <r). Let {(Ai, xi), ..., (Ap, xp)} be a ¿-fine
 e-regular ^-partition in A , and let = [0 ,g(xi)] for i = 1, . . . ,p. We obtain

 1=1 2=1

 + J2'F(Ai)-H'Ji)-F(ZAi)' < í + ¿|F(Ai>< Ji) - F(SXi)| .
 1=1 2=1

 If S = XX=i I F (Ai X Ji) - F(EaJ|, then after a suitable reordering, we find
 an integer k with 0 < k < p such that

 5 - I^[f(Í4ÍX L Jť)-F(EAi)1|+ ¿ [F(¿í X Ji) - F(EAi)ļ J I i=l L -'l i=k+ 1'- J

 = 1f[(J(^x jĄ -^[Ue^] +

 + 'F' U (AiXJi)] -4Ů

 I r ^ ~i I r ^ i
 < 'f r ' |J (-Ai X Ji - HA.) ~i + F r ''J(ZAi-AiX Ji)
 I Li= i J I l-i=i -I

 i r p 1 1 I r p i
 + F MJ (¿iX Ji - E^) + F U (EAi - Ai X Ji) .
 I '-i=fc+ 1 J r I Li=fc+i J
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 We let C = (J¿=i04¿ x <7¿ - ), and estimate 'F(C) by observing that

 Hm+1(AiX Jí-EaJ < cd(Ai)Hm(Ai) < ri{cHm{Ai)'

 WAtxJi- E^H < + + 0^)11^11

 < (l + cm + ^)Hm{Ai)

 for i = 1, . . . , k. Indeed, these estimates imply that

 nm+'C) < T)[cHm{A)} and ||C|| < (l + cm + Hm{A) ,

 and consequently ^(C)! < e. Completely analogous verifications show that
 S < 4e, and the theorem is proved. □

 We now give an important application of Theorem 9.2. Let H be a func-
 tion defined on the subfigures of some figure A C Rm. Given a partition
 P = {(Ai, xi), ..., (Ap,xp)} and a function / on a set E C Rm containing
 {xi, . . . , Xp}, we define the Stieltjes sum

 a(fìPìH) = Zf(xi)H(Ai).

 Definition 9.3 Let A be a figure and let f be a function defined on A. We
 say that f is H-integrable in A if there is an additive continuous function F
 defined on the family of all subfigures of A having the following property: given
 e > 0, we can find a gage 6 on A so that

 '¿ifixiWAi) - F(Ai)' < e
 i= 1

 for each 6-fine e-regular T -partition {(^4i,xi), ..., ( Ap,xp )} in A.

 The function H is called the integrator and the function F the indefinite
 H-integral of / in A. The number fA f dH = F(A) is the H -integral of f on
 A. If H = Wm, then JAfdH = fA f.

 Proposition 9.4 Let A be a figure in R 771 , H be a function defined on the
 subfigures of A, and g be H-integrable in A. If G (B) = fßgdH for each
 subfigure B C A, then f is G-integrable if and only if fg is H-integrable , in
 which event

 J fdG = J fgdH.
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 Proof. Choose an e > 0 and for n = 1, 2, . . . , find positive functions 6n on

 A such that ^

 ¿=1

 for every e-regular ¿n-fine partition {(Ai,xi), ..., (Ap,xp)} in A. If En = {x G
 A : n - 1 < |/(x)| < n} for n = 1, 2, . . . , then A is the disjoint union of the
 Enfs. For each x G A let č(x) = 6n(x) whenever x G En. If Q = {(Bi,yi),

 (Bqiyq)} is an e-regular 6-fine partition in A , then

 a(fg,Q,H)-a(f,Q,G ) < ¿ |/(yi)| • fl(y<)ff(Ą) - G(Ą)
 J = 1

 ^ ¿ l/(fi)|- 9(yi)H{Bj)-G{Bj)
 n=lyieEn

 oo

 ^-í ri2n 71=1

 and the proposition is proved. □
 Any improvement on the multiplier result in Theorem 9.2 would directly

 yield an improvement in:

 Corollary 9.5 Let G(B ) = fBgdHm, F(B ) = fBfdiHm for each subfigure
 B of a figure A where g is Lipschitz and f G T(A). Then f is G-integrable, g
 is F-integrable , and

 f fdG = J fg = ļ gdF
 □
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