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 PRODUCTS OF DERIVATIVES

 OF INTERVAL FUNCTIONS

 WITH CONTINUOUS FUNCTIONS

 Abstract

 It is known that the family of all derivatives (from R into R) whose
 product with every continuous function is a derivative is the same as
 the family of all locally summable derivatives such that

 c: i/i
 lim sup - - - < oo
 h- »0+ 2 h

 for each x £ R. In this paper we prove an analogous theorem in multi-
 dimensional case.

 In [4] J. Mařík proved the following theorem.

 Theorem 1 Denote by T the family of all derivatives (from M into Hü) whose
 product with every continuous function is a derivative and by Fn the family of
 all locally summable derivatives such that

 - i" - i - i/I _ < limsup - - - _ < oo
 Ä-0+ 2/1

 for each x G K. Then T = Ti.

 In this sequel I prove an analogous theorem in multidimensional case. In
 the proof I use the MařiVs method.

 First we need some notation. The real line (- oo, +00) is denoted by M and
 the set of positive integers by N. To the end of this sequel m is a fixed positive
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 integer. The word function means mapping from Rm into R unless otherwise
 explicitly stated. The words measure, almost everywhere (a.e.), summable
 etc. refer to the Lebesgue measure and integral in Rm. The Euclidean metric
 in Rm will be denoted by g. For every set A C Rm, let diam A be its diameter
 (i.e. diam A = sup{g(x,y) : x,y G -A}), int A its interior, cl A its closure,
 Xa its characteristic function and 'A' its outer Lebesgue measure. Symbol
 fA f will always mean the Lebesgue integral. We say that / is a Baire one
 function, if it is a pointwise limit of some sequence of continuous functions. By
 11/11 we denote the sup norm of a function / (i.e. ||/|| = sup{|/(<)| : t G Rm}).

 The word interval (cube) will always mean non-degenerate compact inter-
 val (cube) in Rm, i.e. Cartesian product of m non-degenerate compact intervals
 (compact intervals of equal length) in R. We denote by T the family of all
 intervals.

 By interval function we will mean mapping from T into R.
 We say that intervals 7, J G T are contiguous , if they do not overlap (i.e.

 7 fi J # r) and / U J is an interval. We say that an interval function F is
 additive , if F(7U J) = F(I) + F(J) whenever 7 and J are contiguous intervals.

 We say that a sequence of intervals {In : n G N} is

 • s-convergent to a point x G Rm, if
 oo

 i) X G fļ In,
 n = 1

 ii) lim diam In = 0.
 n-+ oo

 • o-convergent to a point x G Rm, if the conditions i) and ii) above are
 fulfilled and moreover,

 . (diam In)m ^
 in) limsup

 n - oo |in|

 • w-convergent to a point x G Rm, if the conditions i) and ii) above are
 fulfilled and moreover,

 iv) /„ is a cube for each n G N.

 We will write In =>► x, In ^ x and In x, respectively. (Cf e.g. [3].)
 Let. F be an arbitrary interval function and x G Rm. We define

 s-limsupF(/) = sup < limsupF(/n) : In => x > .
 /=>r L n- ► oo J

 In similar way we define o-limsup F(7), u;-limsup F(7), s-liminf F(I) etc.
 /=>x I=>x
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 We say that function / is an s-derivative , if there exists an additive interval
 function F (called the primitive of /) such that

 tìì'TT? = /W

 holds for each x G Mm. Analogously we define that function is an o-derivative
 or a ^-derivative. The value of the primitive of a derivative / on interval 7
 we will denote by Sa(/, 7), S0(/, 7) and ¿^(Z, 7), respectively (cf [3]). Recall
 that:

 • tu-derivatives (so also o-derivatives and s-derivatives) are Baire one func-
 tions (cf [1, Lemma 2.1, p. 151] and [3, Lemma 3.1]),

 • If an o-derivative is summable on an interval 7, then S0(f , 7) = fff
 (cf [3, Proposition 5.3 and Corollary 6.2]). Similar result is true for
 s-derivatives and w-derivatives.

 Lemma 2 Given a function f of the first class of Baire which is not summable
 on an interval I we can find a family {In : n G M} of non-overlapping cubes
 such that f is summable on each In (n£N) and 53« i /7 |/| = oo.

 Proof. Let A be the set of all x G 7 at which / • 'i is locally summable. Then
 A is open so we can find a family {7n : n G N} of non-overlapping cubes such

 that A = Ur=x h (c^ [3» Lemma 2.1]). Suppose that £^°=i hn l/l < 00 • Since
 / is not summable on 7, the set 7' is nonvoid and so by Baire Theorem ([2,
 p. 301]), there is an x G 7 ' A such that /1(7 ' A) is continuous at x. Hence
 there is a bounded interval J such that x G int J and /|(7 ' A) is bounded on
 J H 7 ' A. But then

 í'f-xi'= Í 1/1+ JjnA / l/l < J / 'f' + ±[ l/l <00 J J JjnI'A JjnA J JM'A Jin

 - a contradiction, since x £ A, i.e. / • 'j is not locally summable at x.
 □

 Lemma 3 Whenever 'A'int A' = 0, function f is summable on A and € > 0
 there exists a continuous function g such that ||<7|| < 1, g(t) = 0 fort £ A and

 jUn)> JA l/l - ^
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 Proof. Since / is summable, there exists a 7 > 0 such that fc 'f' < e/2 for
 each set C C A of measure less than 7. Let T' C {t G int A : f(t) > 0} and
 T2 C {t G int A : f(t) < 0} be closed sets such that 'A ' (T' U 7o)| < 7. Let g
 be a continuous function which is equal to 1 on 71, equal to - 1 on T2, equal
 to 0 out of ini A and such that ''g'' < 1. Then

 0< Ja I l/l- Ja /(/•</)= Ja Í [f(sgnf-g)] < 2- f 'f'<e. Ja Ja Ja *m'(t,ut3)

 □

 Lemma 4 Assume that I is an interval , x G I and h is a w-derivative which
 is locally summable at each y G I' {a:}. Then for every descending sequence
 of cubes In => x, if I' C I , then function f is summable on In '/n+ 1 for each
 sufficiently large n G N and moreover ,

 lim f h = 0.
 n-°°Jln'I n + l

 Proof. Let e > 0. Then x £ cl (/„ ' /n+i) for sufficiently large n G N, whence
 h is for such n summable on In ' /n+i. Using absolute continuity of Lebesgue
 integral find for each such n non-overlapping cubes Int i, . . Intkn C In such

 that /n+i c In,!) In = U?=1 Inj and 1'/n+l |/| < £• Let r > 0 be such that
 for each cube «7, if x G J and diamj < r, then

 -»(»J]««.
 Hence for each sufficiently large n G N,

 / h < e + / h = e + In) - /n,i)|
 |^/n'/n + l K/n'/».l

 < £ -f (2e + IMX)I) * l^n|-

 □

 Theorem 5 For any function /, the following two conditions are equivalent:

 a) the product of f with each continuous function is a w-derivative ,

 b) f is a locally summable w-derivative and

 -hm r Ms ' < oo m (1) w -hm r sup ' < oo m (1)
 /=>* l'I

 for each x G Rm.
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 Proof.

 a)=>b) Note first that / = / • 1 is a iu-derivative, so / is a Baire one
 function. Suppose that / is not locally summable at some x G Mm. Then
 there exists an interval I 3 x such that for each interval J C 7, if x G «7, then
 / is not summable on J . We will define by induction a descending sequence
 of cubes 7„ => x and a sequence of continuous functions {gn : n G N} such
 that for each n G N, the following conditions hold:

 1) 9n (0 = 0, if t £ In ' Tn + 1 ,

 2) function / • gn is summable and / (/ • gn) > 1,
 Jln'In+l

 3) IMI < 21_n.

 Set li = I. Assume that we have already defined cubes and
 functions <71, . . . ,gn-' satisfying l)-3). Use Lemma 2 to find non-overlapping
 cubes 7nii, . . . , In,kn C In such that function / is summable on each /„ ,• (?' G

 and

 ^ n p

 E / p 1/1 > 2"-
 ,=1 JU.i

 For i G {1, . . . , &„}, use Lemma 3 to find a continuous function gn,¡ such that
 ||ffn,«H < 1, = o for t Ć and

 / ( f-9n,i)>[ Ji 1/1/2. Ji., i Ji

 Set

 gn = 21-n
 i=l

 and find a cube 7n+i C 7n such that x G 7n and

 diamln < minļg 2-n| .
 Then

 k k

 [ (f -9n) = 21-n 'Z i (/ <7n,)>2-n £ [ l/l > 1. «7/n'/n + 1 j = ļ ** I n,i » = 1*'^*.»

 Obviously 1) and 3) are also fulfilled.
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 Set g = 53n=i Function g is continuous but //ny/ii+l(/ * </) > 1 f°r
 each n 6 N, so according to Lemma 4, function / • g is not a w- derivative, a
 contradiction.

 Suppose now that / is locally summahle and

 r //l/l uMimsup r . = GO
 /=>* l'I

 for some x G Km. Then there exists a sequence of cubes In => x such that for
 each n € N,

 / l/l > (n2 + 1) • |/„| and f 'f' < |/n|

 For each n € N, use Lemma 3 with An = 7n ' 'Jk>n h to find a continuous
 function gn such that ||^n|| < 1, <7n(0 = 0 for t £ An and

 / (f ' 9n) > n2 ' 'In'
 •M.

 (note that, since the set 'Jk>n h is closed, 'An ' ini An ' = 0). Set
 oo

 '■St-
 n = l

 Then g is continuous and since for each n € N,

 JU'An [ (/•*)</, i/i < 'u JU'An AJ».
 so

 SMgJn) k(f-9)_n-IU'A.(f-9) + ¡A9(f-9n)^ ,
 - izn

 - a contradiction.

 b)=>a) Let g be an arbitrary continuous function. Since / is locally sum-
 mable, so is / • g. Then for each x £ Rm,

 w-limsup ^ - /(x)
 Kl I

 = „.Iim5up |iW . (M - /(.)) + W' («-»<«»)

 < lí?(*)l • «J-lim /*•* 1^ - f(x) I + ui-limsup • iy-lim||ff /=** • 'i ~ tfOOII /*•* I |/| I /=>® |/| /=**
 = 0.
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 □

 Remark. It is easy to see that theorems analogous to Theorem 5, concerning
 o-derivatives and s-derivatives, can be proved in a similar way. However, since
 the o-convergence cannot be written in a Cauchy-like manner, the analogue of
 (1) is in this case a little more complicated. Example 8 shows that condition
 (3) cannot be replaced with the following:

 o-limsup < oo. (2)
 /=>* Kl

 Theorem 6 For any function f, the following two conditions are equivalent:

 a) the product of f with each continuous function is an o-derivative ,

 b) f is a locally summable o-derivative and

 f I/I
 lim sup In < oo (3)
 n-»oo I -'n I

 for each x € Mm and each sequence of intervals In => x.

 Theorem 7 For any function f, the following two conditions are equivalent :

 a) the product of f with each continuous function is an s-derivative,

 b) f is a locally summable s-derivative and

 s-limsup r fi I'L < oo m s-limsup r ' < oo m (4)
 /=>* U I

 for each x G Mm.

 Example 8 Assume that m > 1. Then there exists a locally summable o -
 derivative f and x G Km such that (3) holds and (2) does not.

 For each n € N, set

 Jn = ß1-2", 22~2n] x [2~n, 21_n] x ... x [2~n, 21~n]

 and find a continuous function /„ such that /n(y) = 0 for y £ Jn,

 / |/n| = 2"-1-|J„| = 2-mn
 JJn
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 and for every interval J € I'

 Jfn <2-2m".

 Set f = EĻifn and x = (0, . . .,0).
 Let /„ => x. There exists an or € M such that

 (diam Jn)m

 uñí <a<°°
 for each n G H. Fix an n G N. Let p = min{fc G N : 7n fl ^ 0}. Then

 so (3) holds. Meanwhile

 i 'r f'<a 1 f-o-w
 |/n| IVI" [<?(*, J»)]™ ¿

 so / is an o-derivative.
 Let k G N. For each n G N, set

 7n = x [(U1""] x ...x [O^1-"]

 and observe that

 (iiamUr < ^
 Un I

 (so In => z) but for n > k,

 so, since Ar G N is arbitrary, (2) does not hold.
 □
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