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 QUALITATIVE SYMMETRIC
 DIFFERENTIATION

 Abstract

 It is shown that the set of points at which a real valued function
 of a real variable is qualitatively continuous and finitely qualitatively
 symmetrically differentiable but not qualitatively differentiate is a cr-
 symmetrically porous set.

 1. Introduction

 It follows from a result of M. Evans and L. Larson (Theorem 4.1 in [4]) that if
 / : R - ► R has the Baire property, then the set of points at which / is qualita-
 tively continuous and (finitely) qualitatively symmetrically differentiate, but
 not qualitatively differentiable is <r-porous. Here, we shall prove a strength-
 ening of this result by observing that the exceptional set is cr-symmetrically
 porous even if the assumption that / has the Baire property is dropped. (The
 existence of cr-porous sets which are not ^-symmetrically porous has been
 established in [3] and [8].) We shall obtain a qualitative version of a result of
 L. Zajíček [9] who showed that for an arbitrary / : R - ► R the set of points
 at which / is continuous and (finitely) symmetrically differentiable but not
 differentiable is a-{ 1 - ^-symmetrically porous for every 0 < e < 1. (Zajíček
 did not state his result in this strong of a form, but his proof, indeed, verifies
 this strengthened statement. See [1].)
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 2. Definitions and Notation

 Here we establish the notation that will be utilized in this paper. The concepts
 of qualitative limits, qualitative continuity, and qualitative derivatives were
 introduced by S. Marcus [5, 6, 7]. Let / : IR - * M and let xo G M. The
 qualitative limit superior from the right of f at xq is defined as

 q- lim sup f(x) = inf{y : { x : f(x) > y} is first category in a right neighborhood of xo}.
 I - io +

 The qualitative limit inferior from the right of f at xo is defined as

 <7- liminf f(x) = sup{y : {x : J(x) < y} is first category in a right neighborhood of xo}.
 X - *0 +

 If q- limsupx^a.o+ /(x) = g-liminfr_ro+ /(x), the common value is called the
 qualitative limit from the right of f at xq and is denoted by q- limJP_>a.0+ /(x).
 Qualitative limits from the left, and qualitative limits are then defined and
 denoted in the obvious fashion. In the event that f(x o) = g-limx_x0 /(x) we
 say that fis qualitatively continuous at xo, and let

 Cq(f) = {x : / is qualitatively continuous at x}.

 The upper right qualitative derivate of / at xo is defined by

 Q+/(x o) = g- lim sup ^ X° * ^ h - f(f2Ïë h-+ o+ h

 Then Q~f(x o), Q+f(x o), and Q-/(x o) are all defined in the obvious manner.
 In the event that all four of these derivates are equal, we call their common

 value the qualitative derivative of f at xq and denote it by f'q(x o); that is,

 ,//_ '

 /,(« ,//_ o) ' =

 Recall that the upper symmetric derivate of f at xo is

 Vfí*o) = ti¡nSafni« + h):.í<"-kK
 0+ ¿h

 while the lower symmetric derivate of f at xq is

 S fi') = + h-+ 0"^" 2h

 If D* f(x o) = Dff(x o), then the common value is called the symmetric deriva-
 tive of f at xo and is denoted f's(x o). Analogously, in the qualitative setting
 we say that the upper qualitative symmetric derivate of f at xo is

 t, x /(xo + h) - /(x0 - h)
 Q /(xo) t, x = q- hm sup T ¿n , h-+ o+ ¿n
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 while the lower qualitative symmetric derívate of f at xq is

 ™ :_r /(*0 + h) ~ /(X° ~ h )
 Q ™ f(x) - q- hmmf :_r

 If i?V(x o) = Q_'f(x o), then the common value is called the qualitative sym-
 metric derivative of f at xo and is denoted f'q9(x o).
 If A is a subset of the real line R and x G R, then the porosity of A at x is

 defined to be

 p(A,x) = lim sup
 r->0+ r

 where A(j4,x,r) is the length of the longest open interval contained in either
 (x, x -f r)C'Ac or (x - r, x) fl Ac and Ac denotes the complement of A. A set
 is said to be porous at x if it has positive porosity at x and is called a porous
 set if it is porous at each of its points. Further, a set is called <r-porous if it is
 a countable union of porous sets. The symmetric porosity of A at x is defined
 as

 p' {A, x) = limsup^^,X'r'
 r->0+ r

 where y(A , x, r) is the supremum of all positive numbers h such that there is a
 positive number t with t+h < r such that both of the intervals (x - t - A, x - t)
 and (x-f ť,x-M-hA) lie in Ac. A set A is symmetrically porous if it has positive
 symmetric porosity at each of its points. For a number 0 < a < 1 the set A is
 called q- symmetrically porous if it has symmetric porosity at least a at each
 of its points. The set A is called a -symmetrically porous if it is a countable
 union of symmetrically porous sets, and is called a -a -symmetrically porous if
 it is a countable union of »-symmetrically porous sets.

 Finally, we shall say that a set A is residual in an interval I provided that
 the set difference I ' A is a first category set.

 3. Results

 The following lemma is the key to our main result and its proof will closely
 follow that of Zajíček [9], except that where he reflected points, we shall reflect
 intervals and keep track of the function values within a second category subset
 of the reflected intervals.

 Lemma 1 Let f : R - ► R be an arbitrary function and let 0 < e < 1. The set

 St(f) = e Cļ(f) : 'Ąt(x)' <

 is <r-(l - c) -symmetrically porous.
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 Proof. For each positive rational number D let

 Se,B(f) = {*£ C,(f) : 'rit(x)' < < Q+/(*)^}

 Then S€(f) = (Jb>o^,b(/) and it will be enough to show that each S€iß(f)
 is <r-(l - ^-symmetrically porous.

 For each x G Sř,a(/) let

 and for each natural number m set

 S€tBtm(f) = ja? € S(ìb : T(x, e, B) is residual in (x - x + | .

 Then since S€)b Ç Um it suffices to show each 5řjB,m(/) is (1 - e)
 symmetrically porous. Suppose for a fixed m, S€ļB,m(f) is not (1- e) symmetri-
 cally porous. So there is an xo G Sc,B,m(/) such that p5(Sř,jB,m(/), xo) < 1 - c.
 Without loss of generality we may assume x0 = 0 = f(x o). Then there is a
 0 < 6 < 1/4 m such that for all 0 < t < 6

 (1) [(- ť + d/2, - eť/2) U (et 1 2, ť - d/2)] H S<,*,m(/) ^ 0.

 Since Q+f( 0) > B, there is a number ai G (0,6) such that /(ai) > ¿Jai,
 and such that the set {x : f(x) > Ba'} intersects every open neighborhood of
 ai in a second category set. Since /(0) = 0 and / is qualitatively continuous
 at 0 there is a number 6* > 0 such that

 (2) {x G (-6* ,6*) : |/(x)| < Bai/2} is residual in (-¿*,5*).

 Let I' = (ai - 6* tai + 6*) and B' = {x G h : /(*) > Ba'). Because of (2),
 0 ^ I' ' that is, 6* < ai, and, consequently, ai 4- 6* < 1/2 m..

 Having defined ai , we shall now inductively define a sequence {at } of points
 such that for each natural number k we have

 (3) hk+i|<(l-e)K|.

 If the points ai,...,a* have been selected we proceed as follows. First, if
 ak = 0, we put ajfc+i =0. If a* ^ 0 then from (1) it follows that there is a
 point

 (4) pt e [(-M + fM/2, - e|a*|/2) U (f|at|/2, |<i*| - f|at|/2)] n Se,B,m(/) »
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 where for definiteness we shall choose pt to have the same sign as at if we
 have a choice. We then set

 ,r' _ / 2 pu - at if ptak > 0
 ^ ,r' ' t+1 _ ' 2 pt + at if Pk^k < 0
 In other words, ak+i is the reflection of a* about p* if a* and p* are on the
 same side of the origin; otherwise, a*+i is the reflection of - a* about p¿. From
 (4) and (5) inequality (3) clearly follows for each natural number k. For each
 k let Ik = (ajb - 6* , ajk -f 6*). Because of (3) there is a smallest natural number
 N such that 0 G /at+i .

 Now, we define the set T to be

 T = T( 0, e, B) n I n FiPk . ř- B) n ~T(Pk , Í, ö)]| ,
 where - T(p*,e,£) is the reflection of T(p¿,e, D) about 0. Note that T is
 residual in the interval (- a' - 6* ,ai -f ¿*). We set

 Ci = i?! nr.

 For each k = 1, . . . , N define a function r¿ : R - ► R by

 Í61 W 2pt_X ifPt;c>0 Í61 W ' 2pfc + X if Pkx < 0 '
 Consequently, r*(x) is the reflection of x about p* if x and p* are on the same
 side of the origin; otherwise, rfc(x) is the reflection of - x about p*. In this
 notation,

 ffc+i = rk(ak ) and Jjt+i = rk(h) for k = l,...N,

 the latter resulting from the fact that for k = 1, . . . , N, we must have 6 * < |a*|,
 and hence for all x G /*, pkx > 0 if and only if pkQk > 0. For each k = 1, . . N
 we define

 Ck + 1 = Tfc(Cjb)

 and observe that the set C* lies in the interval and is second category in
 every open neighborhood of a*, k = 1, . . . , N + 1.

 For each point 5 G Cn+i we note that there are unique points s w € CV,
 «.v- 1 G Cn- i > • - - ) $i G Ci such that

 5 = rs{sN)ìSs = nv_i(s;v_i),...,s2 =

 We shall observe that

 (") 'f(rj(sj)) - f(sj) I < for each j' = l,2,...,N.
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 To see this, fix a j G {1, 2, . . . , N). Either Sjpj > 0 or sjpj < 0. Considering
 the former situation first, we have

 l/(r#(«j)) - /(si)l = l/(2P; - si) -
 2|sj -pj'Be

 16

 2(|aj| + 6*)B(
 16

 4'dj 'B(
 16

 (8) =

 where we have used the fact that Sj G T(pjìe1 B). Next, if SjPj < 0, then

 l/(rj(si)) - f(sj) I = I f(2PJ + si)~ f(si )l
 < l/(2pj + Sj) - f(-Sj) I + |/(-Sj) - /(Sj )|
 2| - sj - pj 'Bt 2|sj|5f

 16 16

 4(ļqj I + 6*)Be
 16

 S'aj'Be
 16

 (9) = *|«j|.
 This time we used that sj G T(0,e,B) and - Sj G T(p¿, e, S). ¿From (8) and
 (9) we obtain the claim (7).

 Hence, for each s G CV+i we have

 l/(«)-/(si)l = 'f(rN(sN) - f(si)'

 < D/M*;))-/M
 ;= i

 < (from(7))
 i= 1

 < -r ~ (from (3))
 i=i

 < ^Žo
 i = 1
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 (10) = ^ .
 Consequently, for each 5 £ C,v+ 1 we have

 /(«) > M)-^
 > Ba,- -

 _ Sai
 T~*

 This is an impossible situation, however, since 0 G Iną- i and hence CV+i is
 second category in (-¿*,6*), contradicting (2). This completes the proof of
 the lemma.

 Theorem 1 Let f be a function from R into R. The set of points of qualitative

 continuity of f where f'qs(x) exists and is finite, but ffq(x) does not exist is <r-
 (1 - e) -symmetrically porous for any choice of e E (0, 1).

 Proof. The set we are interested in can be written as

 {x € C,(/) : -00 < fv(x) < Q+f(x)} U {x 6 C,(/) : <?+/(«) < fĻ{x) < 00}

 U{i € c,(/) : -00 < f'q,(x) < Q~f(x)} u{t€ C„(f) : Q-f(x) < fĻ(x) < 00}

 Let 0 < f < 1. By taking into account /(- x), -f(-x) and -f(x), we see it
 is enough to show that

 S = {x : -00 < fg8 (x) < Q+f(x)}

 is <r-(l - ^-symmetrically porous.
 Pick z G S. For this z, let r = rz be a rational number such that

 fq, (*) - ¿(<5+/(Z) - f'l»(Z )) < r < fisi2)'

 This leads to

 0 < f„(z) - r < ^(<3+/(*) - W) < Q+f( Z) - r)
 which gives us

 (U) 'W~r' <J-(Q+f(z)-r)
 Now define the function gr(x) = f(x) - rx. Then by using (11) we have
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 Thus for our set S we have S Ç U {St(gr) : r is rational} where S<(gr) is
 defined by Lemma 1. Applying Lemma 1 completes this proof.

 We note here that this result cannot be viewed as a corollary of a strength-
 ening of Theorem 4.1 in [4], because in Proposition 1 of [2], Evans constructs
 a monotone Lipschitz function g : R - ► R such that the exceptional set for
 Theorem 4.1 of [4] is not ^-symmetrically porous.

 In [1] Evans improved Zajiček's result in [9] to say the following: for an
 arbitrary / : R - ► R if the points of finite symmetric differentiability are
 contained in the closure of the points of continuity then the set of points of
 finite symmetric differentiability where / is not differentiate is (1 - e)-
 symmetrically porous. The following example will show that a qualitative
 version is not true.

 Example 1 There exists an f : R - ► R which is of B aire class one for which
 the set of points where |/¿5(x)| < oo but f'q(x) does not exist has positive
 measure .

 Proof. Let C C [0, 1] be a Cantor set of positive measure. Define / to be
 the characteristic function of C. Note that for any real number x, f'qs{x) = 0.
 However, for any x EC, fq(x) does not exist.

 4. A Measure Theoretic Analogue

 In this section we will show that the previous results will hold if instead of
 using category as an indicator of size, we use the notion of measure. Let
 / : R - ► R, let xo € R and let fi and fi* denote Lebesgue measure and outer
 measure respectively. The measure limit superior from the right off at xo is
 defined as

 /i- lim sup /(x) = inf{y : p{x : f(x) > y} is zero in a right neighborhood of xo}.
 X-»Jo +

 Similary we define measure limit inferior from the right of f at x o, measure
 limit inferior and superior from the left, and if the inferior and superior limits
 agree we call it the measure limit of f at xq. If f(x o) = /i- limx- ro f(x) then
 / is measure continuous at xo, and we define

 C^if) = {x : / is measure continuous at x}.

 The upper right measure derivate of / at xo is defined by

 h- 0+ /l
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 with M~ f(xo), A/+/(x0), and A/«/(x0) all defined in the obvious manner.
 If all four of the derivat.es are the same then we call this common value the

 measure derivative of f at xo and denote it by /¡t(xo)-
 Finally, looking at symmetric measure derivatives we say the tipper measure

 symmetric derivate of f at xo is

 - « ' r /(* 0 + h) - /(*0 - h)
 M « f(x o) ' = /z-limsup r

 h- o+

 while the lower measure symmetric derivate of f at xq is

 - M'f(x) JK ' = /i-Hminf r /(" + *>-/("-*) . - JK ' r ^0+ 2/l

 If ~M$ f{x o) = M? f(xo), then the common value is called the measure sym-
 metric derivative of f at xo and is denoted o).

 Using these measure related ideas we have the following analogue of Lemma
 1.

 Lemma 1* Let f : R - ► R be an arbitrary function and let 0 < e < 1. The
 set

 s d/) = {* g cm) ■■ |/;.(*)| < fMļ6/(x)}
 is <t-( 1 - c) -symmetric ally porous.

 Only the obvious changes need be made in the proof given for Lemma 1.
 For example, we set

 Sc,B(f) = {* e C„(/) : 'īĻ{x)' < i| < M+/(x)^}

 and redefine SeļB,m(f) to be

 {x e se,B(f) ■ n (t(x, t,B)n(x-±x + ±))=lJ.
 We pick an a' such that {x : f(x) > Ba'} intersects every open neighborhood
 of ai in a set of positive outer measure. Also, we choose a 6* > 0 such that

 {x G ( - 6* , 6*) : |/(x)| < jBai/2} is of full measure in

 Finally, we note that for the sets Ct we know /i*(Cjk+i) = l**(Ck)>
 As before, the following theorem readily follows from the lemma.

 Theorem 1* Let f be a function from R into R. Consider the set of points of
 measure continuity of f where exists and is finite , but /¿(x) does not
 exist. This set is <r-(l - e) -symmetrically porous for any choice of e 6 (0, 1).
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