Real Analysis Exchange Vol. 18(2), 1992/93, pp. 571-574

Kandasamy Muthuvel, Department of Mathematics, University of Wisconsin-Oshkosh, Oshkosh, WI 54901

SOME RESULTS CONCERNING HAMEL BASES

Abstract

In this paper we show that under Martin's Axiom there is a Hamel basis H for which the set $E^+(H)$ of all finite linear combinations of elements from H with nonnegative rational coefficients is both of Lebesgue measure zero and of the first Baire category. We also obtain that the additive group of the reals R is a direct sum of two subgroups one of which is uncountable, of measure zero and of the first Baire category.

1. Introduction

A subset H of the reals R is called a Hamel basis, if H spans R and H is linearly independent over the set of rationals. $E^+(H)$ is the set of all finite linear combinations of elements from H with nonnegative rational coefficients. Under the assumption of the continuum hypothesis, it was shown in [2, Th. 2] that there exists a Hamel basis H for R such that $E^+(H)$ is a Lusin set (an uncountable set with the property that every uncountable subset of it is of second Baire category is called a Lusin set). H. Miller proved in [7, Th. 1](see also MR: 90 e 04002) that under the assumption of Martin's Axiom, there exists a Hamel basis H for R such that $E^+(H)$ is a set of the first Baire category. He asks in [7] whether there exists a Hamel basis H for R such that $E^+(H)$ is both of Lebesgue measure zero and of the first Baire category. The purpose of this paper is to show that under Martin's Axiom such a basis exists. We also obtain that the additive group of the reals R is a direct sum of two subgroups G and H such that one of them is uncountable, of measure zero and of the first Baire category.

Key Words: Martin's Axiom, Hamel Basis, Lebesgue measure zero, first Baire category, additive groups of real numbers

Mathematical Reviews subject classification: Primary 26A03: Secondary 04A15, 54A25

Received by the editors September 30, 1992

Notation: Throughout this paper, the set of all real numbers, the set of all rational numbers, the set of all integers, and the set of all positive integers are denoted by \mathbb{R} , \mathbb{Q} , \mathbb{Z} , and \mathbb{N} respectively. The initial ordinal number of the cardinal number of \mathbb{R} is denoted by Ω . For a subset A of \mathbb{R} , span A is the set of all finite linear combinations of elements from A with rational coefficients, $E^+(A)$ is the set of all finite linear combinations of elements of elements from A with nonnegative rational coefficients, and rA is the set of all real numbers of the form ra, where $a \in A$. A + B is the algebraic sum of subsets A and B of \mathbb{R} .

2. Results

Theorem 1 Under the assumption of Martin's Axiom, there exists a Hamel basis H for \mathbb{R} such that $E^+(H)$ is both of (Lebesgue) measure zero, and of the first (Baire) category.

PROOF. Assuming Martin's Axiom, there exists a measure zero, first category set A containing a translate of every set of cardinality less than the cardinality of the continuum [5]. Let $B = \bigcup_{q \in \mathbb{Q}} qA$. Then B is a measure zero, first category set satisfying the above mentioned translation property, and $qB = B \ \forall q \in \mathbb{Q} \setminus \{0\}$ (*). We are done if we show that there exists a Hamel basis H for R such that $E^+(H) \subseteq B$. To do this, wellorder $B = (b_{\xi})_{\xi < \Omega}$, and construct two sequences $(c_{\xi})_{\xi < \Omega}$ and $(d_{\xi})_{\xi < \Omega}$ with the property " b_{ξ} is a linear combination of c_{ξ} and d_{ξ} with rational coefficients, and all finite linear combinations of elements from the two sequences with nonnegative rational coefficients are in B" as follows. Let $c_1 = b_1$ and $d_1 = 0$. Then $b_1 \in \text{span}\{c_1, d_1\}$, and $E^+\{c_1, d_1\} \subseteq B$. Suppose that $1 < \mu < \Omega$, and for each $\xi < \mu, c_{\xi}$ and d_{ξ} have been defined such that $b_{\xi} \in$ span $\{c_{\xi}, d_{\xi}\}$, and $E^+(\{c_{\xi}: \xi < \mu\} \cup \{d_{\xi}: \xi < \mu\}) \subseteq B$. For simplicity, denote ${c_{\xi}: \xi < \mu} \cup {d_{\xi}: \xi < \mu}$ by H_{μ} . By (*), there exists $h \in R$ such that $E^+(H_{\mu}) + b_{\mu}\mathbb{Q} + h \subseteq B$. If we let $c_{\mu} = b_{\mu} + h$ and $d_{\mu} = h$, then it is not hard to see that $b_{\mu} \in \operatorname{span}\{c_{\mu}, d_{\mu}\}$, and $E^{+}(H_{\mu} \cup \{c_{\mu}, d_{\mu}\}) \subseteq B$. Thus, by transfinite induction, we have constructed the sequences $(c_{\xi})_{\xi \leq \Omega}$ and $(d_{\xi})_{\xi \leq \Omega}$ with the desired properties. Let $K = \{c_{\xi} : \xi < \Omega\} \cup \{d_{\xi} : \xi < \Omega\}$, and let \mathcal{F} be the family of all rationally independent subsets of K. Partially order \mathcal{F} by set inclusion \subseteq . Then, by Zorn's lemma, \mathcal{F} has a maximal element, say H. Clearly $E^+(H)$ is both of measure zero and of the first category. To show that H is a Hamel basis for \mathbb{R} , let $k \in K$ and $k \notin H$. Then, since $H \cup \{k\}$ is not rationally independent and H is rationally independent, k can be expressed as a finite linear combination of elements from H with rational coefficients. Hence span $H \supseteq K$. By our construction, span $K \supseteq B$, and consequently span $H \supseteq B$. Again by (*), for every $r \in R$, there exists $t \in R$ such that

 $\{0, r\} + t \subseteq B$, and consequently $r = (r+t) - t \in B - B$. Hence span H = R, and since H is rationally independent, H is a basis for \mathbb{R} .

P. Erdös proved in [1, Th. 1] that under the assumption of the continuum hypothesis, there are additive subgroups of the reals, which are of measure zero and of the second category; of the first category and not of measure zero. It was shown in [10] (see also MR: 91 j 26001) that under the assumption of the continuum hypothesis, there are additive subgroups of the reals, which are of the second category and nonmeasurable; of the second category without the Baire property. Without the assumption of the continuum hypothesis, the following theorem shows that the subgroups mentioned in [10] exist. It is interesting to compare part(3) of the following theorem with [3, Th. 5] and [4, Th. 1].

Remark 1 It is well known that if A is a second category subset of \mathbb{R} with the Baire property, then A - A contains a nonempty open interval (see [8] or [9]). Hence if G is a second category subgroup of \mathbb{R} with the Baire property, then G = G - G contains a nonempty open interval, and consequently G = R. In other words, no second category proper subgroup of \mathbb{R} satisfies the Baire property.

Theorem 2 If H is a Hamel basis for \mathbb{R} , then

- 1. the Erdös set, $Z(H) = \{\sum_{i=1}^{n} m_i h_i : m_i \in \mathbb{Z}, h_i \in H, n \in \mathbb{N}\}$, is an additive subgroup of \mathbb{R} , which is everywhere of second category and non-measurable;
- 2. Z(H) contains a measure zero, first category uncountable additive subgroup;
- 3. there are additive subgroups G and K of \mathbb{R} (indeed both are subspaces of R over the field of rationals) such that R = G + K, $G \cap K = \{0\}$, and G is both of measure zero and of the first category.

PROOF.

- 1. The proof of this follows from the proof of Theorem 1 in [2] with appropriate minor modification.
- 2. Let A be a measure zero, first category set containing a translate of every countable set [6]. Let $B = \bigcup_{q \in \mathbb{Q}} qA$, and let B be the set of all additive subgroups, G, contained in B such that $\bigcup_{q \in \mathbb{Q}} qG = G$. Then B is preordered by set inclusion \subseteq , and by Zorn's lemma, B has a maximal element, say G. Clearly G is both of measure zero and of the first category. G is uncountable ; otherwise $G + r \subseteq B$ for some $r \in R$, and

since qB = B and $qG = G \forall q \in \mathbb{Q} \setminus \{0\}, B \supseteq G + \{qr : q \in \mathbb{Q}\}$ is an additive subgroup properly containing G, which contradicts that G is a maximal element of B. Now let $G_n = \{g \in G : ng \in Z(H)\}$ for every $n \in \mathbb{N}$. To show that $G = \bigcup_{n \in \mathbb{N}} G_n$, let $g \in G$. Then there exist $a_i \in \mathbb{Z}$ and $b_i \in \mathbb{N}$ such that $g = \sum_{i=1}^n \frac{a_i}{b_i} h_i$ for some $n \in \mathbb{N}$. Let m be the least common multiple of b_1, b_2, \dots, b_n . Then $mg \in Z(H)$, and consequently $g \in G_m$ and $G \subseteq \bigcup_{n \in \mathbb{N}} G_n$. Clearly $\bigcup_{n \in \mathbb{N}} G_n \subseteq G$. Hence for some n, nG_n is a measure zero, first category uncountable subgroup of Z(H).

If follows from the proof of (2) that there is a measure zero, first category uncountable subgroup G of Rsuch that U_{q∈Q}qG = G. Let G be the set of all additive subgroups, K, contained in (R\G) ∪ {0}such that U_{q∈Q}qK = K. As in the proof of (2), G has a maximal element, say K. If r ∈ R\G, then qr+K is not contained in (R\G)∪{0} for some q ∈ Q\{0}, and consequently qr+k ∈ G for some k ∈ K; hence r = (qr+k)/(q) = K = G + K.

References

- P. Erdös, Some remarks on subgroups of real numbers, Colloq. Math.42 (1979), 119-120.
- [2] P. Erdös, On some properties of Hamel bases, Colloq. Math.10 (1963), 267-269.
- [3] P. Erdös, K. Kunen, R. Daniel Mauldin, Some additive properties of real numbers, Fund. Math.113 (1981), 187-199.
- [4] B. Le Gac, Some properties of Borel subgroups of real numbers, Proc. Amer. Math. Soc. 87 (1983), no.4, 677-680.
- [5] P. Komjath, Large small sets, Colloq. Math. 56 (1988), 231-233.
- [6] J. Mycielski, Some new ideals of sets on the real line. Colloq. Math. 20 (1969), 71-76.
- [7] H. Miller, On a property of Hamel bases, Boll. Un. Mat. Ital. A(7),3 (1989), 39-43.
- [8] H. Miller, Two results in classical measure theory, J. Math Anal. Appl.151 (1990), 203-207.
- [9] J.C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1970.
- [10] S. Răzvan, On additive subgroups of real numbers, Stud. Cerc. Mat. 42 (1990), no. 3, 269-272.