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 A GENERALIZATION OF L'HÔPITAL'S
 RULE VIA ABSOLUTE CONTINUITY AND

 BANACH MODULES

 Abstract

 The main purpose of the present note is to make a first step in stating
 L'Hôpital 's rule for functions of a real variable with higher-dimensional
 ranges. This is done by working with absolutely continuous functions in
 the framework of Banach modules.

 1. Introduction.

 Let us consider the version of L'Hôpital's rule which says that if / and g are
 two real- valued functions, everywhere differentiable on a real interval (a, 6), if

 lim g(x) = oo, where xo = a or xo = b

 and if g'{x) / 0 in a neighborhood of xo, then

 lim f'(x)/g'(x) = L

 implies
 lim f{x)/g(x) = L.

 X-*Xq

 In the classical proof of this result, the following hypotheses seem to be
 crucial:

 (¿) the functions /, g are real-valued;
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 (ii) / and g are everywhere differentiable in (a, 6);

 (iii) g' ^ 0 in. a neighborhood of the limit point,

 all, essentially, in applying Cauchy's theorem on finite increments (cf., e.g.,
 [13, Th.5.13, p. 94]).
 During the last fifteen years, several authors have reconsidered or gener-
 alized in various ways the theorem above, see [2, 4, 5, 8, 9, 12, 20, 22]. For
 example, in [2] R.P.Boas gave a detailed discussion on a family of interesting
 counterexamples based on the relaxation of assumption (iii). On the other
 hand, A.M.Ostrowski [12] had previously made a first step in the weakening
 of assumptions (ii),(iii), stating a new version of L'Hôpital's theorem in the
 framework of absolutely continuous functions. Later Lee [8, 9], generalized the
 L'Hôpital-Ostrowski result via a strong weakening of (ii),(iii), based on the
 concepts of essential limit and approximate Peano derivative, and on various
 monotonicity theorems.
 However, in spite of their deepness and completeness, all these results share
 the feature of considering only real-valued functions. Moreover, a strong use
 of the ordering of the range is made. Only recently [20], a new formulation of
 the rule has been proposed that does not resort to monotonicity assumptions.
 The main purpose of the present note is just to generalize assumption
 (i), i.e. to make a first step in stating L'Hôpital's rule for functions of a
 real variable with higher-dimensional ranges. This is done by working with
 absolutely continuous functions, as in [12], so a weakening of (ii) and (iii)
 follows anyway. However, also in the case of real-valued functions, the present
 generalization has non-empty intersection and difference with those in [8, 9,
 12, 20]. In particular, the function g' is allowed to be zero on positive measure
 subsets, and even to change sign, in each neighborhood of the limit point. This
 latter extension gives the tools for capturing some "cancellation phenomena",
 like those playing a central role in [2].
 From the algebraic-topological viewpoint, we found it natural and conve-
 nient to state L'Hôpital's rule for functions /, g such that / is valued in a real
 (complex) Banach module X over a real (complex) Banach algebra A, and g is
 valued in the algebra A (about Banach modules see, e.g., [3]). The framework
 of absolutely continuous functions gives the following crucial possibility: we
 can work with the integral instead of the differential calculus. In infinite di-
 mensional instances, as it is well-known, the connection of the integral to the
 differential calculus requires strong differentiability a.e. besides absolute con-
 tinuity (cf. [7, Th. 3. 8. 6, p. 88]). In these cases, the Bochner integral [7, Ch. 3]
 plays a key role in the generalization of L'Hôpital's rule. Abstract versions of
 the rule in the framework of vector-valued holomorphic functions , based again
 on the possibility of integral representations, are given in [15]. An extension
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 of the rule to the abstract case of the type "0/0" will appear in [16]. Recently
 the discrete analogue of L'IIôpital's rule, i.e. the well-known Cesaro's rule for
 real sequences, has also been generalized in various directions, cf. [10, 17].

 In the next Section the main theorems are stated and proved. In Section 3,
 we shall give some examples and a detailed discussion on the counterexamples
 quoted above.

 2. L'Hopital's rule in the framework of Banach modules.

 We shall prove the following:

 Theorem 2.1 Let X be a real (complex) right Banach module over the real
 (complex) Banach algebra with unit A, and (a, b) a real interval (bounded or
 unbounded).

 Let f : (a, 6) - ► X, g : (a, 6) - ► A be strongly locally absolutely continuous
 (i.e. strongly absolutely continuous in any compact subinterval), and strongly
 diffcrentiable a.e. in (a, 6), with g(x) £ Inv(A) Vx £ (a,¿) and IKsK*))""1!!^ ~"+
 0 as X - ► xo, xo = a or xo = b.

 Moreover suppose that there exists a Lebesgue measurable subset o/(a,6),
 say E , such that f ,g' are defined on E , g'(x) £ Inv(A) Vx £ E, xo is a limit
 point for E and:

 in

 (1) lini /'(xXs'í*))-1 = L € X ;
 E

 X - ar0

 (II) for any fired (a, b)

 (2) lim sup f ||ff'(0(fl(«))-1|Udť < 00 .
 X-+XO

 where E(£, x) = (£ A x, £ V x) fi E ;

 (III) defining E*(£, x) = (£ A x,£ V x) fl Ec , where Ec denotes the complement
 of E ,

 (3) II f - Lg'(t))(g(x))-ldi''x ^>0 as x x0 .

 Then

 (4) lim f{x)(g(x))~l = L .
 X-*Xq
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 Before proving this theorem, we make some comments. First of all, note that
 Theorem 2.1 indeed represents a generalization of the classical result in the case
 of real-valued, absolutely continuous and everywhere differentiate functions.
 In fact if g'(x) ^ 0 in a neighborhood of xo, say VTo = (xo - Í, xo -f ¿) H (a, 6),
 then by Darbouz 1 theorem g' has constant sign in v,0 and it is easily verified
 that hypotheses (II) and (III) hold, simply by choosing E = VXo. Observe
 that the left-hand side of (2) takes on the value 1, in this case.
 As for (///), it is worth noting that it is automatically satisfied when
 meas E*((,x) = 0 for x sufficiently close to xo, or whenever the cancellation ,
 f'(t) = Lg'(t), occurs for all t £ £**(£, x) (in particular when f'(t) and g'(t)
 both vanish in 2?*(f,x)).
 Moreover, it is clear that a "left" version of Theorem 2.1 can be stated,

 and proved, in a similar way. Note that no requirement is made on the com-
 mutativity of A, or on the dimension of the spaces X and A . Obviously
 the strong differentiability a.e. hypothesis is essential only in infinite dimen-
 sional cases: then the integrals appearing in (III) and in the proof below are
 Bochner integrals (cf. [7, Ch. 3]). We stress that the integral in (2) is finite for
 each x because the local Bochner integrability of g ' is equivalent to the local
 integrability of ||^|1 (cf., e.g., [7, Ch.3]).
 Finally note that the hypothesis HGK^))"1!! - ' - 0 is equivalent to the classi-

 cal one ||y(x)ļļ - ► oo only in the one-dimensional case, or in very special higher
 dimensional instances.

 Proof. For convenience, we prove Theorem 2.1 in the case xo = 6, the
 proof being similar for the limiting process x - * a+. By the absolute continuity
 and the strong differentiability a.e. of / and g, for fixed £ G (a, 6), we can write:

 (5) f(x ) = /(£) + J f'(t)dt, g(x) = g(() + jí g'(t)dt

 where the integrals on the r.h.s. are Bochner integrals (cf.[7, Ch.3]), and the

 obvious convention = - f* if x < £ holds. We have

 (6)

 /(*)(0(*))-1 - L = J [/'(0 - WWWgi*))'1 + [/(€) - MOM*))-1 .

 and the second additive term is infinitesimal as x - ► 6~. Moreover

 Il r [/'(<) - Lg'(t)]dt(g(x))-*''X < || / (/'«) - Lg'(t))(g(x))-ldt''x
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 (7) +11 / (/'(O -VíOKíí«))-1 All*
 JE+(1,X)

 cf. (//) and (///), and the second additive term above is infinitesimal as
 X - ► 6~, in view of (III).

 Now, by (I) and (II), Vé > 0 3xi(¿) > £ such that

 H/'OrXff't*))-1 - L''x < e and

 (8) [ 'W(t)(g(x))-'''Adt<K ,Vx<=(Xl(e),b)nE ,
 JE( {,*)

 for some positive constant A'. Hence, recalling that 3M > 0 : ||ma||x <
 ■MÌMUIMU V m € X, a € A (cf. [2, Ch.l, §9, def.12]), we get

 II / [m-Lg't))dt(g(x))-l''x

 <M'' f [f'(t)-Lg'(t))dt llxIKi/^-MU Ąt.nWnE

 +M f wrmmr1 - iiixMogk*))-1!!^
 J(xi(c),x)nE

 (9) < M {^(OIKffí«))-1!!^ + Ke) , V* € (*i(e),6)
 again in view of (II), where

 (10) ^) = ||/ [f'(i)-Lg'(t))dt''x
 is a nonnegative real function of e.

 The proof is completed by observing that 3x2(i) < b such that
 tf(£)ll(ff(*))-łIU < £ Vx € (*a(e),&). Q.E.D.

 For completeness, we state also the following result, which deals with a
 case not covered by Theorem 2.1, but which provides another natural gener-
 alization of L'HôpitaPs rule in the framework of Banach algebras. The proof
 is completely analogous to the previous one.

 Theorem 2.2 Theorem 2.1 holds if f : (a, 6) - ► K, K being the field underly-
 ing the Banach algebra A (K = R or K = C)f and the only formal modification
 of writing f'(t)e, e denoting the unit element of A, instead of f'(t), is made
 in (III),
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 3. Examples and counterexamples.

 3.1 Some examples in higher dimension.

 We begin this Section by specializing the previous abstract results in two
 simple applications.

 First of all, notice that the following two typical instances are included:
 A" real (complex) Banach space, A = R (A = C); X real (complex) Banach
 algebra, A = X. Regarding the first instance, we can state, as a corollary, the
 following result, which generalizes a well-known Abelian-type theorem (cf. [7,
 Thm. 18.2.1, p.505]):

 Corollary 3.1 Let X be a real (complex) Banach space and f : (a, +oo) - ► X ,
 where a > 0, a locally Bochner integrable function. If

 (11) lim = A G X , p>0,
 X- >-i-oo X?

 then, Va G (a, +oo)

 (12) lim -Ļ- 1 [* f(t)dt = . S- +CO xP+ 1 Ja P + 1

 The proof is immediate, since all hypotheses of Theorem 2.1 are readily veri-
 fied taking as E the subset of (a,-foo) where the integral function in (12) is
 differentiable.

 As for the second instance, i.e. the Banach algebras framework, let us
 discuss an application to the asymptotic theory of linear abstract and mat rix
 differential equations. Consider the abstract differential equation

 (13) Y" + Q{x)Y = 0,

 with Q G C°([c, +oo); >i), c G Ä, A denoting a given commutative C*-algebra
 with unit /, and let ß be a positive element of A. If there exists a solution
 Vi(x) to (13) such that Yi(x) ~ exp {-y/fix}, Y{(x) ~ - y/j3exp {- >/f3x} as
 X - ► +00, y/13 being the positive square root of /?, then there is a solution Y o(^)
 such that V2(®) ~ exp {y/ßx}, Y^x) ~ y/ßexp {y/ßx}. Hereafter exp {•} will
 denote the exponential function in both the real and the Banach algebras
 frameworks.

 First., it is easily verified that

 (14) y2(x) := 2y/ßYi(x) J f* [yi(/)]"2d< , J a
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 solves (13) whenever Vi(x) does, a belonging to a suitable neighborhood of
 +00 where Yi(x) is invertible for each x . Such a neighborhood certainly exists
 in view of the asymptotic behavior of Yi(x). Now

 exņ{-'ZĪ3x}Y2(x) ~2'/ßexp{-2'/jix} í [Yi(t)]~2dt
 J a

 (15) ~ exp {-2y//3x}[Yi(x)]~2 -> I , x -* +00 ,

 where L'Hopital's rule has been applied as in Theorem 2.1 with f(x) =
 fa [Yi(t))'2dt and = exp {2y/ßx}. In fact,

 ll(ff(*))_1ll = ''exp{-2y/ßx}'' = p(exp{-2y/ßx))
 = exp {-2x min a( >//?)}= o(l) asx - ► +00

 , where p(>) denotes the spectral radius and cr(-) the spectrum (cf. [14, Ch. 10-
 11]). Moreover Hy'iOGK*))"1!! ^ 2||>/¡5|| exp {-2(x - t) min <r(y/ß)}t so that
 (77) holds the limsup there being bounded by ||'//?||/ min <r(y/ß). On the other
 hand (777) is trivial as E = (a, 6) = (a, +00). Finally, simple manipulations
 and a further application of I/HôpitaPs rule as in Theorem 2.1 show that Yļ(x)
 exhibits the prescribed asymptotic behavior as x - ► +00.

 A similar result can be obtained in the finite-dimensional non-commutative

 case of matrix differential equations, with Q(x) a symmetric nxn matrix and
 ß a symmetric positive definite matrix, under the additional requirement that
 Y'(x) commutes with ß in the neighborhood of +00. In this case it is easily
 proved in view of its asymptotics that Yi(a:) is a "prepared" solution to (13),
 since the "Wronskian" IV (x) := (Yi)TYļ - ( Y{)TY' - * 0 as x - ► +00, which
 implies that the matrix W(x)f being constant, must be identically zero, and
 hence

 (16) y2(x) := 2sßYi(x) /* [Y^t^t)]-^ Ja

 is a solution to (13) (cf. [6]). All proceeds then similarly to the previous case,
 by applying the generalized version of I/HopitaPs rule in Theorem 2.1. We
 observe, finally, that a solution like yi(x) above certainly exists, e.g., in the
 classical cases A = Třor A = C (cf. the Liouville-Green (WKB) approximation
 in [11]), and also in the abstract case (cf. [21]), under the assumption that
 /.+~IK?(O + 0l<«<oo.

 To conclude this "higher-dimensional" subsection, we comment on the sim-
 ple case X = A = C, which is included in a natural way in the present formu-
 lations of L'HopitaPs theorem, i.e. in both Theorems 2.1 and 2.2. Extensions
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 of L'Hôpital's rule to complex-valued functions of a real variable seem to be
 missing in the literature. To the author's knowledge the only treatment, re-
 garding however the underminate form "0/0", appears in [1]. The theorem
 proved there shows that the complex-valuedness leads to a further restriction
 on g'' besides the usual condition g' ^ 0, it is required that g ' take its values
 in an open sector of the complex plane with angle not exceeding i r (two coun-
 terexamples are shown). On the contrary, such a restriction does not arise in
 Theorem 2.1 and 2.2, since the hypotheses on g' are perfectly compatible with
 the fact that its range is not contained in a sector as just described. Consider,
 e.g., g(x) = exp((i + l)x), / = g, E = R = (a, 6), x0 = +oo. Observe, finally,
 that in the complex case assumption (II) can be given a simple geometrical
 interpretation, whenever E is a full neighborhood of xo, i.e.: the ratio between
 the length of the arc t g(t ), t G [£ A x,£ V x], and the length of the segment
 with the same end-points, ||</(x) - <7(OII> mus^ remain bounded as x - ► xo.

 3.2 Reconsidering real-valuedness.

 As announced in the Introduction, the present generalization of L'Hôpital's
 rule provides some new applications also in the classical instance of real- valued
 functions. Following Boas [2], consider the case

 (17) /'(x) = s(x)iļ>(x) , g'(x) = s(x)w(x)

 where s vanishes in each neighborhood of the limit point, but lim^(x)/u;(x)
 exists and is finite. We can refer to this situation as to a "cancellation phe-
 nomenon". The question is: when are we entitled to conclude that lim / /g =
 limý/w ? Actually, Theorem 2.1 (or Theorem 2.2) provides an extremely
 simple answer, whenever / and g are absolutely continuous.

 In fact, if we choose E = {x : s(x) ^ 0}, hypotheses (/) and (III) are
 satisfied because f ļg' = 'ļ>ļu) in E and /' = g' = 0 in Ec. So we have only
 to check that (II) holds, which in this case is equivalent to the boundedness
 of f* 'g'{JL)'dt/' gł(t)dt'. In particular, it is sufficient that g' > 0 or g' < 0
 a.e. in a neighborhood of xo. Note, moreover, that s(x), and hence g'(x ),
 is allowed to vanish on positive measure subsets in each neighborhood of the
 limit point. An occurrence of this type cannot be faced with the tools given
 in previous generalizations of L'Hôpital's rule.

 In order to give a more detailed discussion, let us reconsider the family of
 conterexamples constructed in [2], generalizing an old idea by Stolz [18, 19].
 We have

 (18) /(*) = r [A'(ť)]a<ft , g(x) = /(*W A(x)) ,
 Jo



 A Generalization of L'Hôpital's Rule 565

 where A is periodic (not constant) with bounded derivative, <f> is such that
 <£(A(x)) is bounded and both <£(A(x)) and <£'(A(x)) are bounded away from 0.
 Going back to the framework of the present paper, if <f> is absolutely continuous
 in [minr€/î A(x), maxrg/î A(x)], a sufficient condition being for example the
 boundedness of </>' on such an interval, then <p o A (and hence g) is absolutely
 continuous on the real line. In fact, / is by definition an absolutely continuous
 function. Notice that the conditions imposed on <{> and on A in [2], imply
 that A'(x) changes sign in each neighborhood of -foo (otherwise <£(A(x)) - ►
 oo , X - ► -foo), and that assumption (//) in Theorem 2.1 is not satisfied, as
 it can be easily checked.

 The counterexample rests in the fact that applying the "cancellation rule"
 we obtain lim f ļ g' = 0, but f/g = 1/<¿(A) is bounded away from 0. In [2],
 Boas observed that if A'(x) > 0 we obtain a correct application of the rule,
 since in this case ^(A(x)) - * oo as x - ► +oo.

 Indeed, we stress that if A'(x) > 0 we have g ' = /AV(A) -f (A')2<£(A) > 0,
 and hence assumption (II) in Theorem 2.1 holds, so we are effectively entitled
 to apply the cancellation rule.

 Assumption (II) of Theorem 2.1, however, does not require that g' > 0
 or g' < 0 a.e. in a neighborhood of the limit point. Consider for example
 g(x) = g'(t)dt where

 {1 0 ifn+|<x<n ifn+J<*<n ifn<x<n+5
 0 ifn+|<x<n + f

 ifn+J<*<n + l

 for n = 1,2, ... . Then one can check that hypothesis (II) in Theorem 2.1 still
 holds, choosing E = (l,+oo) ' (J^Li [n+ 1/2, n 4- 3/4), essentially because
 the negative part of g' is integrable in (1, -foo). Note that g ' changes sign and
 vanishes on positive measure subsets, in each neighborhood of -foo.

 We conclude observing that "cancellation phenomena" and other similar
 pathological instances arise and can be faced also in the general case, via the
 results of Section 2.
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