F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207.

ON BOREL MEASURES ON SEPARABLE METRIC SPACES

It is known (consult, for example, [N , Exercise 8, page 88] or [$\mathrm{R}, 2.8$, page 59]) that there exists a Lebesgue measurable set $E \subset[0,1]$ such that for any open set $U \subset(0,1), m(U \cap E)>0$ and $m(U \backslash E)>0$, where m is Lebesgue measure. In a sense, both E and its complement are "locally large everywhere." This is usually proved by making E the union of countably many judiciously selected nowhere dense perfect sets with positive measure.

In this note we provide a constructive proof of the generalization:
Theorem 1. Let m be a positive Borel measure on a separable metric space X such that $m(X)=1$, and m vanishes on every countable set. Then there is an F_{σ}-set E such that for any open set U with $m(U)>0$, we have

$$
m(U \cap E)>0 \text { and } m(U \backslash E)>0
$$

Observe that we must have $m(P)=0$ for any singleton set P in the hypothesis of Theorem 1. For otherwise we could fix $p_{0} \in X$ and let $m(G)=1$ if $p_{0} \in G$ and $m(G)=0$ if $p_{0} \notin G$. The desired set E would not exist.

Moreover, we must have $m(X)<\infty$ in the hypothesis of Theorem 1. For otherwise we could let $m(G)=0$ if G is a first Baire category set and $m(G)=\infty$ if G is a second Baire category set. Then E would not contain an interval, and hence $m(E)=0$ contrary to the conclusion.

Theorem 1 applies, for example, to Lebesgue measure on a bounded subset of a Euclidean space. It also applies to Haar measure on compact subsets of some metric groups. For a discussion of Haar measure and for more examples, consult [M, section 17].

Proof of Theorem 1. Let V be the union of all the open subsets of X with measure 0 . Now X is a separable metric space and hence X has a

[^0]countable base. It follows that V is the union of countably many open sets of measure 0 , and indeed $m(V)=0$. Without loss of generality, we can substitute $X \backslash V$ for X in the proof. In other words we assume that $m(U)>0$ for any nonvoid open set U.

First we let $\left(B\left(i_{1}\right)\right)_{i_{1} \geq 1}$ be a maximal family of mutually disjoint open balls of radius <1 and diameter less than the diameter of X. (Of course there are countably many $B\left(i_{1}\right)$ because X is separable.)

In the second stage, for each $B\left(i_{1}\right)$ let $\left(B\left(i_{1}, i_{2}\right)\right)_{i_{2} \geq 1}$ be a maximal family of mutually disjoint open balls $B\left(i_{1}, i_{2}\right)$ of radius $<1 / 2$ such that $m\left(B\left(i_{1}, i_{2}\right)\right)<$ $3^{-2} m\left(B\left(i_{1}\right)\right)$ and $B\left(i_{1}, i_{2}\right) \subset B\left(i_{1}\right)$. (We can find such $B\left(i_{1}, i_{2}\right)$ because any singleton set is the intersection of a contracting sequence of open balls.) In the third stage, for each $B\left(i_{1}, i_{2}\right)$, let $\left(B\left(i_{1}, i_{2}, i_{3}\right)\right)_{i_{3} \geq 1}$ be a maximal family of mutually disjoint open balls $B\left(i_{1}, i_{2}, i_{3}\right)$ of radius $<1 / 3$ such that $m\left(B\left(i_{1}, i_{2}, i_{3}\right)\right)<3^{-3} m\left(B\left(i_{1}, i_{2}\right)\right)$ and $B\left(i_{1}, i_{2}, i_{3}\right) \subset B\left(i_{1}, i_{2}\right)$.

In general, suppose the mutually disjoint balls $B\left(i_{1}, i_{2}, \ldots, i_{j-1}\right)$ have been selected in the $(j-1)$-th stage. In the j-th stage we let

$$
\left(B\left(i_{1}, i_{2}, \ldots, i_{j-1}, i_{j}\right)\right)_{i_{j} \geq 1}
$$

be a maximal family of mutually disjoint open balls $B\left(i_{1}, i_{2}, \ldots, i_{j-1}, i_{j}\right)$ of radius $<1 / j$ such that $m\left(B\left(i_{1}, i_{2}, \ldots, i_{j-1}, i_{j}\right)\right)<3^{-j} m\left(B\left(i_{1}, i_{2}, \ldots, i_{j-1}\right)\right)$ and $B\left(i_{1}, i_{2}, \ldots, i_{j-1}, i_{j}\right) \subset B\left(i_{i}, i_{2}, \ldots, i_{j-1}\right)$. By induction the balls $B(\ldots)$ are selected in all stages from the first on up.

Let $B\left(i_{1}, \ldots, i_{j}\right)$ be a ball selected in the j-th stage. Put
(1) $Y\left(i_{1}, \ldots, i_{j}\right)=B\left(i_{1}, \ldots, i_{j}, 1\right) \cup \bigcup_{i_{j+1} \geq 1} B\left(i_{1}, \ldots, i_{j}, i_{j+1}, 1\right)$
$\cup \bigcup_{i_{j+1} \geq 1, i_{j+2} \geq 1} B\left(i_{1}, \ldots, i_{j}, i_{j+1}, i_{j+2}, 1\right)$
$\begin{array}{ll}\cup & \bigcup_{\substack{i_{j+1} \geq 1, i_{j+2} \geq 1, i_{j+3} \geq 1}} B\left(i_{1}, \ldots, i_{j}, i_{j+1}, i_{j+2}, i_{j+3}, 1\right) \\ \cup & \cdots .\end{array}$
Now,

$$
m\left(B\left(i_{1}, \ldots, i_{j}, 1\right)\right)<3^{-j-1} m\left(B\left(i_{1}, \ldots, i_{j}\right)\right)
$$

But

$$
\begin{aligned}
& m\left(B\left(i_{1}, \ldots, i_{j}\right)\right) \geq \sum_{i_{j+1} \geq 1} m\left(B\left(i_{1}, \ldots, i_{j}, i_{j+1}\right)\right), \text { and } \\
& m\left(B\left(i_{1}, \ldots, i_{j}, i_{j+1}, 1\right)\right)<3^{-j-2} m\left(B\left(i_{1}, \ldots, i_{j}, i_{j+1}\right)\right)
\end{aligned}
$$

It follows that

$$
m\left(\bigcup_{i_{j+1}} B\left(i_{1}, \ldots, i_{j}, i_{j+1}, 1\right)\right)<3^{-j-2} m\left(B\left(i_{1}, \ldots, i_{j}\right)\right)
$$

It likewise follows that

$$
\begin{gathered}
m\left(B\left(i_{1}, \ldots, i_{j}, i_{j+1}, i_{j+2}, 1\right)\right)<3^{-j-3} m\left(B\left(i_{1}, \ldots, i_{j+1}, i_{j+2}\right)\right), \text { and } \\
m\left(\bigcup_{i_{j+1}, i_{j+2}} B\left(i_{1}, \ldots, i_{j}, i_{j+1}, i_{j+2}, 1\right)\right)<3^{-j-3} m\left(B\left(i_{1}, \ldots, i_{j}\right)\right) .
\end{gathered}
$$

Similarly,

$$
m\left(\bigcup_{i_{j+1}, i_{j+2}, i_{j+3}} B\left(i_{1}, \ldots, i_{j}, i_{j+1}, i_{j+2}, i_{j+3}, 1\right)\right)<3^{-j-4} m\left(B\left(i_{1}, \ldots, i_{j}\right)\right)
$$

and so forth.
From (1) we deduce that

$$
m\left(Y\left(i_{1}, \ldots, i_{j}\right)\right)<\left(3^{-j-1}+3^{-j-2}+3^{-j-3}+\cdots\right) m\left(B\left(i_{1}, \ldots, i_{j}\right)\right)
$$

and

$$
\begin{equation*}
m\left(Y\left(i_{1}, \ldots, i_{j}\right)\right)<\left(3^{-j} / 2\right) m\left(B\left(i_{1}, \ldots, i_{j}\right)\right)<m\left(B\left(i_{1}, \ldots, i_{j}\right)\right) \tag{2}
\end{equation*}
$$

Put

$$
\begin{aligned}
& E_{1}=\bigcup_{j=1}^{\infty} \bigcup_{i_{1}, \ldots, i_{2 j-1}}\left[B\left(i_{1}, \ldots, i_{2 j-1}, 1\right) \backslash Y\left(i_{1}, \ldots, i_{2 j-1}, 1\right)\right] \\
& E_{2}=\bigcup_{j=1}^{\infty} \bigcup_{i_{1}, \ldots, i_{2 j}}\left[B\left(i_{1}, \ldots, i_{2 j}, 1\right) \backslash Y\left(i_{1}, \ldots, i_{2 j}, 1\right)\right]
\end{aligned}
$$

The difference of two open sets is an F_{σ}-set, so both E_{1} and E_{2} are F_{σ}-sets. Moreover $B\left(i_{1}, \ldots, i_{2 j-1}, 1\right) \backslash Y\left(i_{1}, \ldots, i_{2 j-1}, 1\right)$ and

$$
B\left(i_{1}, \ldots, i_{2 k}, 1\right) \backslash Y\left(i_{1}, \ldots, i_{2 k}, 1\right)
$$

are disjoint sets for any j and k, and hence E_{1} and E_{2} are disjoint.
Now let U be a nonvoid open set. Let S_{1} be an open ball of radius r such that the ball T with the same center and radius $4 r$ lies in U, and $r<1$. By the maximality of $\left(B\left(i_{1}\right)\right)_{i_{1}}$, there is an index p_{1} such that $S_{1} \cap B\left(p_{1}\right)$ is
nonvoid. Let S_{2} be an open ball of radius $<1 / 2$ such that $S_{2} \subset S_{1} \cap B\left(p_{1}\right)$ and $m\left(S_{2}\right)<3^{-2} m\left(B\left(p_{1}\right)\right)$. Again by maximality there is an index p_{2} such that $S_{2} \cap B\left(p_{1}, p_{2}\right)$ is nonvoid. Let S_{3} be an open ball of radius $<1 / 3$ such that $S_{3} \subset S_{2} \cap B\left(p_{1}, p_{2}\right)$ and $m\left(S_{3}\right)<3^{-3} m\left(B\left(p_{1}, p_{2}\right)\right)$. Again there is an index p_{3} such that $S_{3} \cap B\left(p_{1}, p_{2}, p_{3}\right)$ is nonvoid. By induction we produce a contracting sequence of open balls $S_{1} \supset S_{2} \supset \cdots \supset S_{j} \supset \cdots$ and indices $p_{1}, p_{2}, \ldots, p_{j}, \ldots$ such that the radius of S_{j} is less than $1 / j$ and $S_{j} \cap B\left(p_{1}, p_{2}, \ldots, p_{j}\right)$ is nonvoid.

Let k be an index such that $1 /(2 k)<r$. Then $S_{2 k} \subset S_{1}$ and $S_{1} \cap$ $B\left(p_{1}, \ldots, p_{2 k}\right)$ is nonvoid. But the radius of $B\left(p_{1}, \ldots, p_{2 k}\right)$ is less than $1 /(2 k)$ and less than r. Now S_{1} and T are balls with the same center, S_{1} has radius r and T has radius $4 r$. It follows that $B\left(p_{1}, \ldots, p_{2 k}\right) \subset T \subset U$. So U contains each of the sets $B\left(p_{1}, \ldots, p_{2 k}\right), B\left(p_{1}, \ldots, p_{2 k}, 1\right)$ and $B\left(p_{1}, \ldots, p_{2 k}, 1,1\right)$. Then $U \cap E_{1}$ contains the set $B\left(p_{1}, \ldots, p_{2 k}, 1,1\right) \backslash Y\left(p_{1}, \ldots, p_{2 k}, 1,1\right)$ and $U \cap E_{2}$ contains the set $B\left(p_{1}, \ldots, p_{2 k}, 1\right) \backslash Y\left(p_{1}, \ldots, p_{2 k}, 1\right)$. We deduce from (2) that $m\left(U \cap E_{1}\right)>0$ and $m\left(U \cap E_{2}\right)>0$.

Because E_{1} and E_{2} are disjoint F_{σ}-sets, we can select either E_{1} or E_{2} for E in Theorem 1.

It is not difficult to prove that there is an infinite sequence of mutually disjoint F_{σ}-sets, each of which suffices for E in Theorem 1.

References

[M] M.E. Munroe, Introduction to measure and integration, Addison-Wesley, Cambridge, 1953.
[N] I.P. Natanson, Theory of functions of a real variable, vol. 1, Ungar, New York, 1955.
[R] Walter Rudin, Real and Complex Analysis, second edition, McGraw-Hill, New York, 1974.

[^0]: Key Words: separable metric space, Borel measure, $\boldsymbol{F}_{\boldsymbol{\sigma}}$-set
 Mathematical Reviews subject classification: Primary 28A12 Secondary 54D05
 Received by the editors July 30, 1992

