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ON BOREL MEASURES ON SEPARABLE
METRIC SPACES

It is known (consult, for example, [N, Exercise 8, page 88] or [R, 2.8,
page 59]) that there exists a Lebesgue measurable set E C [0, 1] such that
for any open set U C (0,1), m(UNE) > 0 and m(U \ E) > 0, where m is
Lebesgue measure. In a sense, both E and its complement are “locally large
everywhere.” This is usually proved by making F the union of countably many
judiciously selected nowhere dense perfect sets with positive measure.

In this note we provide a constructive proof of the generalization:

Theorem 1. Let m be a positive Borel measure on a separable metric
space X such that m(X) = 1, and m vanishes on every countable set. Then
there is an F,-set E such that for any open set U with m(U) > 0, we have

m(UNE)>0 and m(U\E) > 0.

Observe that we must have m(P) = 0 for any singleton set P in the
hypothesis of Theorem 1. For otherwise we could fix po € X and let m(G) =1
if po € G and m(G) = 0 if po € G. The desired set E would not exist.

Moreover, we must have m(X) < oo in the hypothesis of Theorem 1.
For otherwise we could let m(G) = 0 if G is a first Baire category set and
m(G) = oo if G is a second Baire category set. Then E would not contain an
interval, and hence m(E) = 0 contrary to the conclusion.

Theorem 1 applies, for example, to Lebesgue measure on a bounded subset
of a Euclidean space. It also applies to Haar measure on compact subsets of
some metric groups. For a discussion of Haar measure and for more examples,
consult [M, section 17).

Proof of Theorem 1. Let V be the union of all the open subsets of
X with measure 0. Now X is a separable metric space and hence X has a
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countable base. It follows that V is the union of countably many open sets of
measure 0, and indeed m(V') = 0. Without loss of generality, we can substitute
X \V for X in the proof. In other words we assume that m(U) > 0 for any
nonvoid open set U.

First we let (B(i1))i,>1 be a maximal family of mutually disjoint open balls
of radius < 1 and diameter less than the diameter of X. (Of course there are
countably many B(i;) because X is separable.)

In the second stage, for each B(iy) let (B(iy, i2))i,>1 be a maximal family of
mutually disjoint open balls B(iy, i) of radius < 1/2 such that m(B(i;,i2)) <
3-2m(B(i1)) and B(i1,i2) C B(i1). (We can find such B(i,i2) because any
singleton set is the intersection of a contracting sequence of open balls.) In
the third stage, for each B(i),72), let (B(i1,12,13))i;>1 be a maximal fam-
ily of mutually disjoint open balls B(iy,1s,i3) of radius < 1/3 such that
m(B(z1 , 12, 13)) < 3'3I7I(B(i1 y 12)) and B(il , ta, i3) C B(il y ig),

In general, suppose the mutually disjoint balls B(7;,1a,...,i;_1) have been
selected in the (j — 1)-th stage. In the j-th stage we let

(B(ir, 2, .-y 3j-1,45))i;21

be a maximal family of mutually disjoint open balls B(iy,is,...,4j_1,%;) of
radius < 1/j such that m(B(iy, i3, ...,1j-1,1;)) < 3=Im(B(iy,is,...,1j-1))
and B(t1,12,...,4j-1,1;) C B(ii, ?2,...,ij-1). By induction the balls B(...)
are selected in all stages from the first on up.

Let B(iy,...,i;) be a ball selected in the j-th stage. Put

(1) Y(,...,i;) B(ir,...,i;,)U | J B(i1,...,ij,4j41,1)

ij4121
U U B(i1, .-, 8,141, 4542,1)
1412184221
U U B(il)'°'aij!ij+l1ij+2’ij+3)1)
fj412 1842214321
U
Now,
. . —j=1 . .
m(B(iy,...,ij,1)) <3777 m(B(iy, ..., ij)).
But

m(B(i1,...,i;)) 2 Y m(B(ir,...,ij,ij41)), and

fi4121

m(B(iy, ..., 1,141, 1)< 3‘j‘2m(B(i1, RN 7% T ))-



ON BOREL MEASURES 555

It follows that

m(|J B(is, ..., ij,ij41,1)) < 37 2m(B(i1, . . ., ij)).

141
It likewise follows that
m(B(iy,...,4j,j41,4542,1)) < 377 3m(B(i1, . ..,ij41,1j42)), and

m( |J B, i 041,442, 1) <379 73m(B(iy, ..., §5)).
{41,542

Similarly,

m( U Bl i, 0i42.0543,1) < 377 74m(B(in, .. ., ij))

Gi0542,0 543
and so forth.
From (1) we deduce that

m(Y (i1,...,5)) < 37971 4+ 379-2 4 3793 4 .. ym(B(ir, . . ., i}))
and
(2 m(Y(i,..., i) < 37/2)m(B(i1, ..., i;)) < m(B(i1, .. ., i;)).
Put

(e o]

Et = J U [BGu.yizj-t, D\ Y (i1, izj-1, 1),
j:lil,...,ig"-l
(e o]

Er = |J U Bl iz, D\ Y(ia,... 05, 1))

J=l4y,...,435

The difference of two open sets is an F,-set, so both E) and E» are F,-sets.
Moreover B(iy,...,i2j-1,1)\ Y (41,...,i25-1,1) and

B(iy,. .. i, D\ Y(ir, ..., i2,1)

are disjoint sets for any j and k, and hence E) and E; are disjoint.

Now let U be a nonvoid open set. Let S; be an open ball of radius r
such that the ball T with the same center and radius 4r lies in U, and r < 1.
By the maximality of (B(i1));,, there is an index p; such that S} N B(p,) is
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nonvoid. Let S; be an open ball of radius < 1/2 such that S, C S;NB(p;) and
m(S2) < 3-2m(B(p1)). Again by maximality there is an index p2 such that
S2 N B(p1, p2) is nonvoid. Let S3 be an open ball of radius < 1/3 such that
S3 C S2N B(p1, p2) and m(S3) < 3-3m(B(p1,p2)). Again there is an index p3
such that S3N B(pi, p2, p3) is nonvoid. By induction we produce a contracting
sequence of open balls S} D S2 D ---D Sj D --- and indices py, pa,...,pj,...
such that the radius of Sj is less than 1/j and S;NB(py, po, . .., pj) is nonvoid.

Let k be an index such that 1/(2k) < r. Then Sax C S; and S N
B(p1,...,p2x) is nonvoid. But the radius of B(py,...,par) is less than 1/(2k)
and less than r. Now S; and T are balls with the same center, S; has radius
r and T has radius 4r. It follows that B(p1,...,par) CT C U. So U contains
each of the sets B(py, ..., p2t), B(p1,...,p2x, 1) and B(ps,...,p2k, 1,1). Then
U N E; contains the set B(pi,...,pa,1,1)\ Y(p1,...,p2,1,1) and U N E»
contains the set B(py,...,p2k, 1)\ Y(p1,...,p2e,1). We deduce from (2) that
m(U N Ey) >0 and m(U N E3) > 0.

Because E; and E, are disjoint F,-sets, we can select either E; or F, for
E in Theorem 1. O

It is not difficult to prove that there is an infinite sequence of mutually
disjoint F,-sets, each of which suffices for E in Theorem 1.
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