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 ON BOREL MEASURES ON SEPARABLE

 METRIC SPACES

 It is known (consult, for example, [N, Exercise 8, page 88] or [R, 2.8,
 page 59]) that there exists a Lebesgue measurable set E C [0, 1] such that
 for any open set U C (0, 1), m(U fi E) > 0 and m(U ' E) > 0, where m is
 Lebesgue measure. In a sense, both E and its complement are "locally large
 everywhere." This is usually proved by making E the union of count-ably many
 judiciously selected nowhere dense perfect sets with positive measure.

 In this note we provide a constructive proof of the generalization:

 Theorem 1. Let m be a positive Borei measure on a separable metric
 space X such that m(X) = 1, and m vanishes on every countable set . Then
 there is an Fa~set E such that for any open set U with m{U) > 0, we have

 m(U DE)> 0 and m(U 'E)> 0.

 Observe that we must have m(P) = 0 for any singleton set P in the
 hypothesis of Theorem 1. For otherwise we could fix po € X and let m(G) = 1
 if po G G and rn(G) = 0 if po £ G. The desired set E would not exist.

 Moreover, we must have m(X) < oo in the hypothesis of Theorem 1.
 For otherwise we could let m(G) = 0 if G is a first Baire category set and
 m(G) = oo if G is a second Baire category set. Then E would not contain an
 interval, and hence m(E) = 0 contrary to the conclusion.

 Theorem 1 applies, for example, to Lebesgue measure on a bounded subset
 of a Euclidean space. It also applies to Ilaar measure on compact subsets of
 some metric groups. For a discussion of Haar measure and for more examples,
 consult [M, section 17].

 Proof of Theorem 1. Let V be the union of all the open subsets of
 X with measure 0. Now X is a separable metric space and hence A' has a
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 countable base. It follows that V is the union of countably many open sets of
 measure 0, and indeed m( V) = 0. Without loss of generality, we can substitute
 X ' V for X in the proof. In other words we assume that m(U ) > 0 for any
 non void open set U .

 First we let (B(i' ))i,>i be a maximal family of mutually disjoint open balls
 of radius < 1 and diameter less than the diameter of X. (Of course there are
 countably many B(*'i) because Ar is separable.)
 In the second stage, for each B(i' ) let ( B{i' , «2))»*2> i be a maximal family of
 mutually disjoint open balls B(i' , in) of radius < 1 /2 such that m(B(ii , ¿o)) <
 3~~2m(B(ii)) and B(i'i,¿2) C B(i i). (We can find such ß(ii,io) because any
 singleton set is the intersection of a contracting sequence of open balls.) In
 the third stage, for each £(11,7*2), let (B(i' , in, ī3))«*3> i be a maximal fam-
 ily of mutually disjoint open balls #(¿1,1*2, *3) of radius < 1/3 such that
 m(J5(£i , £2, »3)) < 3-3i7i(B(ii,i2)) and B(ii,i2,i3) C B(m,í2).
 In general, suppose the mutually disjoint balls ß(/i,f2, . . .,^-1) have been
 selected in the (j - l)-th stage. In the j- th stage we let

 (ß(h, »2,. ...V-l- ';))<;>!

 be a maximal family of mutually disjoint open balls B{%' , /2, . . . , ij~ 1, ij) of
 radius < 1/j such that , i2, . . . , *;-i> ij)) < 3~J 777(5(7*1 , i2, . . . , i¿_i))
 and 5(¿i, ¿2, . . . , ij-i, i;) C 5(*i, *2, • • • > *¿-i)- By induction the balls BĻ . .)
 are selected in all stages from the first on up.
 Let B(i'} . . . , ij) be a ball selected iri the j- th stage. Put

 (1) = B(ii, . . . , t'j, 1) U ļj B(iu. .
 »i+l> 1

 U (J B(i', . . ,,ij, ij + i,ij+2, ij+3, 1)
 • i+ 1 > 1 »« >+ 2> 1 1

 U ••• .

 Now,

 , - , ij , 1)) <

 But

 m(B(ii,...,ij))> ^2 m(B(i i,.. O+i)). and
 »J + lł1

 . . . , 1 , 1)) < 3~J-2m(B(ii,. . . ,
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 It. follows that

 ™({J < 3~,,'~2m(ß(ii , . . . , îj)).
 »i+l

 It. likewise follows that

 , . . . , ij,ij+1,ij+2, 1)) < 3-,-3m(ß(ii , . . tj+i, íj+2)), and

 m( (J < 3~J"3m(5(i1,...,íí)).

 Similarly,

 m( (J B(iu...,ij,ij+i,ij+2,ij+3, 1)) < 3-,-4?n(ö(/j,...,t;))
 »>+1 »*.7 + 2. «i + 3

 and so forth.

 From (1) we deduce that

 m(y (»1 ,...,«,))< (3--»-1 + 3-^-2 + 3-'-3 + • • .)m(ß(ii , ¿i))

 and

 (2) m(Y(»i,... .í,-)) < (3-J/2)m(B(iit...,ij)) < m(ß(i, , . .

 Put

 OO

 j- 1
 OO

 = U U

 j= 1

 The difference of two open sets is an F^-set, so both E' and En are F^-sets.
 Moreover B(i i »2;_i, 1) ' V(*i, - , i2¿_i, 1) and

 B(h, • • - ,»2 k, 1) ' y(«i. • • ..«at i 1)

 are disjoint sets for any j and k, and hence E' and Ei are disjoint.
 Now let U be a nonvoid open set. Let S' be an open ball of radius r

 such that the ball T with the same center and radius 4r lies in {/, and r < 1.
 By the maximality of (£(ti))tl, there is an index p' such that S' fi B(p') is
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 nonvoid. Let S2 be an open ball of radius <1/2 such that S2 C 5iflß(pi) and
 m(S2) < 3"2rn(B(pi)). Again by maximality there is an index p2 such that
 52 fi B(p',p2) is nonvoid. Let 53 be an open ball of radius <1/3 such that
 53 C 52nß(pi,p2) and m(S3) < 3~3n?(J3(pi,p2)). Again there is an index p3
 such that S3fl#(pi,p2,p3) is nonvoid. By induction we produce a contracting
 sequence of open balls S' D S2 D • è - D Sj D - - and indices Pi,P2» • • • • • •
 such that the radius of Sj is less than 1 /j and Sj flfl(pi,p2, . . • ,Pj) is nonvoid.
 Let k be an index such that 1/(2 le) < r. Then S2fc C S' and Si fl
 B(Pi > • • • » Pik) is nonvoid. But the radius of B(p' , . . . , p2k) is less than 1 /(2Jb)
 and less than r. Now S' and T are balls with the same center, S' has radius
 r and T has radius Ar. It follows that 5(pi, . . . ,p2fc) C T C U. So U contains
 each of the sets B(pi , . . . , p2*), B(P' 1 • • • 1 P2*, 1) and B{px , . . . , p2* , 1, 1). Then
 U fi E' contains the set B(pi, . . .,P2*> 1, 1) ' Y(p't . . .,P2t, 1, 1) and U fi E2
 contains the set 5(pi, . . .,P2fc, 1) ' V (pi , . . .,p2*, 1). We deduce from (2) that
 m(U fl E') > 0 and m{U fi E2) > 0.
 Because Ei and E2 are disjoint F^-sets, we can select either Ei or E2 for

 E in Theorem 1. □

 It is not difficult to prove that there is an infinite sequence of mutually
 disjoint Fa- sets, each of which suffices for E in Theorem 1.
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