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 ON /^-CONTINUOUS FUNCTIONS

 Abstract

 In this paper, the authors obtain several characterizations of ß-
 continuity due to Abd El-Monsef et al. [1] and show that almost quasi-
 con tin uity in the sense of Borsik and Doboš [3] is equivalent to ß-
 continuity.

 1. Introduction

 As a generalization of semi-continuity [6] and precontinuity [8], Abd El-Monsef
 et al. [1] defined /?-continuous functions. Quite recently, Borsik and Doboš [3]
 have introduced the notion of almost quasi-continuity which is weaker than
 that of quasi-continuity [7] and obtained a decomposition theorem of quasi-
 continuity. In this paper, we obtain several characterizations of /?-continuity
 and show that almost quasi-continuity is equivalent to /^-continuity.

 2. Preliminaries

 Throughout the present paper, X and Y always mean topological spaces.
 Let A be a subset of a topological space X . The closure and the interior
 of A are denoted by CI (A) and Int(v4), respectively. A subset A is said to
 be semi-open [6] (resp. preopen [8], ß-open [1] or semi-preopen [2]) if
 AcCl(lnt(A)) (resp. A C Int (CI (,4)), ¿ C Cl (Int (CI (,4)))). The family of
 all semi-open (resp. preopen, /?-open) sets of A" is denoted by SO(X) (resp.
 PO(X),ß(X)). The complement of a semi-open (resp. preopen, /?-open) set
 is said to be semi-closed [4] (resp. preclosed [5], /J-closed [1]). The inter-
 section of all semi-closed (resp. preclosed, /7-closed) sets containing a set A is
 called the semi-closure (resp. preclosure, /?-closure) of A and is denoted by
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 sCl(A) (resp. pC'(A),ßCl (A)). The union of all semi-open (resp. preopen,
 /?-open) sets contained in A is called the semi-interior (resp. preinterior,
 /7-interior) of vi and is denoted by slnt(^) (resp. plnt(;4),/?lnt(i4)).

 In [2], among others, the following properties were established:

 Lemma 2.1 (Andrijevié [2]). Lei A be a subset of X. Then

 (a) ßC' (A) = U Int (Cl (Int (-A))),

 (b) /?Int(/l) = ylnCl(Int(Cl(A))),

 (c) sC'(A) = AUlnt(Cl(A)),

 (d) «Int (-4) = ^ HCl (Int (A)),

 (e) slnt (CI (.4)) = CI (pint ( A )) = Cl (Int (Cl (-4))),

 (f) sCl (Int (A)) = Int (pCl (A)) = Int (Cl (Int (A))).

 3. Almost quasi-continuity and /^-continuity

 Definition 3.1 A function f : X - * Y is said to be /?-continuous [1] if
 f~l(V) G ß(X) for every open set V ofY.

 Definition 3.2 A function f : X - ► Y is said to be almost quasi-contin-
 uous [S] at a point x of X if for each neighborhood V of f(x) and each
 neighborhood U of xf the set f~l(V)C'U is not nowhere dense . A function is
 said to be almost quasi-continuous [3] if it has the property at every point
 of the domain.

 First, we obtain characterizations of almost quasi-continuous functions.

 Theorem 3.3 The following are equivalent for a function f : X -+Y:

 (a) / is almost quasi- continuous at a point x of X.

 (b) For each neighborhood V of f{x) and each neighborhood U of xf there
 exists a nonempty open set G such that G C U and G C CHf~l(V)).

 (c) For each neighborhood V of f(x), there exists U € SO(X) containing x
 such that U CCl(f-l(V)).

 (d) for each neighborhood V of /(x), x G Cl (Int (Cl (f"l(V)))).

 (e) for each neighborhood V of f(x), there exists U G ß(X) containing x
 such that f(U) C V.
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 PROOF, (a) (b): Let U be any neighborhood of x and V any neighborhood
 of /(x). Then /~1(Vr) flint (U) is not nowhere dense and hence we have

 0 ^ Int (Cl (/- 1 (V) fi Int (U))) C Cl (Int (U)).

 Put G = Int (Cl (Z"1 (V) fi Int (i/))) flint (U). Then G is a nonempty open set
 such that GCi/andGC C '(f'l(V)).
 (b) => (d): This is obvious.
 (d) => (a): For any neighborhood U of x and any neighborhood V of /(x),
 we have x G Cl (Int (Cl (f~l(V)))) and hence

 0 ¿ Int(ř/) fi Int (Cl (Z"1 K)))
 = Int [Int (U) fi Cl (f~l(V))] C Int (Cl (U fl f'1 (V))),

 where we used the fact that if G is open, then G fl CI (.4) C C1(G fl .4) for
 every subset A. Therefore, /~1(V) fl U is not nowhere dense.
 (e) => (c): For each neighborhood V of /(x), there exists Uq G ß{X)
 containing x such that f(Uo) C V. Put U = Cl (t/o). Then we have U G
 SO(X) and x G U C Cìlf-^V)).
 (c) => (d): Let V be any neighborhood of /(x). There exists U G SO(X)
 containing x such that U C CI (f~l{V)) and we obtain

 x G U C Cl (Int (tf)) C Cl (Int (Cl(f~x(V)))).

 (d) => (e): Let V be any neighborhood of /(x). Then x G Now put
 U = ßlnt Then it follows from Lemma 2.1 (b) that x G U G ß(X)
 and /([/) C V .

 Remark 1 In [3, Remark 2], H is staled without the proof that (a) and (b) in
 Theorem 3.1 are equivalent for each other . Moreover , the referee pointed out
 that Theorem 3.3 (d) was used in the definition of almost quasi- continuity by
 Neubrunnová and Salát [9],

 Theorem 3.4 A function f : X ->Y is almost quasi-continuous if and only
 if it is ß-continuous.

 Proof. The proof follows from Theorem 3.3 (d).

 Theorem 3.5 The following are equivalent for a function f : X - ► Y :

 (a) / is ß-continuous;

 (b) for each subset A of X, f(ß Cl (A)) C CI (f(A));

 (c) for each subset D ofYt ßCl (f~l(B)) C /-!(C1(B));
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 (d) for each subset B of Y , f'l(ìiìt(B)) C ßlnt(f~l(B));

 (e) for each open set V ofY, f~~l(V) C slnt (CI (f~l(V)));

 (f) for each open set V ofY, f~l(V) C C'(p'nt(f"l(V)));

 (g) for each subset B of Y , īnt (pC'(f'l(B))) C f'l(Ci(B));

 (h) for each subset A of X , /(Int (pCl (.4))) C C1(/(j4));

 (i) for each subset A of X, f(sC' (Int (-4))) C Cl(/(^4));

 (j) for each subset B of Y , «Cl (Int (/- 1 (-B))) C f-l(Cl(B)).

 Proof. The proof is obtained by using Lemma 2.1 and is left as an exercise.
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