Hüseyin Bor, Department of Mathematics, Erciyes University, Kayseri 38039, Turkey. Mailing Address: P.K. 213, Kayseri 38002, Turkey.

A NOTE ON ABSOLUTE SUMMABILITY METHODS

In this paper a generalization of a theorem of Bor [2] has been proved.

1. Introduction

Let Σa_{n} be a given infinite series with partial sums s_{n}, and $u_{n}=n a_{n}$. By z_{n}^{α} and t_{n}^{α} we denote the nth Cesarò means of order $\alpha(\alpha>-1)$ of the sequences $\left(s_{n}\right)$ and (u_{n}), respectively. The series Σa_{n} is said to be summable $|C, \alpha|_{k}, \quad k \geq 1$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|z_{n}^{\alpha}-z_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

But since $t_{n}^{\alpha}=n\left(z_{n}^{\alpha}-z_{n-1}^{\alpha}\right)$ (see [5]), condition (1.1) can also be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive real constants such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.3}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.4}
\end{equation*}
$$

Key Words: Absolute summability, summability methods, infinite series Mathematical Reviews subject classification: 40D25, 40F05, 40G05, 40G99
Received by the editors April 24, 1992
defines the sequence $\left(T_{n}\right)$ of the (\bar{N}, p_{n}) means of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$. The series Σa_{n} is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\Delta T_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta T_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad(n \geq 1) \tag{1.6}
\end{equation*}
$$

In the special case when $p_{n}=1$ for all values of n (resp. $k=1$), $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ (resp. $\left|\bar{N}, p_{n}\right|$) summability.

2.

It is known that the summability $\left|\bar{N}, p_{n}\right|_{k}$ and summability $|C, \alpha|_{k}$ are, in general, independent of each other. For $\alpha=1$, Bor [2] has established a relation between the $\left|\bar{N}, p_{n}\right|_{k}$ and $|C, 1|_{k}$ summability methods by proving the following theorem.

Theorem 2.1 Let $\left(p_{n}\right)$ be a sequence of positive real constants such that as $n \rightarrow \infty$

$$
\begin{equation*}
n p_{n} \asymp P_{n} \quad\left(\text { that is } n p_{n} O\left(P_{n}\right) \text { and } P_{n}=O\left(n p_{n}\right)\right) . \tag{2.1}
\end{equation*}
$$

If Σa_{n} is summable $\left|\bar{N}, p_{n}\right|_{k}$, then it is also summable $|C, 1|_{k}, k \geq 1$.
Notice that, to see the hypothesis (2.1) in Theorem 2.1 is satisfied by at least one $p_{n} \neq 1$, it is sufficient to take $p_{n}=n$ for all values of n.

In the present paper we shall prove the following theorem, which is a generalization of Theorem 2.1.

Theorem 2.2 Let $\left(p_{n}\right)$ be a sequence of positive real constants such that condition (2.1) of Theorem 2.1 is satisfied and let $\left(T_{n}\right)$ be the $\left(\bar{N}, p_{n}\right)$ mean of the series Σa_{n}. If

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{(2-\alpha) k-1}\left|\Delta T_{n-1}\right|^{k}<\infty \tag{2.2}
\end{equation*}
$$

then the series Σa_{n} is summable $|C, \alpha|_{k}, k \geq 1,0<\alpha \leq 1$.
It should be noted that if we take $\alpha=1$ in this theorem, then we get Theorem 2.1.

3.

We need the following lemma for the proof of our theorem.
Lemma 3.1. See ([3]). If $\alpha>-1$ and $\alpha-\beta>0$, then

$$
\begin{equation*}
\sum_{n=v}^{\infty} \frac{A_{n-v}^{\beta}}{n A_{n}^{\alpha}}=\frac{1}{v A_{v}^{\alpha-\beta-1}} \tag{3.1}
\end{equation*}
$$

where
$A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)}, A_{0}^{\alpha}=1$ and $A_{-n}^{\alpha}=0$ for $n>0$.

4. Proof of Theorem 2.2

Let t_{n}^{α} be the nth (C, α) mean of the sequence $\left(n a_{n}\right)$, where $0<\alpha \leq 1$. Then we have

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \tag{4.1}
\end{equation*}
$$

where A_{n}^{α} is as in (3.2). By (1.6), we have

$$
\begin{equation*}
a_{n}=-\frac{P_{n}}{p_{n}} \Delta T_{n-1}+\frac{P_{n-2}}{p_{n-1}} \Delta T_{n-2} . \tag{4.2}
\end{equation*}
$$

Hence

$$
\begin{aligned}
t_{n}^{\alpha}= & \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v\left(-\frac{P_{v}}{p_{v}} \Delta T_{v-1}+\frac{P_{v-2}}{p_{v-1}} \Delta T_{v-2}\right) \\
= & \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}(-v) A_{n-v}^{\alpha-1} \frac{P_{v}}{p_{v}} \Delta T_{v-1}-\frac{n P_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1} \\
& +\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} v A_{n-v}^{\alpha-1} \frac{P_{v-2}}{p_{v-1}} \Delta T_{v-2} \\
= & -\frac{n P_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1}+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}(-v) A_{n-v}^{\alpha-1} \frac{P_{v}}{p_{v}} \Delta T_{v-1} \\
& +\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}(v+1) A_{n-v-1}^{\alpha-1} \frac{P_{v-1}}{p_{v}} \Delta T_{v-1}
\end{aligned}
$$

$$
=-\frac{n P_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1}+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \frac{\Delta T_{v-1}}{p_{v}}\left(-v P_{v} A_{n-v}^{\alpha-1}+(v+1) A_{n-v-1}^{\alpha-1} P_{v-1}\right) .
$$

Since
$-v P_{v} A_{n-v}^{\alpha-1}+(v+1) P_{v-1} A_{n-v-1}^{\alpha-1}=-v P_{v} \Delta A_{n-v}^{\alpha-1}-v p_{v} A_{n-v-1}^{\alpha-1}+P_{v-1} A_{n-v-1}^{\alpha-1}$,
we have

$$
\begin{aligned}
t_{n}^{\alpha} & =-\frac{n P_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1}-\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} v \frac{P_{v}}{p_{v}} \Delta A_{n-v}^{\alpha-1} \Delta T_{v-1} \\
& -\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} v A_{n-v-1}^{\alpha-1} \Delta T_{v-1}+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \frac{P_{v-1}}{p_{v}} A_{n-v-1}^{\alpha-1} \Delta T_{v-1} \\
& =t_{n, 1}^{\alpha}+t_{n, 2}^{\alpha}+t_{n, 3}^{\alpha}+t_{n, 4}^{\alpha}, \text { say. }
\end{aligned}
$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n, r}^{\alpha}\right|^{k}<\infty, \text { for } r=1,2,3,4, \text { by (1.2) } \tag{4.3}
\end{equation*}
$$

Firstly, we have

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n, 1}^{\alpha}\right|^{k} & =\sum_{n=1}^{m} n^{k-1}\left(P_{n} / p_{n}\right)^{k}\left(A_{n}^{\alpha}\right)^{-k}\left|\Delta T_{n-1}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{k-1}\left(P_{n} / p_{n}\right)^{k} n^{-\alpha k}\left|\Delta T_{n-1}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(P_{n} / p_{n}\right)^{(2-\alpha) k-1}\left|\Delta T_{n-1}\right|^{k}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by virtue of the hypotheses.
Now, when $k>1$, applying Hölder's inequality, with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get

$$
\begin{aligned}
& \sum_{n=1}^{m+1} \frac{1}{n}\left|t_{n, 2}^{\alpha}\right|^{k} \leq \sum_{n=2}^{m+1} \frac{1}{n\left(A_{n}^{\alpha}\right)^{k}}\left(\sum_{v=1}^{n-1} v \frac{P_{v}}{p_{v}}\left|\Delta A_{n-v}^{\alpha-1}\right|\left|\Delta T_{v-1}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \frac{\left(\sum_{v=1}^{n-1} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta A_{n-v}^{\alpha-1}\right|\left|\Delta T_{v-1}\right|^{k}\right)\left(\sum_{v=1}^{n-1}\left|\Delta A_{n-v}^{\alpha-1}\right|\right)^{k-1}}{n^{1+\alpha k}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1} \frac{\left(\sum_{v=1}^{n-1} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}(n-v)^{\alpha-2}\left|\Delta T_{v-1}\right|^{k}\right)\left(\sum_{v=1}^{n-1}(n-v)^{\alpha-2}\right)^{k-1}}{n^{1+a k}} \\
& =O(1) \sum_{v=1}^{m} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1} \frac{(n-v)^{\alpha-2}}{n^{1+\alpha k}}, \text { when }(0<\alpha<1) \\
& =O(1) \sum_{v=1}^{m} v^{k-\alpha k-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1}(n-v)^{\alpha-2} \\
& =O(1) \sum_{v=1}^{m} v^{k-\alpha k-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta T_{v-1}\right|^{k} .
\end{aligned}
$$

Thus when $0<\alpha<1$, we have

$$
\sum_{n=2}^{m+1} \frac{1}{n}\left|t_{n, 2}^{\alpha}\right|^{k}=O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{(2-\alpha) k-1}\left|\Delta T_{v-1}\right|^{k}=O(1) \text { as } m \rightarrow \infty
$$

by virtue of the hypotheses.
Remark 1 It should be noted that when $\alpha=1$, the summation equals zero as $\Delta A_{n-v}^{\alpha-1}=0$.

Again using Lemma 3.1, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|t_{n, 3}^{\alpha}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{1}{n\left(A_{n}^{\alpha}\right)^{k}}\left\{\sum_{v=1}^{n-1} v A_{n-v-1}^{\alpha-1}\left|\Delta T_{v-1}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n\left(A_{n}^{\alpha}\right)^{k}}\left\{\sum_{v=1}^{n-1} v A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n A_{n}^{\alpha}}\left\{\sum_{v=1}^{n-1} v^{k} A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|^{k}\right\} \times\left\{\sum_{v=1}^{n-1} \frac{A_{n-v}^{\alpha-1}}{A_{n}^{\alpha}}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n A_{n}^{\alpha}} \sum_{v=1}^{n-1} v^{k} A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1} \frac{A_{n-v}^{\alpha-1}}{n A_{n}^{\alpha}}
\end{aligned}
$$

$$
=O(1) \sum_{v=1}^{m} v^{k}\left|\Delta T_{v-1}\right|^{k} \frac{1}{v}
$$

Since $1-\alpha>0$ and $k \geq 0$, we have $a^{(1-\alpha) k} \leq v^{(1-\alpha) k}$. Hence as in $t_{n, 1}^{\alpha}$, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|t_{n, 3}^{\alpha}\right|^{k} & =O(1) \sum_{v=1}^{m} v^{k-1}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{k-1} v^{(1-\alpha) k}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{(2-\alpha) k-1}\left|\Delta T_{v-1}\right|^{k}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses.
Finally, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{\left|t_{n, 4}^{\alpha}\right|^{k}}{n} & \leq \sum_{n=2}^{m+1} \frac{1}{n\left(A_{n}^{\alpha}\right)^{k}}\left(\sum_{v=1}^{n-1} \frac{P_{v-1}}{p_{v}} A_{n-v-1}^{\alpha-1}\left|\Delta T_{v-1}\right|\right)^{k} \\
& =\sum_{n=2}^{m+1} \frac{1}{n\left(A_{n}^{\alpha}\right)^{k}}\left(\sum_{v=1}^{n-1} \frac{P_{v-1}}{P_{v}} \cdot \frac{P_{v}}{p_{v}} A_{n-v-1}^{\alpha-1}\left|\Delta T_{v-1}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n\left(A_{n}^{\alpha}\right)^{k}}\left(\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left(\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|^{k}\right)\left(\sum_{v=1}^{n-1} \frac{A_{n-l}^{\alpha-1}}{A_{n}^{n}}\right)^{k-1}}{n A_{n}^{\alpha}} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n A_{n}^{\alpha}}\left(\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1} \frac{A_{n-v}^{\alpha-1}}{n A_{n}^{\alpha}} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{k}\left|\Delta T_{v-1}\right|^{k} \frac{1}{v},
\end{aligned}
$$

by the lemma. Hence, as in $t_{n, 3}^{\alpha}$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|t_{n, 4}^{\alpha}\right|^{k} & =O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{k}\left|\Delta T_{v-1}\right|^{k} v^{(1-\alpha) k} v^{-1} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{(2-\alpha) k-1}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses. Therefore, we get that

$$
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n, r}^{\alpha}\right|^{k}=O(1) \text { as } m \rightarrow \infty, \text { for } r=1,2,3,4
$$

This completes the proof of the theorem.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Phil. Soc., 97 (1985), 147-149.
[2] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc., 98 (1986), 81-84.
[3] H. C. Chow, A note on convergence and summability factors, Jour. London Math. Soc., 29 (1954), 459-476.
[4] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[5] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math., 49 (1925), 234-256.

