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 ON NECESSARY CONDITIONS FOR

 HENSTOCK INTEGRABILITY

 Lu [1] proved the following Lemma:

 Lemma 1 If f is Hensiock integrable on [a, 6], then there is a sequence {Xn}
 of closed subsets o/[a,6] such that Xn C Xn+J for all n, [a, 6] ' (J~=1 Xn is of
 measure zero, f is Lebesgue integrable on each Xn and

 (1) n~°° lim (L) [ f(t)dt = (H) f f{t)dt. n~°° JXn Ja

 In this paper, we shall improve Lu's result so that "[a, 6] ' (J^Ļj X„ is of
 measure zero" is replaced by "|Jn=i = [a, 6]" and (1) by

 (2) lim (L) f f(t) dt = (H) f f(t)dt
 n~*°° Jxnnlatx] Ja

 uniformly on [a, 6]. Furthermore, we give an equivalent definition of the Hen-
 stock integral, and a Convergence theorem. We remark that Nakanishi [2;
 p. 81] proved an intermediate result, namely, (2) holds pointwise instead of
 uniformly on [a, 6].

 First, we give some preliminaries (see [3]).
 A function / is said to be Henstock integrable to A on [a, 6] if for every e > 0

 there is a function ó(£) > 0 such that for any 6- fine division D = {([ti, f],£)}
 of [a, 6] we have

 l(£) £/(*)(»
 The following Henstock lemma [3; p. 12] will be used.

 Lemma 2 If f is Henstock integrable on [a, 6] with the primitive F, then
 for every e > 0 there is a 6(£) > 0 such that for any 6-fine partial division
 D' = {([w,v],í)} °f[aib] we have

 I P') £{/(*)(» - u) - ( F(v ) - F(«))}| < c.
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 Let X C [a, 6]. A function F defined on [a, 6] is said to be AC*(X) if for
 every e > 0 there is an r¡ > 0 such that for every finite or infinite sequence
 of non-overlapping intervals {[a*,&fc]} with the endpoints a*, 6* G X for all k
 satisfying

 -a*| < >? we have ^w(F; [ofc,6t]) < e
 k k

 where u> denotes the oscillation of F over [a*, 6*]. A function F is said to be
 ACG* on [a, 6] if [a, 6] is the union of a sequence of subsets {.Y,} such that
 the function F is AC* (Xi) for each i.
 It is well-known [3; p. 34 and p. 21] that if / is Henstock integrable on [a,b]
 with the primitive F, then F is ACG * on [a, 6] and F'(x) = f(x) almost
 everywhere in [a, 6]. Furthermore since F is continuous on [a, 6], [3; p. 12] we
 may choose X,-, i = 1, 2, . . . , in the definition of ACG * to be closed sets. This
 fact will be used in the proof of Theorem 3 below.

 Now we give the following definition.

 Definition 1 Let {Xn} be a sequence of closed subsets of [a, b] with Xn C
 Xn+i for all n and ļJnLi Xn = [a, 6]- A function f defined on [a, b] is said
 to fulfill the condition (L) on {Xn} if f is Lebesgue integrable on each Xn

 and (L) fx n[ax]f(t)dt converge uniformly on [a, 6]. Alsof f is said to fulfill
 the condition (H) on {Xn} if for each n there exists 5n(0 > 0 satisfying
 (£-MO»Ć + MO) c (a>6)'*n whenÇ G (a,6)'A'n such that limn->oo rn = 0
 where

 rn(x) = sup |(D) Yi f(0(v - u)l
 D ax.

 (the supremum being taken over all 6n-fine divisions D = {([ti, v],£)} °/[a»x]
 and the sum is over ([ti, v],£) in D with £ £ Xn) and rn = supa<x<h rn(x).

 Definition 2 A function f is said to be LH integrable on [a, 6] if there is a
 sequence of closed subsets of[a,b' with Xn C Xn+' for all n and (J^Li Xn =
 [a, 6] such that f fulfills both the condition (L) and the condition (H) on {Xn}.
 The LH integral of f on [a, 6] is given by

 (LH) ¡h f(t) dt = lim (I) [ f(t)dt.
 Ja n^°° Jxnn[a,b]

 We take lim„_>oo(£) fxnn[a LH primitive of f on [a, 6].

 The LH integral is uniquely determined in view of Theorem 1 below. Ob-
 viously every Lebesgue integrable function is LH integrable there.
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 Theorem 1 If f is LH integrable on [o, 6], ih en it is Hensiock integrable
 there, and

 (H) I f(x) dx = (LH) f f(x)dx.
 Ja Ja

 Proof. Since / is LH integrable on [a, 6], there is a sequence {A^} of closed
 subsets of [a, 6] with Xn C Xn+' for all n and (Jn°=i Xn = [o,b] such that /
 fulfills both the condition (L) and the condition (//) on {A'n}. Then for every
 e > 0 there exist an integer N and > 0 such that

 I F(x) - ( L ) Í f(t) dt' < e /3 for all x G [a, b]
 JXNn[a,x]

 and

 sup IP) E ~ u)i < e/3
 D axN

 where F(x) = limn-oo(£) Jx n[a x) supremum being taken over all
 6/v-fine divisions D = {([u,v],£)} °f [a>^] ancl sum is over ([u,r],£) in D
 with £ £ Xn .

 Put /tv(x) = f(x) when x G Xn and //v(ar) = 0 otherwise. Then fs is
 Lebesgue and therefore Henstock integrable on [a, b] with the primitive Fy.
 In view of Henstock lemma, for given e > 0 there is a 6(£) > 0 such that for
 any 6-fine partial division D' = {([ti, v],£)} of [a, 6], we have

 l(ö')£{MO(f - «) - (Fn(v) - FN(u))}' < ff/3.
 We may assume that ¿(£) < for all £ € [a, 6]. Then for any ¿-fine division
 D = {([ti, t;],£} of [a, b] we have

 1(0) E /«)(« - «) - F(b)' < 1(0) E /(í)(v - u) - F-v(ft)l

 + 1(0) E m(v-u)-(F(b)-FN(b))'
 (iXN

 = |(jD) E {fN(0(v - u) - (FN(v) - FN(u))}'

 + m E m(v-u)-(F(b)-FN(b)) i

 < IP) E {/*(00> - «0 - (FN(v) - Fat(«))}|

 + IP) E /(£)(«> - «)l + '(F(b) - Fjv(6))|

 < Í/3 + í/3 + í/3 = Í.
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 Ilence / is Henstock integrable on [a, 6] and

 (H) f f(x)dx = (LH) f f(x)dx. Ja Ja

 □

 We remark that the above theorem is still true if "/ fulfills the condition (L)

 on {-Yn}" and "lim^oo Tn = 0" are replaced by U{L) fx^ f{t)dt converges"
 and " limn-co Tn(b) = 0" respectively.

 On the other hand, we have the following theorem.

 Theorem 2 Let f be Henstock integrable on [a, 6]. If f fulfills the condition
 ( L ) on {Xn} and

 lim ( L ) f f(t)dt = ( H ) f f(t)dt uniformly on [a, 6],
 n^°° Jxnn[otx] Ja

 then f also fulfills the condition ( H ) on {Xn}.

 Proof. For each positive integer k choose n(fc) so that whenever n > n(Jfc)

 |(L) [ f{t) dt - ( H ) f f(t) dt' < i- for all z G [a, b ]. Jxnn[a,x] Ja

 We may assume n(k + 1) > n(k) for all k.
 Put fn(x) = f(x) when x G Xn and fn(x) = 0 otherwise. Since {f(x) -

 fn(x)} is Henstock integrable on[a,6] with primitive (//) f*{f(x) - fn(x))dxy
 by the Henstock Lemma for each n (n(fc) < n < n(k -hi)) there corresponds
 S n(£) > 0 satisfying (f - 6n(0>t + MO) c (a>b) ' when Č € (a>fc) '
 such that for any 6n-fine division D = {([u,v],£)} °f [a>*] we have

 i(ö)^(/(0 - /„( 0)(v - u) - - fn{t))dt' <

 It follows that for any ¿„-fine division D of [a,ar] (n(k) < n < n(k + 1)) we
 have

 m £ /(í)(V - tx)i < I
 texn

 i.e. Tn(x) = SUp¿> f(0(V - *01 £ F f°r eac'1 X ^ [a'^] anc^ n =
 n(k), n(k) n(k -h 1) - 1. Consequently rn < ļ for n = n(Jk), n(k) -h

 -hi) - 1 where rn and Tn(x) are the same as above. Therefore
 linin^oo r„ = 0. That is, / fulfills the condition ( H ) on {Xn}. □

 To prove that every Henstock integrable function is also LH integrable, we
 need the following lemmas.
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 Lemma 3 (Cauchy extension). If a function f defined on [a, b] is LH inte-
 grable on [a, w] for each u € [a, 6) and

 lim (LH) ( f(x)dx = A exists
 Ja

 then f is LH integrable to A on [a, 6].

 Proof. Let a = a' < < • • • and a* - * 6 as k - ► oo. Put go(x) = f(x)
 when x = 6 and go(x) = 0 otherwise, <7t(x) = f(x) when x E [a¿, at+i]
 and gic(x) = 0 otherwise, and F(x) = (LH) f* f(t) dt when x 6 [a, 6) and
 F(b) = A. It is easy to see that

 /X + °o ^ / rx + ^ / 9k(t)dt = F(x) uniformly on [a, 6]. *=i ^

 Since gic is LH integrable on [ctjt , ajb+i] , there exists a sequence {Xk,i}i>'
 of closed subsets of [a*,a¿+i] with Xk,i C for all / and „Y*,/ =
 [ajb,ajfe+i] such that gk fulfills both the condition (L) and the condition (H)
 on {A*,/}/>i.

 Now for each positive integer n there exists an integer k(n) such that

 I (¿)jf goWdt + 'piLH) ļ gk(t)dt-F(x)'<±. forali * € [a,6].

 Further, there exists an integer £(n) such that

 I (L) f 9k(t) dt - (LH) Ja f 9k(t) dt' < -±- r,2 JxktH*)nla>x) Ja r,2

 for all x G [a, b] and for k = 1,2,..., k(n). We may assume k(n -f 1) > k(n)
 and l(n -f 1) > l(n) for all n. Put

 /*(") '

 Xo = {6}, Xn = I [J **.'(»)! U{.Yo} n = 1,2,

 It follows that

 I (L) ( f(t)dt-F(x) I
 JxHn[a,x]
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 = I (L) i' 90(t)dt + ^(L) [ gk(t)dt-F(x)'
 fc(n) ^(n)

 < £>) / gk(t)dt-^(LH) gk(t)dt
 t = 1 i(n)n[a,x] jļ_j Ja

 ,ò *(") fb
 + '(L) g0(t)dt + ^2(LH) gk(t)dt- F(x)'

 Ja kzz' °

 *£? l l_
 n2*+1 2 n

 k = l

 < ì for all X G [a, 6].
 n

 Thus / fulfills the condition ( L ) on {Xn} and limn_oo(L) fx n[ax]f(t)dt =
 F(x) uniformly on [a, 6].

 On the other hand, in view of Theorem 1 and the Cauchy extension for the
 Henstock integral [3; p. 41], / is Henstock integrable to F(b) on [a, 6]. Then in
 view of Theorem 2, / also fulfills the condition ( H ) on {A'n}. Hence / is LH
 integrable on [a, 6] and

 (LH) [ f(t)dt = lim (L) [ f(t) dt = F(b) = A.
 Ja n-°° JXnri[a,b]

 □

 Lemma 4 (Hamack extension). Let X be a closed sei in [a, b] and (a, b)'X
 the union of (ckidjc), k = 1,2,... . Iff is Lebesgue integrable on X and LH
 integrable on each with

 oo

 ^cj(Fjk; [ck)dk]) < +00
 Jb = l

 where Fk denotes the LH primitive of f over [ck.dk], then f is LH integrable
 on [a, 6] and

 (LH) f f(x)dx = (L) j f(z)dz + jr(LH) ť* f(x)dx.
 Ja J X Jck

 Proof. Let <7o(z) = f(x) when x G X and <7o(^) = 0 otherwise, and <7*(x) =
 f(x) when x G [ck.dk] and gk(x) = 0 otherwise. Since [c*, dk]) <
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 +00, Ya=i(LH) f" gk(t) dt converges uniformly on [a, 6]. Write F(x) =
 (L) J * go(t) dt + Y^zziil'H) f* gk(t) dt. The rest of the proof follows in exactly
 the same way as that of Lemma 3. Hence / is LH integrable on [a, 6] and the
 required equality holds. □

 Theorem 3 If f is Henstock integrable on [a, 6], then it is LH integrable
 there , and

 (LH) [ f(x)dx = (H) [ f{x)dx. Ja Ja

 Proof. Let F be the Henstock primitive of / on [a, 6]. We say that an interval
 I C [a, 6] is regular if the function / is LH integrable on I and if the function
 F defined on I is the LH primitive of /. Further, we say that a point x 6 [a, b]
 is regular if each sufficiently small interval I C [a, b] containing x is regular.
 Let P be the set of the non-regular points of [a, 6]. Then the set P is closed
 and every subinterval of [a, 6] which contains no points of this set is regular.
 In view of F being ACG* on [a, 6] and Baire's category Theorem [3; p.46], /
 is Lebesgue integrable and therefore LH integrable on some interval in [a, 6]
 with the primitive F. In other words, the set of regular points is nonempty.
 We have to prove that indeed the set P is empty.
 Suppose, if possible, that P ^ 0. By Lemma 3 we see easily that every

 interval contiguous to P is regular and that the set P therefore has no isolated
 points. Again, in view of Baire's category theorem, there is a portion Po of P
 such that F is AC* (Po)- Let Jq be the smallest closed interval containing Po.
 Since the set P has no isolated points, the same is true of any portion of P,
 and therefore Pfl J§ ^ 0. It follows that in order to obtain a contradiction,
 which will justify our assertion, we need only prove that the interval Jq is
 regular.

 To show this, let J be any subinterval of Jq and let Q be the set consisting
 of the points of the set P fi J and of the end-points of J. We denote by {/n}
 the sequence of the intervals contiguous to Q. Now the function / is Lebesgue
 integrable on Q and LH integrable on each interval In and moreover, F is
 the LH primitive of / on each of these intervals. Since F is also AC*(Q ), the
 series of the oscillations of F on the intervals /„ is convergent. It follows from
 Lemma 4 that the function / is LH integrable on J and

 {LH) [ f(x)dx = J2F( 7") + (¿) / /(*)<**• Jj V JQ
 On the other hand, in view of Theorem 1 and the Harnack extension for the
 Henstock integral [3; p.41], we obtain

 (H) Jj f /(i)dx = ^F(/n) + (L) / f(x)dx. Jj n Jq
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 Thus (LH) fj f(x)dx = F(J). Therefore, since J is any subinterval of Jq , the
 interval Jo is regular and this completes the proof. Din conclusion, in view of
 Theorems 1 and 3, the LH integral and the Henstock integral are equivalent.
 The condition (L) is a necessary condition of Henstock integrability, though
 not sufficient as the following example from Tolstoif [4] shows.

 Let K be the Cantor set and

 /{1) = (1/3,2/3), #> = (1/9,2/9), = (7/9,8/9),

 ,(1) r(2) ,( 2»-')
 ■'n > *n j • • • ) *n , . . . .

 Write /£k) = (ant,cnt)U [cnjfc,dnt]U(rfnt,6nt) and assume

 cnk - ank ^>nk - dnk n
 Onk Ont Ofik

 Define F(x) = 0 when x G If, and for each 1^ define F(x) - l/n when
 Cnk < x < dnk and linearly in (an*,cn*),((fn*,6nfc) so that F is a continuous
 function on [0, 1]. Obviously if we take Xi,Xo,X3, ... to be respectively K

 and the closures of K U J^, K U Ą ^ U Ą ' K U Ą ^ U U Ą2' . . . , then
 the condition (L) holds with f(x) = F'(x) almost everywhere. But as shown
 in [4] the function F is not ACG* on [0, 1] and therefore / is not Henstock
 integrable on [0, 1].

 Finally, we state without proof the following convergence theorem. It is a
 generalization of the Vitali's theorem [5; VI, §3] for Henstock integral.

 Theorem 4 Let {/n} be a sequence of LH integrable functions on [a, 6]. If
 the following conditions are satisfied:

 (i) fn(x) - ► f(x) almost everywhere in [a, 6] as n - ► oo,

 (ii) there is a sequence {A*} of closed subsets of[(i,b] independent of n such
 that Xk C Xk+i for all k and UjtLi Xk = [fl, b], fn is Ltbesgue integrable
 on each Xk, the functions of the sequence {fn(x)} have equi-absolutely
 continuous integrals on Xk for each fixed Jfc,

 (Hi) (L) fXkn[a x] converge uniformly in x and uniformly in n,

 (iv) for each Ic there exists a 6*(£) > 0 independent of n with (£ - +
 £*(£)) C ( ayb)'Xk when £ G (a,6)' Xk such that limjk-oo Tnk = 0
 uniformly in n (where

 T„k= sup , T„k, rnk(x) sup 1(D) /n(0(v-")l
 a<*<0 D ttXh
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 the supremum being taken over all 6k-fine divisions D = °f
 [a,ar] and the sum is over ([u,v],£) G D with £ £ Xk), then f is LH
 integrable on [0,6] and

 (LH) [ f(x)dx= lim (LH) [ fn(x)dx.
 Ja n-* 00 J a

 Remark 1 1) In the definition of LH integral, if "/ fulfills the condition (L)
 on {-Yn}" and "limit - ► 00 rn = 0" are replaced by "/ is Lebesgue integrable on

 each Xn and (L) Jx ^ f(t) dt converges pointwise to a continuous function
 on [a, 6] (i.e., / fulfills the Nakanishi condition on {Ar„})" and "for each x G
 [a, 6], limn-»oo rn(z) = 0" respectively, the integral with the weaker condition is
 called the W LH integral. Again, if "/ fulfills the condition (L) on {Xn}"and
 "limfc - * oorn = 0" are replaced by "/ is Lebesgue integrable on each Xni
 and (L) fx f(t)dt converges (i.e., / fulfills the Lee Peng Yee condition on
 {Xn})" and "limfc - * oorn(6) = 0" respectively, the integral with the weakest
 condition is called the M W LH integral. From Theorem 3and the remark of
 Theorem 1, the LH integral the W LH integral, the MWLH integral, and the
 Henstock integral are all equivalent.

 2) In the definitions of the LH and the W LH integrals the

 lim (L) [ f(t) dt
 n-°° Jxn

 is in fact the primitive of / on [a, 6]; while in the definition of the MWLH

 integral, we only know (L) fx n^a xj f(t) dt converges at x = b.

 3) For the W LH integral, Theorem 4 is still true if (iii) and (iv) are re-

 placed respectively by (iii)'; for each fixed x G [o, 6], (L) fXkn[a x] /"(0 ^ con~
 verge uniformly in n and (iv)'; for each fixed x G [a, 6], lim fc - ► oor„(x) = 0
 uniformly in n. Again for the MWLH integral Theorem 4 is valid if (iii) and

 (iv) are replaced by (iii)"; (L) fXk fn(t)dt converges uniformly in n, and (iv)";
 limit - ► oorn(6) = 0 uniformly in n.

 This paper was written under the guidance of Professor Lee Peng Yee to
 whom the author is truly grateful.
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