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 ARCWISE ALMOST CONTINUOUS

 FUNCTIONS

 In this paper we introduce the property of the arcwise almost continuity
 and investigate relationships between the notions of almost continuity
 and arcwise almost continuity.

 1. Introduction.

 The notion of almost continuity introduced by Stallings [7] has been investi-
 gated in many directions, in particular to generalize the Brower fixed point
 theorem. In this paper we introduce the property of the arcwise almost con-
 tinuity. (Note that an analogous notion of the arcwise Darboux property was
 introduced by Pawlak in [6].) We consider relationships between the almost
 continuity and the arcwise almost continuity. In particular we give an example
 of an arcwise almost continuous function from I2 into I2 with no fixed points
 (such a function is not almost continuous). Following ideas from [5] we define
 the notion of (A', G)a pairs of topological spaces A', Y . For such pairs (.Y, Y)
 we give a method of construction of arcwise almost continuous functions from
 X into Y. Moreover, we study several topological and algcbraic properties
 of arcwise almost continuous functions analogous to that considered in [5] for
 almost continuous functions.

 We shall use the notation introduced in [5]. In particular, symbols X>
 Y denote topological spaces, M denotes the real line and I denotes the unit
 interval. The symbol A{Xi Y) denotes the class of all almost continuous func-
 tions (in the sense of Stallings) from X into Y. Recall that / : X - ► Y is
 almost continuous iff for any open set U C X x Y containing /, U contains
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 a continuous function g : X - ► Y [7] (we consider a function and its graph
 to be coincident). Note that / : X - ► Y is almost continuous iff it intersects
 every blocking set in X x Y (see [3] or [5], Remark 1.1 (p. 464)). The sym-
 bol Vp(X1Y) denotes the family of all functions having Pawlak's property ,
 1.e. functions / : X - ► Y such that f(L) is connected whenever L is an arc
 in X [6]. Note that if X is a Hausdorff space and Y is hereditarily normal,
 then A(X, Y) C Vp(X,Y) (see [5], Theorem 1.2 (p. 472); unfortunately, the
 assumption on X was omitted in that theorem.)

 2. Basic properties.

 A function / : X - ► Y is arcwise almost continuous (in the sense of Stallings)
 iff f'L is almost continuous for each arc L G X. The class of all arcwise almost
 continuous functions from X into Y will be denoted by ,4a(Ar, Y).

 Note that [5], Theorem 3.4 (p. 480) implies the following characterization
 of the arcwise almost continuity.

 Remark 2.1 A function f : X - ► Y is arcwise almost continuous iff f oh
 is almost continuous for every homeomorphic injection h : I - ► X.

 Example 2.1 There exists a topological space X such that

 ¿(XfI)'.4a(X,l)5É0.

 Indeed, let r be the topology on X = I U {2} defined by the following
 condition:

 • U G T iff either U is open in the Euclidean topology on I, or U = {2}U V,
 where V is an open neighbourhood of 1 in I.

 It is easy to observe that the function / : X - ► I defined by

 fix) * ' = / ^ X = ^
 fix) * ' = ' 1 otherwise

 is almost continuous (since each neighbourhood of / in -Y x I contains a con-
 stant function g = 1), but /|I is not almost continuous. Hence / is not arcwise
 almost continuous. □

 However, [5], Theorem 2.1 (p. 473) yields the following result.

 Theorem 2.1 Suppose that X is a Hausdorff space. Then every almost con-
 tinuous function is arcwise almost continuous.

 From [5], Lemma 2.2 (p. 474) and Lemma 2.3 (p. 475) we conclude that
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 Theorem 2.2 Suppose that A C R and Yo is a convex subset o/R*. Then

 Aa(A1Yo) = A(AìYo).

 Example 2.2 Let f : [-1,1] x R - ► R be Lipiński' s function (see [5], Ex-
 ample 1.7 (p. 472)). Then

 f G »4a([ - I» 1] x R,R)' >t([- 1, 1] x R,R).

 Indeed, let L be an arc in [- 1, 1] x R - ► R. Then there exists a compact
 interval J C R such that L C [-1, 1] x J. By [5], Corollary 4.2,(1) (p. 487),
 /|[- 1, 1] x J is almost continuous and so is f'L. □

 Example 2.3 There exists f E Aa([- 1, 1]2,R) ' .4([-l, 1]2,R).

 Indeed, let Ao = {0} x [-1, 1], A' = {(xi, z2) G [- 1, l]2 : x' ^ 0 and x2 =
 sin(l/x)} and A = Aq U A'. Note that A is a continuum and for each arc
 L G [- 1, l]2 only the following cases are possible: L C Aq, L C A' or card(L'
 A) = 2W. Let (La) 0<2« be a sequence of all arcs L C [ - 1, l]2 such that
 L (£ A. For each a < 2W let hQ : I - ► LQ be a homeomorphism. Let
 (^a)a<2- be a sequence of all minimal blocking sets F in I x R. Fix a bijection
 <p : 2" - ► 2W x 2", <p = (^>i, P2) and set

 Ka = |(xi, 3:2,2:3) )(xi , X2), x3) e Fv>S(a)} •
 (Note that for each ß < 2", {Ka • = /?} is a blocking family in Lß x R,
 see [5], p. 466.)

 Now choose (inductively) a sequence ( xQ,ya , zQ)Q< 2» of points such that:

 (1) (x aiVaiZa) G Kq for ûr < 2",

 (2) (xQiyQ) Č A for a < 2",

 (3) (xa,ya) / (xßlyß) for a ^ ß.

 Set
 f t if (x,y) G i4¿, i = 0,1,

 /(^, y) = < zot if (*,2/) = (*a,!/a), ûr < 2W,
 ^ 0 otherwise.

 Then / G Aa([- 1, 1]2,R). Indeed, suppose that / is not arcwise almost con-
 tinuous. Then f'La is not almost continuous for some a < 2W . Therefore,
 / o hQ £ A(I, R) and (/ o hQ) D Fß = Hi for some ß < 2" . Let 7 = ip~l(a,ß).
 Then / H Ky = 0, contrary to (x7, y7, zy) G / H /'7.
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 Moreover, since rng(f'A) = {0, 1}, [5], Theorem 1.7 (p. 468), yields that/1.4
 is not almost continuous. By [5], Theorem 2.1 (p. 473), / is not almost con-
 tinuous, either. □

 By [5], Theorem 1.7 (p. 468) and Brown's Theorem [2] (see [5], Theo-
 rem 1.10,(4), p. 471), we conclude the following relations.

 Theorem 2.3 Assume that Y is a hereditarily normal space. Then

 (1) A(x,y)cwy),

 (2) 13' (X, Y) n Aa{x , y ) = bx (x, y) n vP(x , y ).

 Remark 2.2 If f G Aa(X, Y) and Xo C X then f'Xo G Aū(Xq,Y).

 Remark 2.3

 (1) IffeAa(X,Y) andgeC{Y,Z) then g o f e Aa(X, Z).

 (2) If Y is a Hausdorff space, f G C(X}Y) and g G A(Y} Z), then go f G
 Aa{X,Z).

 (3) If Y is a Hausdorff space, f : X - ► Y is a continuous injection and
 g G Aa(Y , Z) then gofe Aa(X , Z).

 Proof. The statements (1) and (2) follow from [5], Theorems 3.3, and 3.5
 (p. 480), respectively. To prove (3) note that f'L is a homeomorphic injection
 for every arc L C X and we can apply [5], Corollary 3.1 (p. 480). □

 [5], Theorem 4.4 (p. 486), yields the following fact.

 Remark 2.4 Assume that f' G Aa{X,Y) and /o G C(X,Z). Then

 /1A/2 eAa(X,Y X Z).

 Suppose that X and Y are topological spaces and £ is a family of all arcs
 in X. We say that (X, Y) is an (K,G)a pair ( arcwise Kellum-Garret pair) iff
 there exists a system {Tl}lzc of families of blocking sets such that

 (1) for each L G £, Tl is a blocking family in LxY (i.e. for each/ £A(L,Y)
 there exists a set F G Tl which is blocking for /),

 (2) card(dom(F)) > card(^£) for each F € Uł€£ Fl-
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 The family T = (J LqC Tl will be called the blocking family for the pair (X,Y).
 Suppose that (X, Y) is an ( K,G)a pair, L is an arc in X, h : I - ► L is a
 homeomorphism, / : L - ► Y and F C L x V€ It is easy to observe that F
 is a (minimal) blocking set for / iff Fo = {(*,y) G I x Y : (A-1 (ar), 3/) G F}
 is a (minimal) blocking set for / o h in I x Y . Thus if y is a non-degenerate
 convex subset of Rfc, then card(dom(F)) = 2W for each blocking set F and
 card(!FL.) = 2a* for each L G C (cf [5], Proposition 1.1,(2), p. 466). Moreover,
 in this case we can take the family of all sets of the form {(x,t/) G L x Y :
 (h~l(x)y y) G F }, where F is a minimal blocking set in I x Y, as the family
 Tl. The union 'Jl€C ? l of such families JTL we shall denote by K, and call the
 family of minimal blocking sets for (X, Y). Note that dom(F) is a connected
 subset of an arc L for each set F G £ which is blocking in LxY (thus dom(F)
 contains an arc). The foregoing gives the following class of examples of (A', G)a
 pairs.

 Proposition 2.1 Suppose that Y is a convex subset of a space R* and X is
 a topological space with card(C) < 2^, where C denotes the class of all arcs in
 X. Then (X,Y) is an (A,G)a pair.

 Corollary 2.1 If X is a second countable Hausdorff space and Y is a convex
 subset of R* then (X,Y) is an (KyG)a pair.

 Lemma 2.1 Suppose that (X, Y) is an ( K,G)a pair , A is a subset of a Haus-
 dorff space X and Y is a convex subset of a space R*. If A satisfies the
 following condition :

 (*') if L is an arc in X and h : I - ► L is a homeomorphism then h~~1(L'A)
 is bilaterally c-dense in itself (in I),

 then

 ( ii ) there exists a function g : X'A - ► Y such that f'Jg is arcwise almost
 continuous for each arcwise almost continuous function f : A - ► Y and
 rng(g'L) = Y for each arc L (fi A.

 Proof. Obviously we can assume that Y is non-degenerate. Suppose that
 (Ar, Y) is an (K, G)a pair with the family K of minimal blocking sets, and C
 is the family of all arcs in X . Since (A', Y) is an (K,G)a pair, either C = 0
 or card(C) = 2W. Since in the first case Aa{X, Y) = YA , we shall consider
 only the second case. Arrange all arcs L ÇL A in the sequence (La)Q< 2« and
 all elements of Y in the sequence ( tQ)Q<n For each a < 2^ let (FQiß)ß<
 be a sequence of all sets F G IC which are blocking in La x Y and such that
 dom(F) is contained in the closure of no component of intLa(LQ fl^l). By (i),
 card(dom{F)'A) = 2". Fix a bijection (p : 2W - ► 2x2^x2", <p = (^0,^1,^2)-
 For each a <2" choose (inductively) (xa,ya) such that:
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 (1)

 ®or G Lņ j(0) ' ļ^J J),
 J

 where J is a component of in<i,yi(a) (L^^q) O A ),

 (2) if y>o(<*) = 0 then ya = tQl

 (3) if <p0(a) = 1 then ( xQiya ) G íVi("),v>3(")>

 (4) Xa ź Xß for a ^ ß.

 Now define g : X ' A - ► Y by

 ,(,) = Í ya iff =
 ^ yo otherwise.

 Let / : .4 - ► Y be an arbitrary arcwise almost continuous function. Let L
 be an arc in X and let F be a minimal blocking set in L x Y. Then either
 dom(F) C cIl(J) C A for some component J of int¿(L fi A)y or L = LQ and
 F = FQiß for some or,/? < 2W. In the first case F is blocking in cli(J) x Y
 and therefore / DF / 0. Otherwise (x7,y7) G F H 0 for 7 =
 Thus Ffì(/U<7) ^ 0, and consequently (/Uý)|L is almost continuous. Hence
 fUg€Aa(X,Y).

 Now suppose that L is an arc in X, L A and y G Y. Then y = tß for
 some ß < 2^. Then L = La for some a < 2W and ¿7(2^(0,0,/?)) = V- Thus
 rng(g'L) = V for each arc L <£ A. □

 Recall that each almost continuous function / : X - ► X has a fixed point
 whenever X is a Hausdorff space with the fixed point property ([7], cf [5],
 Theorem 1.1 (p. 464)). The next example shows that the analogous property
 does not hold for arcwise almost continuous functions.

 Example 2.4 There exists f G ^(I2,/2) such that /(x,y) ^ (x,y) for each
 (x,y) G 1 2 (thus f is not almost continuous).

 Indeed, let Ao = {0} x I, A' = {(x, |sm(l/x)|) : x > 0} and A = Ao UA'.
 Define /0 : A - ► I by:

 f /„'_ / 1 if x G Ao,
 /o(*)-ļo f /„'_ if x G -Ai .

 Obviously /0 is arcwise almost continuous. By Lemma 2.1 (p. 512), there
 exists an arcwise almost continuous function f' : I2 - ► I such that f' 1.4 = /0
 and rng(fi | L) = I for each arc L C I2 ' A. Now define /2 : 12 - ► / as follows:

 tí ' _ / 0 if x = 0,
 |«n(i/*)| if x > 0,
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 and set / = f' A /2.
 We shall verify that / is arcwise almost continuous. Fix a homeomorphic
 injection h : I - ► I2. Then

 (1) F = h~l(Ao) is a closed subset of I and (/ o A)|F = (1,0).

 (2) If J is a component of I ' F then (/1 o h)' J is almost continuous and
 (/2 0 h)'J is continuous. Hence (/ o h)' J is almost continuous.

 (3) Suppose that a G F is the left end point of some component J of the
 set I 'F. Then there exists a sequence (In)n of pairwise disjoint closed
 intervals in J'h~l(A') such that In ' a and rng((fn oh)'In) C [0, 1/n)
 for n G N. Since rng(h'In) is an arc in I2 ' A , there exists tn G In such
 that ( f'oh)(tn ) = 1. Thus (1,0) G C+(foh,a). Similarly, if a G F is the
 right end point of some component J of J ' F then (1, 0) G C~(f oh, a).

 By [5], Lemma 4.1 (p. 486), we conclude that f oh is almost continuous. Thus
 / is arcwise almost continuous.
 Now assume that /(z,y) = (x, y) for some (x,y) G I2. Evidently, x ^ 0,
 so f(x,y) = (/i(x,y), |sin(l/x)|). Thus x = /i(x,y) and y = |s/n(l/x)| and
 consequently, (x,y) G A' and /i(x,y) = 0, a contradiction. □

 Proposition 2.2 Assume that (X,Y) ts an (K,G)a pair, X is a Hausdorff
 space and Y = R*. Then for every normal subspace A of X the following
 conditions are equivalent :

 (i) each arcwise almost continuous function f : A - ► Y can be extended to
 an arcwise almost continuous function f* : X - ► Y,

 ( ii ) each continuous function f : A - ► Y can be extended to an arcwise
 almost continuous function f* : X - ► Y ,

 (iii) if L is an arc in X and h : I - ► L is a homeomorphism then h~l(L'A)
 is bilaterally c-dense in itself (in I),

 (tv) there exists a function g : X'A - ► Y such that f'Jg is arcwise almost
 continuous for each arcwise almost continuous function f : A - ► Y and
 rng(g'L ) = Y for each arc L <£ A,

 (v) there exists a function g : X' A - ► Y such that fUg is arcwise almost
 continuous for each arcwise almost continuous function f : A - ► V.

 Proof. The implications (v) => (1) => (ii) and (iv) => (v) are obvious.
 (Hi) => (iv) follows from Lemma 2.1 (p. 512).
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 (ft) => (in) Assume that L is an arc in X} h : I - ► L is a homeomorphism
 and h~l(L' A) is not bilaterally c-dense in itself (in I). By [5], Theorem 2.3
 (p. 476), there exists a continuous function /o : h~l(L fl A) - ► Y which
 cannot be extended to an almost continuous function defined on whole I. Let

 / be a continuous extension of fo o h"1 on whole A . Suppose that /* is an
 arcwise almost continuous extension of / on whole X. Then f*'L is almost
 continuous and, by [5], Theorem 3.4 (p. 480), /* oh is almost continuous, too.
 Since

 (/• o h)'h-l(LflA) = (foh)'h-l(LriA) = folh-^LHA),

 /* oh is an arcwise almost continuous extension of fo on whole I, a contradic-
 tion. □

 Corollary 2.2 Suppose that L is an arc in a Hausdorff space X , Y = R*
 and (X,Y) is an ( KiG)a pair . Then for each f G Aa(L,Y) there exists
 r e Aa(XtY) such that r'L = /.

 Proposition 2.3 Suppose that (X,Y) is an (A', G)a pair , A C X and Y is
 a non-degenerate convex subset of a space R*. Then the following conditions
 are equivalent :

 (i') each function g : X ' A - ► Y can be extended to an arcwise almost
 continuous function f* : X - ► Y,

 (ti) card(A fi L) = 2W for each arc L in X,

 (Hi) there exists f : A - ► Y such that fUg is arcwise almost continuous for
 every g : X 'A - ► Y .

 Proof, (i) => (it) Assume that card(A fi L) < 2" for some arc L C X. Fix
 2/o,2/i G V such that yo ^ yi, xo G L ' A and define g : X' A - ► Y by

 g(X)={ iff = 10'
 { Vi otherwise.

 Suppose that g * G Aa(X} Y) is an extension of g. Then g*'L is almost contin-
 uous and 2 < card(rng(g*'L)) < 2 " (so rng(g*'L) is not connected), contrary
 to [5], Theorem 1.7 (p. 468).
 (?t) => (Hi) Arrange all arcs in X in the sequence (LQ)Q< 2«. For each
 a < 2W let (Ka^ß^v be a sequence of all minimal blocking sets in LQ x Y.
 Fix a bijection <p : 2W - ► 2^ x 2 w. For each a < 2W choose (x0,y0) G K^a)
 such that xQ G A and xa ^ Xß for a ^ ß. Set

 ffx' = / y<* ifx = xaia< 2 w,
 ' yo otherwise.
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 Then

 fUgeAa(X9Y)

 for each g : X ' A - ► Y. The implication (iii) => (i) is obvious.
 □

 Corollary 2.3 For each A C M and non-degenerate convex subset Y of a
 space R* the following conditions are equivalent :

 (i') each g : TR'A - ► Y can be extended to g* £ *4a(R,Y),

 (it) A is c-dense in R,

 (iii) there exists f : A - ► Y such that fUg € >ta(R, Y) for each g : Ht'A - ►
 Y.

 Corollary 2.4 Let Y be a non-degenerate convex subset of a space Rfc, M C
 X and (Ar, Y) be an'K% G)a pair . Then the following conditions are equivalent :

 (i) M is a (g, A a(X, Y )) -negligible for some arcwise almost continuous func-
 tion g : X - ► Y ( see [1], [4], or [5], Theorem 8.3 (p. 513)),

 (it) L'M is c-dense in L for each arc L C X.

 3. Limits and operations.

 Similarly to [5], Lemma 5.1 (p. 489) and Propositions 5.1 (p. 490), 6.1 (p. 494),
 6.2 (p. 498) and 6.4 (p. 505), respectively, we can prove the following results.

 Lemma 3.1 Suppose that (X,Y) is an (KiG)a pair , T is an infinite blocking
 family for (X, Y) and k < A = card(T). Then there exists a partition of X
 into k many sets XQ (a < k), such that card(dom(F) H XQ) > A for each
 a < k and F G T.

 Proposition 3.1 Suppose that (X, Y) is an (7', G)a pair , T is an infinite
 blocking family for (X,Y) and (E, X) is a directed set such that card(T) >
 carrf(E). Then each function f : X - ► Y is a discrete limit of a net (/^gs
 of arcwise almost continuous functions from X into Y.

 Proposition 3.2 Suppose that (Y, +) is a topological group , (X,Y) is an
 (KyG)a pair with an infinite blocking family T and X is a family of functions
 from X into Y such that k = card(X) < A = card(!F). Then the following
 condition holds :

 • there exists g : X - ► Y such that g -I- / € Aa(Xy Y) for all f G X.
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 In particular , each function f from X into Y can be expressed as a sum of
 two arcwise almost continuous functions from X into Y .

 Proposition 3.3 Suppose that either F = R or F is the field of all complex
 numbers, (X,F) is an ( K,G)a pair with an infinite blocking family T , V is a
 unitary vector space over F, dim(V) > 1 and a • n is a scalar product in V .
 Then each function f : X - ► F can be expressed as a scalar product of two
 arcwise almost continuous functions f',fi : X - ► V .

 Proposition 3.4 Assume that (A', Y) is an (A'G)a pair with an infinite
 blocking family T and Y is a lattice. Then

 C(Aa(X,Y)) = Yx.

 More precisely , each function f from X into Y can be expressed as

 min(max(fi , f2), max(f3 , /,)),

 where f',fi,fz,fļ are arcwise almost continuous.

 Corollary 3.1 Suppose that X is a second countable Hausdorff space, Y is a
 separable normed space and f € Yx . Then:

 (1) f is a discrete limit of a sequence of arcwise almost continuous functions
 from X into Y .

 (2) f is a transfinite limit of a sequence of arcwise almost continuous func-
 tions from X into Y .

 (3) f is a sum of two arcwise almost continuous functions from X into Y .

 (4) f = min(max(fi , /o), max(fsi /4)) for some arcwise almost continuous
 functions f', /2, /3, /4 from X into Y .

 For topological spaces X and Y let Y) denote the class of all arcwise
 continuous functions, i.e. such functions from A" into Y that f'L is continuous
 for each arc L in AT.

 Theorem 3.1 Let X be a second countable Hausdorff space. Then:

 (1) For each positive integer k,

 Ma(Aa(X,Rk)) = CaĻX,Rk).

 (2) MMa(X,K)) = Ca(.Y,K),
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 (S) Mm{AĄX&)) = M{X&).

 Proof. (1) "C" Suppose that / £ Ca(X}Y). Let L be an arc in X such
 that f'L is not continuous and let h : I - ► L be a homeomorphism. Since
 / o h £ C(7, Y), [5], Corollary 6.3 (p. 497), yields / o h -f g & .4(7, Y) for
 some g G .4(7, Y). By Corollary 2.2 (p. 515), there exists <71 G Y) such
 that gx'L = g o h'1. Then (/ -f 9ì)' L A(L , Y), so / + gx Aa{Xt Y) and
 therefore, f £ Ma{Aa{X,Y)).

 "D" Assume that / 6 Ca(X} Y), g G ^(A", Y), L is an arc in X and
 h : 7 - ► L is a homeomorphism. Then / o h G C(7, Y), g o h G .4(7, Y) and
 by [5], Corollary 6.3 (p. 497), (/ + g) o h = (/ o h) + (g o h) G .4(7, Y). Hence
 / + <7 is arcwise almost continuous.

 The proofs of the equalities (2) and (3) are similar. □

 4. Stationary and determining sets.

 Suppose that £ is a family of all arcs in X and E C X . For each ordinal 7 let
 Cy be a subfamily of C such that:

 C0 = {LeC : card(L'E)< 2"},

 £7 = {¿G£: card (l'(£?UUU/»<7 £/»))< 2"}.

 Note that Cß C Cy for ß < 7 and if Cß = £/?+i for some ordinal ß then
 Cß = Cy for all 7 > ß. Moreover, for any space X there exists a such that
 Ca = Cy for all 7 > or. The least ordinal a such that CQ = £<*+1 W¡H
 denoted by A (e,X) and called the order of E in X. Obviously,

 ļ^J Cy = Cx{SiXy
 7

 Example 4.1 If E = Ix [0, 1), then 'e,P) = 1-

 Theorem 4.1 Suppose that X is a second countable Hausdorff space and E C
 X. Then the following conditions are equivalent :

 (?) E is stationary for the class Aa( -Y,R),

 (»0 XWJCCE and C = CxiEiXy

 Proof, (i) => (ft). Suppose that x € X ' (EU'JC). Then the characteristic
 function X{x} of {*} ¡s arcwise almost continuous, X{x}|2£ = 0 and X{x) Ž 0,
 contrary to (i').
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 Now suppose that M. - C ' U7<A(E.X) ^ ® anc^

 t=£u£a(E1X)u(x'(J£)-
 Then for each L G M we have:

 (1) card(L'T) = 2",

 (2) L'T is "bilaterally" c-dense in itself (in L).

 Let (Lq)q< 2» be a sequence of all L G M (this sequence may not be one-to-
 one). For each a < 2" let (Katß)ß<2" be a sequence of all minimal blocking
 sets in La x R such that dom(Katß) £ T (thus card(dom(KQtß) ' T) = 2").
 Fix a bijection <p : 2" - ► 2W x 2W and z G X ' T. For each a < 2" choose
 (za, Va) G K<p(a) such that xq$TU {z} and xQ ^ Xß for ot^ß. Set

 {1 0 yQ otherwise. if if x x = = xa, z,
 yQ if x = xa, a < 2",
 0 otherwise.

 We shall verify that f'L is almost continuous for each arc L in X. Indeed, if
 L £ M then f'L = 0. If L G M then L - LQ for some a < 2W. Now fix
 a minimal blocking set K in L x R and consider two cases. If dom(K) C T
 then since 0 G rng(K ), (x, 0) G K fl / for some x G dom(K). If dom(K) <£ T,
 K = Kottß for some ß < 2W. Then (x7,t/7) G / fi K for 7 = <p~x( <*,/?). Hence
 / is arcwise almost continuous.

 Since f'E = 0 and / ^ 0, E is not stationary for the class .4a(X,R).
 (ii) => (¿) Suppose that / is an arcwise almost continuous function and

 /12? = 0. Then, using [5], Theorem 8.1 (p. 512), by transfinite induction one
 can easily prove that for each ordinal 7, f'L = 0 whenever L G £7. Thus
 f'L = 0 for every arc L G £ and /|(X ' lj£) = 0, so / = 0. Hence £ is
 stationary for the class ,4a(Ar,R). □

 The following lemma is obvious.

 Lemma 4.1 Suppose that X, Y are topological spaces , Yq C Y and Z is
 homeomorphic with Yq. If $ and Vf are topological properties of functions
 svch that $(X, Y0) C $(X,Y) and ¥(A' Y0) C *(X, Y), then

 Ä(*(X, Y), *(X, Y)) C Rļ*(X, Z' 9(Xt Z)).

 In particular,

 5(<D(X, Y)) C S(*(- Y, Z)) and D(*(-Y, Y)) C D(ł(X, Z))

 /see [5], p. 511 , /or definitions).
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 Corollary 4.1 Suppose that Y = R*, Ar is a second countable H axis d orfj space
 and E C A'. Then the following conditions are equivalent:

 ( i ) E is stationary for the class ^4a(Ar, Y),

 (¡i) A' ' (J £ C E and C = C'(B¡X).

 Proof. Lemma 4.1 (p. 519) and Remarks 2.3 (p. 511), 2.4 (p. 511)
 imply

 S(A(X,Y))CS(A(A',M)).

 Thus, by Theorem 4.1 (p. 518) we deduce the implication "(i) => (»)"•
 (ii) => (i) Suppose that E is not stationary for the class Aa{X, Y). Let

 / G Aa{X, Y), f'E = 0 and /(x o) = y0 ^ 0 for some x0 G AT. Let IV be
 the one-dimensional subspace of Y, h : IV - ► IR be a homeomorphism such
 that h( 0) = 0 and let wyy • Y - ► W be the projection of Y onto W. Then
 ; tw is continuous, ^w{yo) = 2/o, h(vo) i1 0 an<3, by Remark 2.4 (p. 511),
 fi = h o 7T'y o f G «4a(AT,R). Since /"i |£7 = 0, Theorem 4.1 (p. 518) implies
 f' = 0. But /i(zo) = %o) î 0, a contradiction. □

 Theorem 4.2 Suppose thai Y = R* and X is a Hausdorff space. Then the
 only determining set for the class Aa{X, Y) is whole X.

 Proof. Obviously, X is a determining set for Aa(X> Y). Now we shall verify
 the opposite inclusion. First suppose that Y = R. Let C be the family of all
 arcs in X . Suppose that there exists xo € X'E. There are two possible cases.

 (а) xo ^ (J C. Then the characteristic function X{x0} °f the set {xo} is
 arcwise almost continuous, X{x0}'E = 0 and X{ro} ^ 0. Thus E is not
 determining for the class ^(A'jR).

 (б) xo G L for some arc L in X. Let h : I - ► L be a homeomorphism.
 By [5], Theorem 8.2 (p. 512), there exist /o,ýo G *4(/,R) such that
 [/o = <7o] = I ' {A'Hxo)}. By Proposition 2.2 (p. 514), there exists
 t : X ' L - ► Y such that / = t U (/o o h"1) and g = t U (<7o ° h"1)
 are arcwise almost continuous. Moreover, f'E = g'E and / ^ g, and
 therefore E is not determining for the class .4a(X,R).

 Now the theorem follows by Lemma 4.1 (p. 519) for each k. □
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