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 CHAOTIC BEHAVIOR OF NEWTON'S

 METHOD

 A classical application of iterations of funct ions involves Newton's method.
 For a. differentiable function /, one iterates the function Nj(x) = x- /(x)//'(x)
 usually with the idea that the initial point .ro leads, under iteration of Nj,
 to a sequence converging to a zero of /. For / a complex polynomial, Nj is
 analytic on the Riemann sphere and typically there is a nonempty compact
 set J(Nj ), the Julia set of Nj , where xo G J(Nj) implies that the iterations of
 xo under Nj leads to a sequence that behaves chaotically, as described more
 precisely in Chapter 3 of [D]. In [SU] one finds an analogous result for / a real
 polynomial in which all of the more than 3 roots are simple, in which case the
 set of initial points leading to chaotic behavior is a null Cantor set. Moreover
 if we label the intervals of M'/'_1({0}) as ai, ao, . . . , a¿., then for any sequence

 s with range {1,2,..., Ar}, there is an xq such that for each n the iterate
 of Nj at xo belongs to a$(ny

 One subject having to do with iterations of functions is that of attractors.
 A subset A of the range of a function / is an attractor, or u;-limit set, of /
 if there is a point xo such that A is the limit set of the sequence of iterates
 of xo under /. For / differentiable, we want each of the zeros of / to be an
 attractor for the function Nj representing the application of Newton's method
 on /. Yet even polynomial functions can have other kinds of attractors. For
 p(x) = X3 - 3x2 - 144x and I = [-5,7] one can verify that I contains a zero
 of p as well as the x-coordinate of the only reflection point of p yet p' is never

 0 in I. Also Np(Np(x)) = x has only a finite number of solutions in I and,
 moreover, Np(- 5) > 7 and Np( 7) < -5. Thus by [G] there are points a and b
 with - 5 < a < b < 7 such that Np(a) = 6 and NP(b) = a, yielding a two
 point attractor. We seek to find out. what further kinds of attractors Newton's
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 method can yield. We then exhibit a C,<X) function / such that the u-limitsets
 of Nj include every nonempty closed subset of Cantor's middle thirds set.

 Before we look into the collections of attractors, or uMimit sets, associated
 with Newton's method we must first look into the collections of w-limit sets

 of certain classes of real functions. In particular, since derivatives need not be
 continuous, the iteration scheme of Newton's method need not be represented
 by a continuous function. Hence this paper deals with the iterative behavior
 of classes of functions broader than the class of continuous functions.

 While studying the diversity of uMimit sets we want to know when this
 diversity is limited. We see from Theorem 2.1 that continuous functions are
 limited with regard to the kinds of u;-limit. sets they generate. We show that
 we can replace the hypothesis of continuity with a more general dense mapping
 property which we define in the second section. Any function with both the
 intermediate value property and with the dense mapping property can have
 only u;-limit sets possible for continuous functions. An example of such a
 function is Nf , where / is any C1 function.

 Each of the functions we consider has for its range a connected set of real
 numbers with the exception of functions representing Newton's method. For
 such cases if x is not a zero of a differentiate function / but is a zero of /', then
 applying Newton's method to x with respect to / yields the point at infinity.
 Hence typically, the range of a function representing Newton's method, Nj,
 is the circle which is the one-point compactification of the real line with the
 point at infinity. For this reason, the topological hypotheses of many of the
 theorems that follow must be general enough to include the possibility that
 either the line IR or the circle IR U {00} is the range of the function involved.

 1. Preliminary Remarks

 In this paper a function / : IR - ► IR, is differentiate at x whenever / is
 continuous at x and

 f(x + h) - f(x) r ,
 hm

 For |xn| - ► -foo, we say that xn - «dg, and we define 0-oo = oo-0 = | = 0.
 Let

 Nf(x) /v = h-o' lim (x- - - -77-^-77-7) Nf(x) /v h-o' /(* - + ä) -/(*)/

 provided that this limit belongs to the space IR U {«do} , which we consider as
 the unit circle S1®. Note that for f(x 0) = 0, Nj(xo) = zo and that for /
 differentiate, we have Nj : IR - * IR U {00} with Nj(x) = x - f(x)/f'(x).
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 Since derivatives need not be continuous, / being differenti able need not
 imply that Nj is continuous. Therefore, we need to look at classes of functions
 more general than the class of continuous functions.

 Because our interest is limited to real or extended real valued functions of

 a real variable, the following definition of Darboux (there are others) will suit
 our purpose.

 Definition 1.1 Suppose X and Y are topological spaces. A function f : X - ►
 Y is Darboux (f £T>) if f maps connected sets onto connected sets.

 Definition 1.2 Suppose ICR is closed. A function f : I - ► M is Baire 1
 (f G B') if f is a pointwise limit of real continuous functions on I@.

 Theorem 1.3 For connected I CM, the following statements are equivalent :

 1. The function f : I - ► R is Baire 1 ,

 2. If E ÇR is open , then f~l(E) is of Borei type Faf

 3. If 0 ^ K Ç I is closed, then there is an x 6 A' with f'K continuous
 at x.

 Proof. See [N].
 An analogous result holds if we replace I by any closed subset of R.
 We know that real functions that are derivatives are Darboux, Baire lfunc-

 tions. Also, if a function / is everywhere differentiate with real nonzero
 derivative, then Nj G VB' (see Theorem 3.2 of [B]).

 Suppose / : X - ► Y with À' Ç Y . Typically in our examples X will be
 a connected subset of M and Y will be either IR or R U {oo}. For io G X,
 we define f°(x o) = xo, fl(x o) = f(x o), and, if for any positive integer n,
 r{x o) G X, then /n+1(x0) = f(fn(x 0)).

 Definition 1.4 Suppose f : X Y with X Ç Y and suppose fn(x o) G A' for
 all n > 0. Then the orbit of xo under f is the sequence {/n(^o)}^°=o-

 For a. differentiable function /, there may be an xo and an n such that

 f(N/(xo)) £ 0 but. f'(Nj(xo)) = 0.

 Then Nj+l(x o) = oo and there is no orbit of xq under Nj, that is to say,
 Newton's method ends after n -f 1 iterations.

 The following definition is central to this work.
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 Definition 1.5 Suppose Y is a topological space, X C Y , with f : X -* Y ,
 and suppose further thai for some xo G -Y, the orbit of xq under f exists. The
 omega-limit set (u-limit set) of f at xo, ivhich we denote by u(xo ,/), is the
 limit set of the orbit of xo under f, that is to say ,

 CO

 w(*0,/) = fi c'{/n(*o) :»>*}•
 i = 0

 For / as above, we define A ( / ) = { u; (i, /) : x G A" }.

 2. The Dense Mapping Property

 Certain properties of functions may impose restrictions on the sorts of u-limit
 sets such functions can yield.

 Theorem 2.1 (Agronsky, Bruckner, Ceder, and Pearson [ABCP]) If the func-
 tion f : [0, 1] - ► [0, 1] is continuous and xo G [0, 1], then w (xo>/) is nonempty
 and is either nowhere dense and closed or is a finite union of nonsingleton
 closed intervals. Conversely, if 0 ^ K Ç [0, 1] is either nowhere dense and
 closed or is a finite union of nonsingleton closed intervals , then there is a
 continuous function f : [0, 1] - * [0, 1] and an xo G [0, 1] with K = u (xo ,/).

 The converse statement is the more subtle one; see [BS] for a shorter proof.
 If D is dense in an interval I then, for / continuous, f(D) is dense in

 /(/). This dense mapping property is what restricts the sorts of uMimit sets
 continuous functions can have.

 Definition 2.2 Suppose X and Y are topological spaces. A function f : X - ►
 Y has the dense mapping property if for any D Ç A' with clD connected ,
 f(clD)Cclf(D).

 Lemma 2.3 Suppose X and Y are topological spaces , f : X Y is Darboux
 and has the dense mapping property, and clD is connected in A'. Then f(clD),
 clf(D), and clf(clD) are each connected.

 Proof. /( cl D) ç cl f(D) Ç cl /(cl D). □

 Lemma 2.4 For X a topological space, suppose f : X -+ X is Darboux and
 has the dense mapping property. Then for each nonnegative integer n, fn is
 Darboux and has the dense mapping property.

 Proof. Since f° is the identity function on Ar, the basis step is done. Suppose
 fn"1 is Darboux and has the dense mapping property. Clearly fn is Darboux.
 Suppose cl D is connected in X. By Lemma 2.3 cl fn~1(D) is connected.
 Thus we have /n(clD) = f(fn~l(c' D)) Ç f(clfn-l(D)) C cl f(fn-l(D)) =
 cl fn(D). □
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 Theorem 2.5 Suppose Y is T', with no isolated, points, locally connected and
 such that any closed connected set is either a singleton or the closure of its
 interior. If X Ç Y, if f : À' - ► Y' is Darhoux and has the dense mapping
 property, and if the orbit of xq under f exists, then u> (xq ,/) is either nowhere
 dense or is a finite union of nonsingleton connected closed sets.

 Proof. Suppose there is a nonempty open set G Ç uj(xo,f). For a: 6 G,
 let K be the component of u;(a?o,/) containing x. Let E = int A', which is
 nonempty since Y' is locally connected. Since Y is Tļ with no isolated points,
 any nonempty open set contains an infinite number of points. Moreover, K
 contains an infinite number of points in the orbit of xo under /.

 Suppose there is a. point p which is isolated in u;(xo,/). For each non-
 negative integer n, let xn = fn(x o). There is a nonnegative integer j with
 Xj £ E. Also, there is an open neighborhood A 3 p with A flu;(xo ,/) = {p}
 as well as a k > 0 with Xj+1¿ £ A. Thus fk(K) H A 3 Since K is the
 closure of its interior E, K = fļ^i cl (£7 fi { xn : n > i }). Using Lemma 2.4,
 we have

 (CO ¿=0 n cl(£Tl{ x„ : n > i}) ' / ) Ç t=0 f] CO (CO n cl(£Tl{ x„ : n > i}) ) Ç f] fk (c'(E f) { xn : n > i))) ¿=0 / t=0

 oo oo

 ç Í>i fk(E n { x » : " ^ ç n ci fk Xn :n^i })
 »=0 1=0

 oo

 = P| cl { xn : n > i + lc} = u> (x0i /).
 ¿=o

 Thus Xj+k G ù; (xo ,/) H A and so Xj+k = P • Therefore the orbit is cyclic and
 w(xo,/) is a finite union of points and hence nowhere dense. This contradic-
 tion shows that w (xo, /) contains no isolated points.

 Let / be the least positive integer such that for some xm € A', xm+/ € A'.
 Pick with Xj, Xj+¡ £ A'. As in the previous paragraph, f{K) Ç u(xo ,/).
 Since by Lemma 2.4 cl f(K) is connected, and K is a component of lj (xo, /),
 and moreover £ cl/'(A") fl A, we have cl /'(A) Ç A'. Thus for n > j,
 xn £ K iff / divides n - j. If A''cl fl(K) ^ 0, then, since K is the closure of its
 interior E , open £'cl fl(I' ) ^ 0, contradicting the fact that for n > j-f /, xn £
 K only if xn £ cl/'(A'). Thus A = cl/'(A'), andu;(xo,/) = Un=oc^/n(^)» a
 finite union of connected closed sets. By the previous paragraph, we see that
 none of these connected closed sets can be singletons. □

 Let us state a clear implication of the previous paragraph to which we will
 later refer.
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 Corollary 2.6 Suppose f : X - * Y satisfies lhe hypotheses of Theorem 2.5
 and K is a component of ^(xo.f) with nonempty interior. Then for any
 nonnegative integer n, clfn(K) is also a component of u> (aro, /).

 Next we shall identify some classes of functions that satisfy the hypotheses of
 Theorem 2.5.

 Lemma 2.7 Let U denote the interior of the set of points where f : X -> Y
 is continuous. If for any connected set S Ç X , f(S) Ç elf {¡J fi 5), then f has
 the dense mapping property

 Proof. Let D Ç X with cl D connected and let / satisfy the hypothesis of
 Lemma 2.7. Then /( cl D ) Ç cl f(U fiel D). Since U is open and / is continuous
 on U H cl D, f(U PI cl D) Ç cl f(U fi D) and hence cl f(U fiel D) Ç cl f(U fi D).
 Linking together these relations yields /(cl D) Ç cl f(U fiel D) Ç cl f(U HD) Ç
 cl f{D). □
 We don't know if there is a. Darboux, Baire 1 function / : [0, 1] - ► M such
 that A (/) contains, up to homeomorphism, every nonempty compact set. As
 we shall see and make precise, if such a function exists it cannot be a nice
 Darboux, Baire 1 fu net ion.

 Definition 2.8 Suppose I CM is connected . A function f : I -> K is Baire*l
 (f G B') if whenever 0 ^ K Ç I is closed, there is an x G K with f'K
 continuous on a K -neighborhood of x.

 If in addition / G V, then / G a proper subset of VB' that quite
 adequately corresponds to the nice, sketchable Darboux, Baire lfunctions.

 Theorem 2.9 (O'Malley) Let f : [0, 1] - ► ® be Darboux, Baire* 1@. For U
 denoting the interior of the set of points where f is continuous, /([0, 1])'/(Ł0
 is nowhere dense.

 Proof. See Theorem 2 of [O].

 Theorem 2.10 If f : [0, 1] - [0, 1] is Darboux , Baire* land xo G [0, 1], then
 u(x0,f)is nonempty and is either nowhere dense and closed or is a finite
 union of nonsingleton closed intervals. Conversely, if 0 ^ K Ç [0,1] is either
 nowhere dense and closed or is a finite union of nonsingleton closed intervals,
 then there is a Darboux , Baire* 1 function f : [0, 1] - ^ [0, 1] and an xo G [0, 1]
 with K = w (£o, /)•

 Proof. Clearly Theorem 2.9 generalizes to Darboux, Baire* lfunctions hav-
 ing a subinterval I of [0, 1] a s the domain. If / : [0, 1] - [0, 1] G VB' then
 f'I G VB' so / satisfies the hypothesis of Lemma 2.7@. This lemma, to-
 gether with Theorem 2.5, yields the first implication. The second, converse,
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 implication follows from Theorem 2.1 since continuous functions are Darboux,
 Baire* 1@. □

 It is natural to ask if the above characterization on ur-limit sets applies to
 Newton's method. The remainder of this section gives a partial result.
 The following theorem is an attempt to scrape together various conditions
 on / allowing Nj to be Darboux.

 Theorem 2.11 Suppose f : R - * IR is differentiable on an open sei D dense
 in R such thai for any endpoint p of any component A of D

 1. either lim sup |/'(a:)| = oo or f(x) - 0 as A 9 x - ► p, and
 A$x-+p

 2. either there is an infinite one-sided derivative at p on A or f(p) = 0,

 3. and finally for any limit point p o/R' D, f(p) = 0.

 Then Nj : R - ► R U {co} is Darboux.

 Before giving the proof of Theorem 2.11 we need a lemma which states that
 with some conditions, a line which is secant to the graph of a differentiable
 function can be rotated about its zero so that it becomes tangent to this graph.

 Lemma 2.12 Suppose, for a < b, f : [a, 6] - ► R is continuous on [a, 6] and
 differentiable on (a, b) and moreover that either / < 0 on (a, b) or f > 0 on
 (a, 6). Further suppose that either /(a) ^ 0 or f(b) ^ 0 and, for I : R - ► R
 being the linear function with 1(a) = f(a) and 1(b) = f(b), thai either f < I
 on (a, 6) or f > I on (a, 6). Let z be the zero of I (z = oo for I constant).
 Then if z G RU {co} ' [a, 6] there is a c £ (a, 6) with Nj(c) = z. However, if
 z = a (z = b) then f has either a right(lefl)-sided derivative at z or there is a
 c£ (a, 6) with Nj(c) = 2.

 Proof. If / is constant, then the lemma follows from Rolle's theorem. So
 now suppose z G R ' [a, 6], and without loss of generality let z < a. Similarly
 we will let both / > / and / > 0 on (a, 6). Now / is a compact arc so there
 is an M > 0 with / Ç { (x,y) : - z)2 -f y2 < M2 }. For 0 < 9 < let
 l0 = { (z -f r cos 6, rsin 0) :0 < r < M}. Let d(0) be the distance between /
 and 1$. Note that d is continuous, that d($) > 0 and, because there is a
 if G (0, with /^(6) = 1(b) = /(6), that d(<p) = 0. Hence there is a t E (0, -|)
 with d(t) = 0 and d(6) > 0 for all 0 > t. By our choice of /, lt(x) > f(x) for
 all x in the domain of lt , thus there is a c G (a, b) with lt(c) = /(c). Therefore
 /'(c) = l'(c) and Nj(c) = r.

 The last case to consider is for 2 G {a, 6}, so we will let z = a. For
 x G (a, 6), continuous (f(x) - f(a))/(x - a) = f(x)/(x - a) is either a monotone
 function of x or there are points a' and b' with a < a' < b' < b such that
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 /(ai)/(ai - a) = f(b')/(b' - a) ź f(x)/(x - a) for any x G (ai, 61). For the
 latter case, the first paragraph of this proof applies showing that there is a c G
 (ai,6i) with Nj (c) = z = a. For the former case, as a < x - ► a, /(x)/(x - a)
 converges to a (possibly infinite) right-sided derivative of / at a@. CDProof.
 Proof of Theorem 2.11 Let (a, 6) be any component of D'f~l({0}). Note
 that / < 0 on (a, 6) or / > 0 on (a, 6) and that / is difierentiable on (a, 6).
 Consider E with (a, 6) Ç E Ç [a, 6]: a (6) € £ iff / has a right(left)-sided
 derivative at a (6). Suppose G Ç E is connected.

 Let 5 be the square { (x, y ) : x, y G G }. Consider F : S - ► RU {00}, where

 J JV/(x) if/(x-) = 0orx = y
 F(x> f) - ļ * - /(a?) if /(*) 3É 0 and x ¿ y.

 Claim: F(S) is pathwise connected. For any (xo,yo), (^i»2/i) € S with
 £0 < xi, we will construct a continuous map { (ť,(x(,yť)) : 0 < t < 1 } that
 maps [0, 1] into S so that F is continuous on its range {(xť,2/<) :0<ť < 1}.
 Note that F is continuous with respect to y, and, except when /(x) = 0 = f(y)
 and x ^ y, F is continuous with respect to x.
 For 0 < t < 13, let xt = xo. Furthermore, if xo = a and yo = 6, pick a

 c e E with /(c) ^ 0, then let yt = (1 - 3ť)yo + 3 te. Else let yt = yo-

 For 5 < t < |, let xt = (2 - 3 t)x± + (- 1 -f 3ť)xi and yt = y^.
 For I < ť < 1, let X( = xi and yt = (3 - 3ť)y| + (-2 -f 3ť)yi.
 Clearly Nj(G) Ç J^S). Lemma 2.12 shows that F(S) Ç N/(G) so

 Nj(G) = F(5) is connected, and hence A^(£') is also connected.
 To show that Nj([ci,b]) is connected, it suffices to show that Nj(a) G

 cl Nf(E) for a £ E. (The case for Nj(b) is analogous.) For f(a) = 0 and
 /(x) - ► 0 as E 3 x - * a, Lemma 2.12 shows that either / has a right-sided
 derivative at a (in which case a G E) or there is a c G E with N/(c) = a =
 7V/ (a) G ^/(jE1). For /(a) = 0 and f(x) 0 as E 3 x - a, Afy(a) = a and
 by hypothesis limsupE3j._^a |/'(x)| = oc», so it's clear, even for / unbounded
 about a, that for any e > 0, one can find an x G E with Nj(x) - a < £,
 so Nf(a) = a G cl ^/(jE1). For /(a) ^ 0, / has by hypothesis a right-sided
 (infinite) derivative at a so Ar/(o) = a G £•
 To complete the proof, note that iV/(a) = a and N/(6) = b. Hence,

 using the final hypothesis, N/|(M ' D) U f~1({0}) is continuous since it is
 the identity function. Let I be any nonempty bounded interval and suppose
 N/(/) Ç U U V where U and V are disjoint open sets. Pick x G I with,
 say, Nj(x) G U. Let s = sup{ť : t G /, t > x, Nj(t) G Ł/}. From the
 above comments and from what we've already shown, Nj(s) G U. Also, for
 a = inf{ť : t € I, t < x, Nj(t) € U }, Nj(q) G U. Now suppose V ^ 0, that
 is to say there is a y G / with Nj(y) G V. We can assume that y > x. For
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 ß = inf{s < t < y : Nj(t) G V) we have Nj(ß) G V7. Thus s < ß and for
 5 < t < /?, Nj (t) £ U U V, a contradiction. Therefore V = 0 and Nj(I) is
 connected. Hence Ar/ is Darboux. □

 We now have the machinery to prove a concrete result concerning u/-limit
 sets stemming from Newton's method.

 Theorem 2.13 Suppose f : R - M is Cl . Then for any xo such that the
 orbit of xo under N/ exists , w (xo ,Nj) is either nowhere dense or is a finite
 union of nonsingleton connected closed sets.

 Proof. Nj(x) is continuous whenever /'(x) ^ 0 and for x G int/,-1({0}).
 For f'(x) = 0, Nf(x) G {x,oo}. Thus for

 U = int { x G M : Nj is continuous at x },

 Nf(mt'U) is nowhere dense. By Theorem 2.11, for any connected set S, Nj(S)
 is connected and so Nf(S) Ç cl Nj(U OS). The conclusion now follows from
 Lemma 2.7 and Theorem 2.5. □

 3. Collections of Nowhere Dense u-limit Sets

 The following lemma is the key to some nice examples of functions with com-
 prehensive collections of nowhere dense uMimit sets.

 Theorem 3.1 Suppose Y is a locally compact metric space, X Ç Y, and X
 contains the range of {pn}^o- U f : X - ► V is such that for each n, every
 neighborhood of pn contains a neighborhood Bn with f continuous on Bn and
 with Pn+i € intf(Bn), then fļtTLo d {Pk ģ- k > n) is an w-limit set of f .

 Proof. Let d be the metric of X, and let An = { x G A' : d(x,pn) < } for
 each nonnegative integer n. Let B'to Ç Ao be a compact neighborhood with
 / continuous on B'to and with p' G int/(ßifo). Recursively, for each n > 1,
 let Biifï Ç An n /(Si,n-i) be a compact neighborhood with / continuous
 on B'tn and with pn+i G int/(Biin). Further, for each m > 2, let ßm,n Ç
 ßm-i,n H f~1(Bm-i,n+i) be a compact neighborhood for each n > 0. For
 any positive integers i and j with i < jy Bi%o 2 Bj, o and so there is an
 xo G fìm=i Notice that for each n, fn(x o) Ç An and so z is a limit
 point of the sequence {pn}í?Lo ^ anc^ on'y if £ is a limit point of the orbit of
 x0 under /. Thus f^Lo cl {p* : fc < n } = u; (x0, /). □

 Example 1 Let C = Cantor's middle thirds set, and for x G [0, 1] let d(x, C)
 be the distance between x and C. Define a function g : [0, 1] - ► [0, 1] such
 that for x G [0, 1] ' (JnLi [3~n,2 • 3~n], fl(x) = d(xiC) and for each positive
 integer g | [3~n,2 • 3"n] is a spike of height 1, as we see in figure 1.
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 Note that g £ Vß' ; in fact g is continuous everywhere except at the point 0,
 where g takes on every value in its range on every neighborhood of 0.

 We can use Theorem 3.1 to show that any compact set F with 0 £ F Ç C
 is an u-limit set of g. Consider a sequence {pn}^=o range contained in C ,
 with limit set F , and such that for each fc, P2k = 0. Since every neighborhood
 of 0 contains a continuous spike with range [0, 1] hence containing the range of
 {Prc}n~o> anc* s"lce any neighborhood of any point in C contains a continuous
 spike with range containing 0, fļ^Lo d {Pk ' k < 11} Ç A(g).

 Now suppose K is any nonempty nowhere dense compact real set and
 that [a, 6] is the least, interval containing K. Then there is a homeomorphism
 h : [0, 1] - ► [a, 6] with h(F) = K. Thus À (g) contains, up to homeomorphism
 (on [0, 1]), every nonempty nowhere dense compact real set.

 Figure 1:

 Example 2 From Theorem 2.1 we see that for each n, there is a continuous

 function gn : ' ^ 4- 2^3] [o ~ ' 2 ~~ 2^ 2"^] an
 limit set consisting of n nonsingleton closed components. If g is the function
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 of Example 1 then go = 'g( 2x - 1) + ' is topologically conjugate to g but
 with domain and range [5,1].
 Interpolating these functions yields the function / : [0, 1] - ► [0, 1] which we
 see in Figure 2. Note that / £ VB' and is continuous everywhere except at the
 point If K is an uMimit set for some continuous function with domain and
 range being the unit interval, then A (/) contains a set homeomorphic to K.

 Figure 2:

 We haven't yet found a function continuous everywhere on the unit interval
 which otherwise has the properties of the function / of Example 2 with respect
 to o;-limit sets.

 The following proposition introduces the function of Example 3 at the end
 of this section.
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 Proposition 3.2 Let C = Cantor's middle thirds set . Define a function f :
 M - ♦ M such thai for (a, b) any component of [0, 1] ' C and for x G (a, b),

 '« = exp (~rb) esp (jtO esp (rH) ■

 Let f(x) = 0 on (- oo, 0] UCU [1, co). Then f G C°° and for each nonnegative
 integer n and for each x G C, f^n'x) = 0.

 Proof. Let {(a*, bk)}^Ļi be an ordering of the components of [0, 1 ]'C such
 that bj-cij < bi - CLi iff < j. For each k , let, for x G (ak,bk), x = (1 -t)ak+tbk
 whenever 0 < t < 1. Then, for x G

 'w=exp(-d^)esp(-¡(íb))' l =
 and for each positive integer n there is a rational function Rn(t) defined on
 (0, 1) with derivative of f(x) being

 '""w = Grbr) ^ (;rhr) («rhj) ■ (1)
 For x G C, the basis step is to note that f^°'x) = 0. Suppose, inductively,

 that f(n'x) = 0 for x G C. For h = x - a* = t(bk - ajt ), the right-sided
 (n + l)^1 derivative of / at a* equals

 lim /(nV^)~/(n)(at)

 äKs^I) +exp(:rb:)Ä"("eitpH)e:",(rh) = (2)

 Grbr) *exp(írbr)e,ip(-1,ÂÍ!rle,ip(-í) = °-

 Similarly, the left-sided (n+ l)^1 derivative of / at is 0. Consider {/i}^0
 where

 /,.(*)=/ 1 ifxeUj=i(aj>bj) 1 ' 0 elsewhere.

 From (2) we see that fin+l) exists on R for each i, and moreover, that for
 each /(n+1)| (flfc,6fc) obtains its maximum absolute value for some /.n+i G
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 (0, 1) which does not depend on k. From (1),

 /("+1>(ťn+1) =

 (srbr) ex" Grhr) ( wj+i _ J - o(3)
 a s ¿i - ak -> 0(4)

 Thus if we define

 a(x' _ / f¡n+1'x) if X 6 (a¿, b¡) for each i
 ' 0 if X € (-oo,0) U CU (0,+oo)

 then by (3), |/<n+1^ - ffļļ -♦ 0 as i - ► oo. Hence by Theorem 7.17 of [R],

 g = lim ff") = ( lim /¿"^ì = /(")' = f(n+1' Thus /(n+1) = g exists and
 i -* oo 't - ♦ OO /

 /(n+1)(x) = 0 for all X £ C, thereby completing the inductive step and the
 proof. □

 Example 3 Let / be the C°° function of Proposition 3.2. If point p belongs
 to Cantor's middle thirds set C, then every neighborhood of p contains a
 component (a, 6) of [0, 1 ]'C. Looking at Newton's method geometrically with
 Theorem 2.11 in mind, we see that N/((a, b)) contains all of RU {oo} except
 for a closed interval contained in (a, 6). Thus any given neighborhood of any
 given point of C contains a component (a, b) of [0, 1 }'C with Nj continuous
 on (a, b) and with C Ç int N/((a, 6)).
 We can now apply Theorem 3.1 as we did for Example 1 but now we no
 longer require that for the sequence a" = 0 whenever n is even. Let K
 be any nonempty nowhere dense compact real set and let I = [inf A', sup A'].
 Then there is an F Ç C and a homeomorphism h : / - ► [0, 1] such that
 h(K) = F and F € A(N/) because A {Nj) contains every nonempty closed
 subset of C.

 Moreover, suppose that F' and F2 are nonempty closed subsets of C and
 suppose e > 0. There are points x' and y' in the unit interval with or-
 bits {i'70d)}~ 0 and {Nj(yi)}%L0 such that Fx = a >(xuNf) and F2 =
 u (2/1 > N/). Let (a,-, bi) be a component of [0, 1] ' C with 6,- - a¿ < e. Reflecting
 on the second sentence of this example, we see that there is an aro G (a», ¿i)
 and a yo G (a* , 6,-) with Nj(x0) = x' and Nj(y0) = yìé Hence F' = u (x0, Nj)
 and F2= v (t/0, Nj).

 So we see that Newton's method can have chaotic behavior with sensi-

 tive dependence on the initial point of iteration even when applied to a C°°
 function.
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 4. Countable Collections of u-limit Sets

 Analyzing the collections of uMimit sets that are possible for some function
 of a given class becomes more difficult when we broaden our consideration to
 include nonnowhere dense uMimit sets.

 One limitation is worth mentioning. If / : Ar - ♦ Y satisfies the hypotheses
 of Corollary 2.6, and if A, B G A(/) such that there is an x with x G inti4 fi
 int B, then A = B. However, a function can be Darboux, Baire land not have
 the dense mapping property. Such a function may have distinct uMimit sets
 that share interior points.

 There are countable collections of nowhere dense sets that cannot belong
 to the set of uMimit sets for any Darboux, Baire lfunction. For example,
 suppose we have / : [0, 1] - * [0, 1] with { {0,p}, {</, 1} : p, q G Q } Ç A(/).
 Since ose (/, x) = 1 for each x G Q, / is nowhere continuous, hence not Baire 1.

 Given a countable collection of real nonempty closed sets { Km : 1 < m <
 u;o}, can we create, for each m, a sequence {^m,n}^o with limit set = Km
 such that there is a function / G VB' with /(xm)n_i) = xm,n for each m,
 n > 1? If so, then u (xm>o,/) = Km for each m. The key to answering such
 questions is the following lemma.

 Lemma 4.1 (Bruckner) Suppose I and J art bounded closed intervals with
 nonempty D Ç I. Consider h : D - ► J . For each positive integer n, let

 Dn = {xeD:osc(hix)>±y (5)
 //, for each n, clDn is countable , then there is a Darboux} Baire lfunction

 : I - ► J with ip an extension of h. Furthermore , if the Lebesgue measure
 of D is 0, then h can be extended to a bounded approximately continuous
 function f on I (which is also a derivative).

 Proof. For h : D J such that for each n, cl Dn is countable, define
 g : cl D - ► J with g an extension of h given by

 f h(x) if x e D
 9ÍX) = ļ limsup/í(/) if ® G cl D ' D. I DBt-x

 Suppose g £ B' . Then there is a perfect set P with 0 ^ P Ç cl D and such
 that g'P is nowhere continuous, that is to say ose (g'P> x) > 0 for every x G P.
 By the Baire Category Theorem, there is a positive integer n and an open
 interval E intersecting P with

 ose (g'P, x) > - for every x G E H P. (6)
 n



 504 Keller

 Since D$n is nowhere dense in P there is an open interval U Ç E intersecting
 P with

 JD3n HI/ HP = 0. (7)

 Let a = inf { g(x) : x G U H P}. Pick xo G U fi P with

 g{xo)<a + ^~. on (8) on

 Then limsupD3<_Xo g(t) < a +
 Suppose xo G D. By (7) and (8), there is a neighborhood L of xq with

 h(x) < a + whenever x € DDL. But then g(x) < a + for all x G L fl P,
 contradicting (6) at xo-

 Now suppose xo £ D. By (6), given any e > 0, there is an x G P fl
 (x*o - e,xo 4- e) with g(x) > a + From the definition of g we see that
 there is a ť G DO (xo - £,xo + e) with h(t) > a -f But then p(xo) =
 limsup£)3t_;ro h(t) > a + ¿, contradicting (8). Thus g G B'.

 We can extend g to a Baire 1 function <p : I -* J by applying a linear inter-
 polation on each of the intervals of [minci D , max cl D] ' cl D and by applying
 a constant extrapolation on the remaining at most 2 intervals of I ' cl D.

 By Proposition 1 of [BCK], we see that there is a Darboux, Baire lfunction
 <p : I - + J such that p(x ) = fi(x) whenever x G D, a first category subset
 of I. If the Lebesgue measure of D is 0, then, by Theorem 3.2 of [PL], we
 can extend h to a bounded approximately continuous function / on I which

 is also a derivative (since f(x) = lim f*+h f(t) dt). □

 Proposition 4.2 Suppose { Km mê I < m < M } is a finite collection of non-
 empty closed subsets o/[0,l]. Then there is a bounded approximately contin-
 uous function f : [0, 1] - ► [0, 1] with { I'm : I < m < M } Ç A (/).

 Proof. The idea is to identify the endpoints of the unit interval and then
 have M soldiers march around this circle taking smaller and smaller steps such
 that there is no limit to the number of circuits taken and such that no point
 is stepped on more than once. The rrfi1 soldier thus defines a sequence, a
 subsequence of which has Km as a limit set.

 For each m, there is a sequence {*m,fc}*Lo suc^ f°r & > 1,

 < tm, Jb + l - tm,k < £ for ťm>fc + £ < 1,

 £ (¿m.Jb + 1 + 1) - tm,k < ^ f°r * m,k + £ > 1

 and such that tūtt, = tCi¿ only if (a, 6) = (c, d).
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 For each sequence the subsequence {xm.nJiïLo = {ťm,n(m,Ji)}fcÍo
 has limit set Km. So, for each m, let n(m,0) = 0, and for k > 0, recursively
 define n(m, k) to be the least integer satisfying n(m, k) > n(m,k- 1) and also
 satisfying distance cf(ťro,n(m,i), I<m) <

 Let /i(xm>n) = xm,n+i for 1 < m < M and n > 0. If ft satisfies the
 hypotheses of Lemma 4.1, then there is an approximately continuous function
 / : [0, 1] - ► [0, 1] such that for each m, u (xm>o, /) = Km. Here D = { xm>n :
 1 < m < M and n > 0 }. Recalling (5) we see that limit points of Dj¡ occur
 only at 1 and at the left endpoints of complementary intervals of R' A'm, 1 <
 m < M, of length > 1. Since there are only a finite number of such limit
 points, cl Dk is countable for each k. □

 A corollary to Proposition 4.2 is that any nonempty closed subset of [0, 1]
 is an u;-limit set for some / £ Vß' . The original proof, owing to Ceder, is in
 [BCP].

 For proofs of the following two Propositions, which are similar to but more
 tedious than the proof of Proposition 4.2, see [K].

 Proposition 4.3 Suppose { Km : 1 < m < u>o } w countable collection of
 nonempty closed subintervals of [0, 1]. Then there is a bounded approximately
 continuous function f : [0, 1] - ► [0, 1] with { Km : 1 < m < uo } Ç A(/).

 Proposition 4.4 Given e > 0, suppose, for any positive integer m, Km Ç
 [0, 1] is closed and is a nonempty union of intervals of diameter e. Then
 there is a bounded approximately continuous function f : [0, 1] - ► [0, 1] with
 { Km : 1 < 771 < u>o } Ç A (/).

 Let { Sn - 1 < n < wo } be any collection of sets containing at most one
 element with S = U^Li Ç [0> 1]- We can replace / of either Proposition 4.2
 or Proposition 4.4 by / such that / has the properties required of / as well
 as having {Sn:l<n<u;o}Ç A (/). In either case, modify D such that
 D fi S = 0 and then let Ď = D U 5. We can extend the function h of the
 proof of Proposition 4.2 (and, it so happens, of the proof of Proposition 4.4) to
 h : D - ► [0, 1] which still satisfies Lemma 4.1 if we let h(x) = x for all x G 5.
 Thus we can extend h to / as desired.

 Suppose, for some M with 1 < M < u>o, {A"m}¿f=1 is a collection of
 nonempty closed subsets of [0, 1] such that there is an / : [0, 1] - ► [0, 1] with
 / 6 VBi and {A'n}m=i Q Mf)- Suppose further that 0 ^ A' Ç [0, 1] is closed.
 Unknown is whether there is always an / : [0, 1] - ♦ [0, 1] with / G VB' and
 with { A'm } m=l U {A'} Ç A (/).

 Not much is known concerning nonnowhere dense u-limit sets arising from
 Newton's method. By Theorem 2.13, if w ( xq , Nf) has both singleton compo-
 nents and components with nonempty interior, then / £ C1, if indeed such a
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 function exists. But, using an argument simpler than that found in [W], we
 can at least get an interval.

 Example 4 Let

 /(,) = {
 [ 0 if X = 1.

 Then Nj(x) = 2x2 - 1 and for x G [-1,1], Nj(x) = cos(2 arccos x). To prove
 the well known fact that [-1,1] G A(A rj) without using the Baire Category
 Theorem, note that the orbit of x G [-1, 1] under Nj is {cos(2n arccos x)}^°=0.
 Consider complex z with Re(z) = x and : G S1 = { z G C : 'z' = 1 }. Then
 u ( xì Nj) = [-1, 1] if { z2" : 0 < n < u>o } is dense in S1 .

 If z G S1 then there is an a G [0, 1) with z = e2Tła. Express a as a binary
 number: a = 0.aiaoa3 .... Then, for ß = 0.ai+na2+na3+n > . z2 = e2irt{3 .

 There is a sequence {an}£^i with range {0, 1} such that for any finite
 sequence {bn}n=i range {0, 1}, there is a k with {6n}^= i = {°n+fc}^=i.
 Let a = 0.aia2û3 . . . and let e > 0. For any : G S1 there is a c G [0, 1) with
 z = e2*tc. Moreover, there is a terminating binary number 7 = O.C1C2C3 . . .cm

 such that |c - 7I < ^ > 2~m. By our choice of a, there is a j with {cn}™=1 =
 {an+;-}^=1. Hence for zq = e2*ta, and for

 ß = O.C1C2C3 . . . Cm ^ 1 +2°m+ j+3 • • • = Q-al+ja2+ja3+j • • • »

 z$J = e2*t/3 and 'y - ß' < Because |c - ß' < ¿,we have | z - z$3 ' < £,
 showing that { z§H : 0 < n < ujq } is dense in Sl . Thus, for xo = Re(zo),
 ^ («0, AT/) = [-1,1]. □
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