András Biró, Eötvös Loránd University, 1088 Budapest, Múzeum krt 6-8, Hungary.

NOTES ON NONNEGATIVE CONVERGENT SERIES

The starting-point of this paper is the following well-known statement:

$$
\begin{aligned}
& \text { If } \sum_{i=1}^{\infty} a_{i} \text { is convergent, where } a_{i} \geq 0 \text { for } \\
& \text { every } i \text {, then } \sum_{i=1}^{\infty} a_{i}^{\frac{i}{i+1}} \text { is convergent, too....(*) }
\end{aligned}
$$

We will investigate instead of the sequence of exponents $\left\{\frac{i}{i+1}\right\}$ another strictly increasing sequence, $\left\{c_{i}\right\}$, assuming $c_{i}>0$ and $c_{i} \rightarrow 1$. First we give a necessary and sufficient condition for the validity of the analogue of (*). Then - assuming that this condition is satisfied - we fix the sum of the original series and consider the supremum of the sums of the transformed series, so a function f is defined:

$$
f(S)=\sup \left\{\sum_{i=1}^{\infty} a_{i}^{c_{i}}: \sum_{i=1}^{\infty} a_{i}=S\right\}
$$

and we investigate the properties of this function further on. The next question is: when is this supremum a maximum? We will find that $f(S)$ is a maximum either for all S or for $S \leq S_{0}$ with some $S_{0}>0$ depending on the sequence $\left\{c_{i}\right\}$. We derive equations for f and f^{\prime} in the maximum case ($S \leq S_{0}$), and infer that f is linear for $S \geq S_{0}$. We also prove results about the behavior of $f(S)$ near 0 and near ∞. In the last part of the paper we return to the special case: $c_{i}=\frac{i}{i+1}$. We give upper and lower estimates for $f(S)$ in this case.

Theorem 1 Let $\left\{c_{i}\right\}$ be a strictly increasing sequence of positive numbers, $c_{i} \rightarrow 1$. Set $m(x)=\sum_{i=1}^{\infty} x^{\frac{c_{i}}{1-c_{i}}}$ and $L=\limsup i_{i \rightarrow \infty} i^{1-c_{i}}$. The following four conditions are equivalent:
(i) If $\sum_{i=1}^{\infty} a_{i}$ is convergent ($a_{i} \geq 0$ for all i), then so is $\sum_{i=1}^{\infty} a_{i}^{c_{i}}$.
(ii) There exists a positive x_{0} such that $m\left(x_{0}\right)<\infty$.
(iii) $L<\infty$.
(iv) There is a constant c such that $c_{i}>1-\frac{c}{\ln i}(i=2,3, \ldots)$.

If these conditions are satisfied, then

$$
\sup \{x>0: m(x)<\infty\}=\frac{1}{L}
$$

Proof. (ii) \Rightarrow (i). Assume that $x_{0}>0$ and $m\left(x_{0}\right)<\infty$. Let $a_{i} \geq 0$ and $\sum_{i=1}^{\infty} a_{i}<\infty$. We need an upper bound for $a_{i}^{c_{i}}$. For every i we have either $a_{i}^{c_{i}} \leq \frac{1}{x_{0}} a_{i}$, or $a_{i}^{c_{i}}>\frac{1}{x_{0}} a_{i}$. In the last case $x_{0}>a_{i}^{1-c_{i}}$ or $x^{\frac{c_{i}}{7-c_{i}}}>a_{i}^{c_{i}}$. This means that for all $i, a_{i}^{c_{i}}<\frac{1}{x_{0}} a_{i}+x_{0}^{\frac{c_{i}}{1-c_{i}}}$, and so

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i}^{c_{i}}<\frac{1}{x_{0}} \sum_{i=1}^{\infty} a_{i}+m\left(x_{0}\right) . \tag{1}
\end{equation*}
$$

By our assumptions the right-hand side of (1) is finite and so (ii) implies (i).
(i) \Longrightarrow (ii). In order to prove (i) \Longrightarrow (ii) we need a lemma.

Lemma 1 If (ii) is not true (that is, for all positive $x, m(x)$ is divergent), then for any positive S and M there exists a sequence $\left\{a_{i}\right\}, a_{i} \geq 0$ such that $\sum_{i=1}^{\infty} a_{i}=S$ and $\sum_{i=1}^{\infty} a_{i}^{c_{i}} \geq M$.

Proof. Observe that the inequality $x^{c_{i}} \geq K x$ (K is a positive number) is valid, if $0 \leq x \leq x_{i}=\left(\frac{1}{K}\right)^{\frac{1}{1-c_{i}}}$. Then

$$
\sum_{i=1}^{\infty} x_{i}=\sum_{i=1}^{\infty}\left(\frac{1}{K}\right)^{\frac{1}{1-c_{i}}}=\frac{1}{K} \sum_{i=1}^{\infty}\left(\frac{1}{K}\right)^{\frac{c_{i}}{1-c_{i}}}=\frac{1}{K} m\left(\frac{1}{K}\right)=\infty .
$$

Hence there is an $i_{0} \geq 0$ such that $\sum_{i=1}^{i_{0}} x_{i} \leq S<\sum_{i=1}^{i_{0}+1} x_{i}$. Let $a_{i}=x_{i}$, if $1 \leq i \leq i_{0}, a_{i_{0}+1}=S-\sum_{i=1}^{i_{0}} x_{i}$, and $a_{i}=0$, if $i>i_{0}+1$. Obviously $\sum_{i=1}^{\infty} a_{i}=S$ and $0 \leq a_{i} \leq x_{i}$ for all i, hence $a_{i}^{c_{i}} \geq K a_{i}$ by the choice of x_{i}. Therefore $\sum_{i=1}^{\infty} a_{i}^{c_{i}} \geq K S$. K may be chosen to be M / S, which proves the lemma.

Now we prove (i) \Longrightarrow (ii) of Theorem 1. Assume that (i) is true but (ii) is not. Let S and M be positive numbers. In view of Lemma 1 there are series $\left\{a_{n i}\right\}_{i=1}^{\infty}, a_{n i} \geq 0$ (where $n=1,2, \ldots$) with $\sum_{i=1}^{\infty} a_{n i}=\frac{S}{2^{n}}$, and
$\sum_{i=1}^{\infty} a_{n i}^{c_{i}} \geq n M$. Let $A_{i}=\sum_{n=1}^{\infty} a_{n i}$. (These sums are finite, since $a_{n i} \leq \frac{S}{2^{n}}$.) It is easy to see that $\sum_{i=1}^{\infty} A_{i}=\sum_{n=1}^{\infty} \frac{S}{2^{n}}=S$. On the other hand $\sum_{i=1}^{\infty} A_{i}^{c_{i}}$ is divergent. Indeed, for arbitrary n obviously $A_{i} \geq a_{n i}$ and so $A_{i}^{c_{i}} \geq a_{n i}^{c_{i}}$, hence $\sum_{i=1}^{\infty} A_{i}^{c_{i}} \geq \sum_{i=1}^{\infty} a_{n i}^{c_{i}} \geq n M$. As $n M$ can be arbitrarily large we have found such a convergent series that the transformed series is divergent, and this contradicts our hypothesis.

For the proof of (ii) \Longleftrightarrow (iii) and the last assertion of the theorem we need two further lemmas.

Lemma 2 Let $x>0$ and $m(x)<\infty$. Then $x L \leq 1$.
Proof. Let $\alpha_{i}=x^{\frac{1}{1-c_{i}}}$. Then $\sum_{i=1}^{\infty} \alpha_{i}=x \sum_{i=1}^{\infty} x^{\frac{c_{i}}{1-c_{i}}}=x m(x)<\infty$. So there is a j such that $\sum_{i=j+1}^{\infty} \alpha_{i}<\frac{1}{2}$, and a $k>j$ such that $j \alpha_{k}<\frac{1}{2}$. Clearly $\alpha_{1}>\alpha_{2}>\ldots$, because $m(x)<\infty$ implies $x<1$, and $\left\{\frac{1}{1-c_{1}}\right\}$ is strictly increasing. For $i>k$ we thus have $i \alpha_{i}=j \alpha_{i}+(i-j) \alpha_{i}<j \alpha_{k}+\alpha_{j+1}+\cdots+\alpha_{i}<$ 1 , hence $x i^{1-c_{i}}=\left(i \alpha_{i}\right)^{1-c_{i}}<1$. This proves that $x L \leq 1$.

Lemma 3 Let $L<\infty$ and $0<x<\frac{1}{L}$. Then $m(x)<\infty$.
Proof. Let $x<y<\frac{1}{L}$. Then $L<\frac{1}{y}$, so there is a j such that $i^{1-c_{i}}<\frac{1}{y}$ for $i>j$. Set $q=\frac{\ln x}{\ln y}$. Since $L \geq 1$ (because $i^{1-c_{i}} \geq 1$ for all i), we have $\ln x<\ln n y<0$, therefore $q>1$. Clearly $x=y^{q}$, and $y^{\frac{1}{1-c_{i}}}<\frac{1}{i}$ for $i>j$, so $x^{\frac{c_{i}}{1-c_{i}}}=\frac{1}{x} x^{\frac{1}{1-c_{i}}}=\frac{1}{x} y^{\frac{q}{1-c_{i}}}<\frac{1}{x} i^{-q}$ for $i>j$, which proves that $m(x)<\infty$.

Now (ii) \Longleftrightarrow (iii) is an immediate consequence of Lemma 2 and Lemma 3. The proof of (iii) \Longleftrightarrow (iv) is left to the reader. The last assertion (i.e. $\sup \{x>0: m(x)<\infty\}=\frac{1}{L}$, if (i) - (iv) are satisfied, for example if $L<\infty$) also follows from Lemmas 2 and 3.

We will always assume in the sequel that for the sequence $\left\{c_{i}\right\}$ the equivalent conditions (i) - (iv) are satisfied. For a fixed sequence $\left\{c_{i}\right\}$ we define $f(S)=\sup \left\{\sum_{i=1}^{\infty} a_{i}^{c_{i}}: \sum_{i=1}^{\infty} a_{i}=S\right\} \quad(S \geq 0)$. Observe that $f(S)<\infty$ by (1). (Obviously $f(0)=0$.) This function f will be investigated below.

We shall say that $f(S)$ can be reached if there is a sequence $\left\{A_{i}\right\}, A_{i} \geq 0$ such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} A_{i}=S \text { and } \sum_{i=1}^{\infty} A_{i}^{c_{i}}=f(S) \tag{2}
\end{equation*}
$$

Theorem 2 Let $p(x)=\sum_{i=1}^{\infty} c_{i}^{\frac{1}{1-c_{i}}} x^{\frac{1}{1-c_{i}}}($ for $x>0)$ and $S>0$. Then $f(S)$ can be reached if and only if there exists an $x>0$ such that $p(x)=S$. If
$f(S)$ can be reached, then there is only one sequence satisfying (2), namely $A_{i}=c_{i}^{\frac{1}{7-\varepsilon_{i}}} x^{\frac{1}{T_{-c_{i}}}}$, where $p(x)=S$.

Proof. Assume first that $S=p(x)$. Let $g_{i}(y)=y^{c_{i}}-\frac{1}{x} y(i=1,2, \ldots)$. The derivative of the i th function is $g_{i}^{\prime}(y)=c_{i} y^{c_{i}-1}-\frac{1}{x}$. From this it can be seen that in the interval $[0, \infty)$ the only maximum of g_{i} is at $A_{i}=c_{i}^{\frac{1}{1-c_{i}}} x^{\frac{1}{1-c_{i}}}$. By the choice of $x, \sum_{i=1}^{\infty} A_{i}=S$. Now we show that $\sum_{i=1}^{\infty} A_{i}^{c_{i}}=f(S)$. If the sequence $\left\{A_{i}^{\prime}\right\}$ differs from $\left\{A_{i}\right\}$, but $\sum_{i=1}^{\infty} A_{i}^{\prime}=S$, then from the maximumproperty of the numbers A_{i} we have $A_{i}^{c_{i}}-\frac{1}{x} A_{i} \geq{A_{i}}^{c_{i}}-\frac{1}{x} A_{i}^{\prime}$ for every i. There is an i with $A_{i} \neq A_{i}^{\prime}$, and in this case the above inequality is strict and so $\sum_{i=1}^{\infty} A_{i}^{c_{i}}-\frac{1}{x} S>\sum_{i=1}^{\infty} A_{i}^{c_{i}}-\frac{1}{x} S$, hence $\sum_{i=1}^{\infty} A_{i}^{c_{i}}>\sum_{i=1}^{\infty} A_{i}^{c_{i}}$. So, indeed $\left\{A_{i}\right\}$ is the only maximal sequence.

Assume now that $f(S)$ can be reached with a sequence $\left\{A_{i}\right\}$. Since $S>0$, there is an $i>1$ with $A_{1}+A_{i}>0$. Then the function $h_{i}(y)=y^{c_{1}}+\left(A_{1}+\right.$ $\left.A_{i}-y\right)\left.^{c_{i}}\right|_{\left[0, A_{1}+A_{1}\right]}$ has a maximum at A_{1}, since otherwise $\sum_{i=1}^{\infty} A_{i}^{c_{i}}$ could be increased with a suitable change of A_{1} and A_{i} and without changing the sum of the original series. The derivative of $h_{i}(y)$ is $h_{i}^{\prime}(y)=c_{1} y^{c_{1}-1}-c_{i}\left(A_{1}+\right.$ $\left.A_{i}-y\right)^{c_{i}-1}$. We see that $\lim _{y \rightarrow 0+0} h_{i}^{\prime}(y)=\infty$ and $\lim _{y \rightarrow A_{i}+A_{i}-0} h_{i}^{\prime}(y)=-\infty$, hence h_{i} has maximum neither at 0 nor at $\left(A_{1}+A_{i}\right)$. In particular $A_{1}=0$ is impossible. So $h_{i}^{\prime}\left(A_{1}\right)=0$, hence $c_{1} A_{1}^{c_{1}-1}=c_{i} A_{i}^{c_{1}-1}$, and

$$
\begin{equation*}
A_{i}=c_{i}^{\frac{1}{1-c_{i}}}\left[\frac{1}{c_{1}} A_{1}^{1-c_{1}}\right]^{\frac{1}{1-c_{i}}} \tag{3}
\end{equation*}
$$

We have already seen that $A_{1}>0$. Consequently, $A_{1}+A_{i}>0$ for all i, and so (3) holds for all i, including $i=1$. Hence if we write $x=\frac{1}{c_{1}} A_{1}^{1-c_{1}}$, then $S=\sum_{i=1}^{\infty} A_{i}=p(x)$, which proves the theorem.

The two series defining the functions

$$
m(x)=\sum_{i=1}^{\infty} x^{\frac{c_{i}}{1-c_{i}}} \text { and } p(x)=\sum_{i=1}^{\infty} c_{i}^{\frac{1}{1-c_{i}}} x^{\frac{1}{1-c_{i}}}
$$

of Theorems 1 and 2 are equiconvergent for $x \geq 0$. Indeed,

$$
c_{i}^{\frac{1}{1-c_{i}}}=\left[1-\left(1-c_{i}\right)\right]^{\frac{1}{-c_{i}}}
$$

and, as $c_{i} \nearrow 1, c_{i}^{\frac{1}{1-c_{i}}} \nearrow \frac{1}{e}$. Therefore $c_{1}^{\frac{1}{1-c_{1}}} x m(x) \leq p(x) \leq \frac{1}{e} x m(x)$ proving the equiconvergence for $x \geq 0$. So if we define $H=\sup \{x>0$: $m(x)<\infty\}$, then also $H=\sup \{x>0: p(x)<\infty\}$. (By Theorem 1, $H=\frac{1}{L}=\frac{1}{\lim \sup _{i \rightarrow \infty} i^{i-c_{i}}}$.) Obviously $0<H \leq 1$. For $0 \leq x<H m(x)$
and $p(x)$ are convergent, and for $x>H$ they are divergent. But we have no information about the behavior of $m(H)$ and $p(H)$, they may be either divergent or convergent. These two cases are:

Case $1-m(H)$ and $p(H)$ are convergent,
Case $2-m(H)$ and $p(H)$ are divergent.
Both cases are possible. An example for Case 1 is

$$
c_{i}=1-\frac{\ln 2}{1+\ln i+\sqrt{\ln i}},
$$

because then $H=\frac{1}{\lim _{i \rightarrow \infty} i^{1-c_{i}}}=\frac{1}{2}$, and

$$
m(x)=\frac{1}{x} \sum_{i=1}^{\infty} x^{\frac{1+\ln i+\sqrt{1 n i}}{i a^{2}}},
$$

so $m(H)=m\left(\frac{1}{2}\right)=\frac{2}{e} \sum_{i=1}^{\infty} \frac{1}{i} e^{-\sqrt{\ln i}}<\infty$. For Case 2 one can take $c_{i}=\frac{i}{i+1}$ (this case will be discussed later on).

Lemma 4 In Case $1 f(S)$ can be reached if and only if $S \leq S_{0}$, where $S_{0}=$ $p(H)$. In Case $2 f(S)$ can be reached for all S.

Proof. In Case $1 p(H)=S_{0}$ is a finite number, and p is continuous in $[0, H]$, because here the series defining p is obviously uniformly convergent. So for $S \leq S_{0}$ there exists an x such that $S=p(x)$. However, for $S>S_{0}$ there is no such an x because p is increasing. In Case $2 m(H)$ and $p(H)$ are divergent. The function p is continuous in $[0, H)$, since for any $0<x_{0}<H, p$ is uniformly convergent in $\left[0, x_{0}\right]$. On the other hand, p takes arbitrarily large values. Thus in Case 2 for all $S>0, p(x)=S$ with some x. Now using Theorem 2 the lemma is proved.

We have seen (Theorem 2) that if $f(S)$ can be reached, then

$$
S=p(x)=\sum_{i=1}^{\infty} c^{\frac{1}{1-c_{i}}} x^{\frac{1}{1-c_{i}}} \text { and } f(S)=z(x)=\sum_{i=1}^{\infty} c_{i}^{\frac{c_{i}}{1-c_{i}}} x^{\frac{c_{i}}{1-c_{i}}} .
$$

Lemma 5 The series defining $p(x)$ and $z(x)$ are term by term differentiable in $(0, H)$.

Proof. It is easy to see that $\frac{1}{1-c_{i}}>1$ for all i and $\frac{c_{1}}{1-c_{i}}>1$ for sufficiently large i (since $c_{i} \rightarrow 1$). Obviously we may leave out a finite number of terms of $z(x)$, and so it suffices to prove the following statement:

If $F(x)=\sum_{i=1}^{\infty} b_{i} x^{a_{i}}$, where $b_{i}>0, a_{i} \geq 1$, and F is convergent in $(0, H)$, then $F(x)$ is term by term differentiable in ($0, H$).

By a well-known theorem it is enough to show that the series obtained by termwise differentiation of $F(x)$ is uniformly convergent in any interval ($0, x_{0}$), where $x_{0}<H$. Let $x_{0}<H_{0}<H$. Since $b_{i} x^{a_{i}}$ is a convex function for all i by $a_{i} \geq 1$, so for $0<x<x_{0}$:

$$
\left(b_{i} x^{a_{i}}\right)^{\prime} \leq \frac{b_{i} H_{0}^{a_{i}}-b_{i} x^{a_{i}}}{H_{0}-x} \leq \frac{b_{i} H_{0}^{a_{i}}}{H_{0}-x_{0}} .
$$

As $\sum_{i=1}^{\infty} \frac{b_{i} H_{0}^{\theta_{i}}}{H_{0}-x_{0}}=\frac{1}{H_{0}-x_{0}} F\left(H_{0}\right)<\infty$, and this series is independent of x, hence the series $\sum_{i=1}^{\infty}\left(b_{i} x^{a_{i}}\right)^{\prime}$ is uniformly convergent in $\left(0, x_{0}\right)$, which proves the lemma.

Theorem 3 In Case 1 for $S<S_{0}$ and in Case 2 for all S :

$$
f^{\prime}(S)=\frac{1}{p^{-1}(S)}=\frac{1}{x}, \text { and so } f(S)=\int_{0}^{s} \frac{1}{p^{-1}(y)} d y
$$

Proof. By Lemma 5

$$
z^{\prime}(x)=\sum_{i=1}^{\infty} \frac{1}{1-c_{i}} c_{i}^{\frac{1}{1-c_{i}}} x^{\frac{c_{i}}{1-c_{i}}-1},
$$

and

$$
p^{\prime}(x)=\sum_{i=1}^{\infty} \frac{1}{1-c_{i}} c_{i}^{\frac{1}{1-c_{i}}} x^{\frac{c_{i}}{1-c_{i}}},
$$

and we see that $\frac{z^{\prime}(x)}{p^{\prime}(x)}=\frac{1}{x}$. As $f(S)=z\left(p^{-1}(S)\right)$, hence $f^{\prime}(S)=\frac{z^{\prime}\left(p^{-1}(S)\right)}{p^{\prime}\left(p^{-1}(S)\right)}$, that is

$$
\begin{equation*}
f^{\prime}(S)=\frac{1}{p^{-1}(S)}=\frac{1}{x} \tag{4}
\end{equation*}
$$

$\lim _{s \rightarrow 0} f(S)=0$, therefore the improper integral $\int_{0}^{s} \frac{1}{p^{-1}(y)} d y$ is convergent, and by (4) $f(S)=\int_{0}^{s} \frac{1}{p^{-1}(y)} d y$.

Lemma $6 f(S)-\frac{1}{H} S$ is an increasing function.
Proof. Let $0 \leq S_{1}<S_{2}$. We want to prove that $f\left(S_{2}\right)-\frac{1}{H} S_{2} \geq f\left(S_{1}\right)-\frac{1}{H} S_{1}$, or $\frac{f\left(S_{2}\right)-f\left(S_{1}\right)}{S_{2}-S_{1}} \geq \frac{1}{H}$. Let $I^{\prime}>H$. As it was seen, there is a maximum of the function $g_{i}(y)=y^{c_{i}}-\frac{1}{H^{\prime}} y$ at $y_{i}=c^{\frac{1}{1-c_{i}}} H^{\frac{1}{1-\varepsilon_{i}}}$ and g_{i} is strictly increasing in
$\left[0, y_{i}\right]$. Consider a sequence $\left\{a_{i}\right\}$ for which $\sum_{i=1}^{\infty} a_{i}=S_{1}$. As $\sum_{i=1}^{\infty} y_{i}=p\left(H^{\prime}\right)$, i.e., $\sum_{i=1}^{\infty} y_{i}$ is divergent $\left(H^{\prime}>H\right)$, and $\sum_{i=1}^{\infty} a_{i}<\infty$, so there are infinitely many integers i so that $a_{i}<y_{i}$, and if these indices are $\left\{i_{1}, i_{2}, \ldots, i_{k}, \ldots\right\}$, then $\sum_{k=1}^{\infty}\left(y_{i_{k}}-a_{i_{k}}\right)$ is divergent. Therefore for some $k_{0} \geq 0, \sum_{k=1}^{k_{0}}\left(y_{i_{k}}-a_{i_{k}}\right) \leq$ $S_{2}-S_{1}<\sum_{k=1}^{k_{0}+1}\left(y_{i_{k}}-a_{i_{k}}\right)$. Now let $a_{i_{k}}^{\prime}=y_{i_{k}}$ for $1 \leq k \leq k_{0}$, let $a_{i_{k_{0}+1}}^{\prime}=$ $S_{2}-S_{1}+a_{i_{k_{0}+1}}-\sum_{k=1}^{k_{0}}\left(a_{i_{k}}^{\prime}-a_{i_{k}}\right)$, and put $a_{i}^{\prime}=a_{i}$ for all other indices. From these definitions $\sum_{i=1}^{\infty} a_{i}^{\prime}=S_{2}$. If $a_{i}^{\prime} \neq a_{i}$, then $a_{i} \leq a_{i}^{\prime} \leq y_{i}$, and hence $a_{i}^{\prime c_{i}}-\frac{1}{l^{\prime}} a_{i}^{\prime} \geq a_{i}^{c_{i}}-\frac{1}{H^{\prime}} a_{i}$ for all i. We have from this $\sum_{i=1}^{\infty} a_{i}^{\prime c_{i}}-$ $\frac{1}{H^{\prime}{ }_{\infty}} S_{2} \geq \sum_{i=1}^{a^{\prime}} a_{i}^{e_{i}}-\frac{1}{H^{\prime}} S_{1}$. So we have found for all sequences $\left\{a_{i}\right\}$ with $\sum_{i=1}^{\infty} a_{i}=S_{1}$ such a sequence $\left\{a_{i}^{\prime}\right\}$. IIence a similar inequality is true for the suprema: $f\left(S_{2}\right)-\frac{1}{H^{\prime}} S_{2} \geq f\left(S_{1}\right)-\frac{1}{H^{\prime}} S_{1}$. This may be written in the form $\frac{f\left(S_{2}\right)-f\left(S_{1}\right)}{S_{2}-S_{1}} \geq \frac{1}{H^{\prime}}$. As this is valid for all $H^{\prime}>H$, so also for H, which proves the lemma.

Lemma $7 f(S)$ is a concave function.
Proof. We want to prove: if $\alpha_{1}, \alpha_{2}>0, \alpha_{1}+\alpha_{2}=1$, and $S_{1}, S_{2} \geq 0$, then $f\left(\alpha_{1} S_{1}+\alpha_{2} S_{2}\right) \geq \alpha_{1} f\left(S_{1}\right)+\alpha_{2} f\left(S_{2}\right)$. Let $\sum_{i=1}^{\infty} a_{i}=S_{1}$ and $\sum_{i=1}^{\infty} b_{i}=S_{2}$. We define a new sequence, $\left\{d_{i}\right\}: d_{i}=\alpha_{1} a_{i}+\alpha_{2} b_{i}$. The function $x^{c_{i}}$ is concave, so $d_{i}^{c_{i}} \geq \alpha_{1} a_{i}^{c_{i}}+\alpha_{2} b_{i}^{c_{i}}$ and for the sums $\sum_{i=1}^{\infty} d_{i}=\alpha_{1} S_{1}+\alpha_{2} S_{2}$, while $\sum_{i=1}^{\infty} d_{i}^{c_{i}} \geq \alpha_{1} \sum_{i=1}^{\infty} a_{i}^{c_{i}}+\alpha_{2} \sum_{i=1}^{\infty} b_{i}^{c_{i}}$. Since for arbitrary $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ with sums S_{1} and S_{2}, respectively, there is such a sequence $\left\{d_{i}\right\}$, therefore for the suprema the required inequality holds.

Now we can describe $f(S)$ in the case when $f(S)$ can not be reached.
Theorem 4 In Case 1 for $S \geq S_{0} f(S)$ is linear: $f(S)=\frac{1}{H} S+f\left(S_{0}\right)-\frac{1}{H} S_{0}$. Also in Case $2 \lim _{s \rightarrow \infty} \frac{f(S)}{S}=\frac{1}{H}$.
Proof. By Lemma 6 it is clear that for $S \geq S_{0}, f(S) \geq \frac{1}{H} S+f\left(S_{0}\right)-\frac{1}{H} S_{0}$. The converse inequality is a consequence of Theorem 3 and Lemma 7. Indeed, by Theorem $3 \lim _{s \rightarrow s_{0}-0} f^{\prime}(S)=\lim _{s \rightarrow s_{0}-0} \frac{1}{x}=\frac{1}{H}$, and so, because f is concave, for $S \geq S_{0}, \frac{f(S)-f\left(S_{0}\right)}{S-S_{0}} \leq \frac{1}{H}$, or $f(S) \leq \frac{1}{H} S+f\left(S_{0}\right)-\frac{1}{H} S_{0}$, which gives the first assertion. The second assertion results from L'Hôpital's rule, as in Case $2 \lim _{s \rightarrow \infty} f^{\prime}(S)=\lim _{s \rightarrow \infty} \frac{1}{x}=\frac{1}{H}$.

Remark $1 \lim _{s \rightarrow 0} \frac{f(S)}{S^{c_{1}}}=1$. Indeed, this statement follows from L'hôpital's rule, as $\lim _{s \rightarrow 0} \frac{f^{\prime}(S)}{c_{1} S^{c_{1}-T}}=1$; in terms of x this limit is easily obtained using $f^{\prime}(S)=\frac{1}{x}$ and taking instead of $p(x)$ the leading term of the series for $p(x)$. On the other hand obviously $f(S)>S^{c_{1}}$ for all $S>0$, because for $a_{1}=S, a_{2}=a_{3}=\cdots=0$ we have $\sum_{i=1}^{\infty} a_{i}=S$ and $\sum_{i=1}^{\infty} a_{i}^{c_{i}}=S^{c_{1}}$, and by Theorem $2\left\{a_{i}\right\}$ can not be a maximal sequence.

Now we turn to the special case of $c_{i}=\frac{i}{i+1}$. Then $m(x)=\sum_{i=1}^{\infty} x^{\frac{c_{i}}{1-c_{i}}}=$ $\sum_{i=1}^{\infty} x^{i}$, and this is convergent for $0 \leq x<1$. So statement $\left(^{*}\right)$ is contained in Theorem 1 as a special case. Obviously we have $H=1$ here. $m(1)$ is divergent, therefore this case belongs to Case 2, so $f(S)$ can be reached for all \mathcal{S}, and

$$
S=p(x)=\sum_{i=1}^{\infty}\left(\frac{i}{i+1}\right)^{i+1} x^{i+1}, f(S)=z(x)=\sum_{i=1}^{\infty}\left(\frac{i}{i+1}\right)^{i} x^{i} .
$$

By (1), we have for $f(S)$ the following upper bound, where x_{0} is an arbitrary number from $(0,1): f(S) \leq \frac{S}{x_{0}}+\sum_{i=1}^{\infty} x_{0}^{i}=\frac{S}{x_{0}}+\frac{x_{0}}{1-x_{0}}$. It is easy to verify that the minimum of the right-hand side, as a function of x_{0}, is $S+2 \sqrt{S}$ (this value is taken at $\left.x_{0}=\frac{\sqrt{S}}{1+\sqrt{S}}\right)$. Hence $f(S) \leq S+2 \sqrt{S}$ is the best estimation obtained in this way. Now we prove a better result.

Theorem 5 If $c_{i}=\frac{i}{i+1}$, then $f(S)<S+\sqrt{S}$ for all $S>0$.
Proof. By Remark $1 \lim _{s \rightarrow 0} \frac{f(S)}{\sqrt{S}}=1$, because now $c_{1}=\frac{1}{2}$. From this we have $\lim _{s \rightarrow 0} \frac{f(S)-S}{\sqrt{S}}=1$. If we prove that $\frac{f(S)-S}{\sqrt{S}}$ is a strictly decreasing function, it will follow obviously that $\frac{f(S)-S}{\sqrt{S}}<1$, so $f(S)<S+\sqrt{S}$ for $S>0$. So now we show that the function $t(S)=\frac{f(S)-S}{\sqrt{S}}$ is strictly decreasing. Applying $f^{\prime}(S)=\frac{1}{p^{-1}(S)}$ (Theorem 3) we obtain

$$
t^{\prime}(S)=\frac{1}{S}\left[\left(\frac{1}{p^{-1}(S)}-1\right) \sqrt{S}-\frac{1}{2 \sqrt{S}}(f(S)-S)\right]
$$

It suffices to prove that

$$
\begin{equation*}
2\left(\frac{1}{p^{-1}(S)}-1\right) S-f(S)+S<0 \tag{5}
\end{equation*}
$$

We know that $S=\sum_{i=1}^{\infty}\left(\frac{i}{i+1}\right)^{i+1} x^{i+1}, \quad f(S)=\sum_{i=1}^{\infty}\left(\frac{i}{i+1}\right)^{i} x^{i}, \quad x=$ $p^{-1}(S)$, and so (5) can be written in the form

$$
\left(\frac{2}{x}-1\right) \sum_{i=1}^{\infty}\left(\frac{i}{i+1}\right)^{i+1} x^{i+1}-\sum_{i=1}^{\infty}\left(\frac{i}{i+1}\right)^{i} x^{i}<0
$$

or $\sum_{i=1}^{\infty} x^{i}\left[2\left(\frac{i}{i+1}\right)^{i+1}-\left(\frac{i-1}{i}\right)^{i}-\left(\frac{i}{i+1}\right)^{i}\right]<0$. We show that every coefficient is negative for $i>1$ (for $i=1$ the coefficient is 0). Indeed, $2\left(\frac{i}{i+1}\right)^{i+1}-$
$\left(\frac{i-1}{i}\right)^{i}-\left(\frac{i}{i+1}\right)^{i}=\left(\frac{i}{i+1}\right)^{i}\left[\frac{2 i}{i+1}-1\right]-\left(\frac{i-1}{i}\right)^{i}=\frac{i-1}{i}\left[\left(\frac{i}{i+1}\right)^{i+1}-\left(\frac{i-1}{i}\right)^{i-1}\right]<$ 0 , because $\left(\frac{i}{i+1}\right)^{i+1}<\frac{1}{e}<\left(\frac{i-1}{i}\right)^{i-1}$, and so the proof is finished.

Theorem 5 is interesting only for small numbers \mathcal{S}, because for large numbers we finally prove a stronger result.

Theorem 6 If $c_{i}=\frac{i}{i+1}$, then the function $f(S)-S-\frac{1}{e} \ln S$ is strictly decreasing, and $\lim _{s \rightarrow \infty}\left(f(S)-S-\frac{1}{e} \ln S\right)=\frac{1}{e}+K$, where $K=\sum_{i=1}^{\infty} \frac{1}{i+1}\left[\left(\frac{i}{i+1}\right)^{i}-\frac{1}{e}\right]$. Proof. We have seen that $S=p(x)=\sum_{i=1}^{\infty} c_{i}^{\frac{1}{1-c_{i}}} x^{\frac{1}{1-c_{i}}}$. Using that $c_{i}^{\frac{1}{1-c_{i}}}<$ $\frac{1}{e}<c_{i}^{\frac{c_{i}}{1-c_{i}}}$ we obtain $\frac{1}{e} \sum_{i=1}^{\infty} c_{i} x^{\frac{1}{1-c_{i}}}<S<\frac{1}{e} \sum_{i=1}^{\infty} x^{\frac{1}{1-c_{i}}}$. Substituting $c_{i}=$ $\frac{i}{i+1}$ we have

$$
\begin{equation*}
\frac{1}{e} \sum_{i=1}^{\infty} \frac{i}{i+1} x^{i+1}=\frac{1}{e}\left[\frac{x}{1-x}-\ln \frac{1}{1-x}\right]<S<\frac{1}{e} \sum_{i=1}^{\infty} x^{i+1}=\frac{1}{e} \frac{x^{2}}{1-x} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x-\frac{\ln \frac{1}{1-x}}{\frac{1}{1-x}}<e S(1-x)<x^{2} \tag{7}
\end{equation*}
$$

If $S \rightarrow \infty$, then $x \rightarrow 1$ and $\frac{1}{1-x} \rightarrow \infty$. So by (7)

$$
\begin{equation*}
\lim _{s \rightarrow \infty} e S(1-x)=1 \tag{8}
\end{equation*}
$$

On the other hand, from (6) $S<\frac{1}{e} \frac{x^{2}}{1-x}<\frac{1}{e} \frac{x}{1-x}$, and so $\frac{1}{x}-1-\frac{1}{e S}<0$. However, $\left[f(S)-S-\frac{1}{e} \ln S\right]^{\prime}=\frac{1}{x}-1-\frac{1}{e S}$, and we obtain the first assertion of the theorem. If $S \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{s \rightarrow \infty} S\left(\frac{1}{x}-1\right)=\lim _{s \rightarrow \infty}\left(\frac{S}{x}-S\right)=\frac{1}{e} \tag{9}
\end{equation*}
$$

by (8). Therefore we shall consider the difference $f(S)-\frac{S}{x}$ instead of the difference $f(S)-S$.

$$
\begin{align*}
f(S)-\frac{S}{x} & =\sum_{i=1}^{\infty} x^{i}\left[\left(\frac{i}{i+1}\right)^{i}-\left(\frac{i}{i+1}\right)^{i+1}\right]=\sum_{i=1}^{\infty} x^{i}\left(\frac{i}{i+1}\right)^{i} \frac{1}{i+1} \\
& =\frac{1}{e} \sum_{i=1}^{\infty} \frac{x^{i}}{i+1}+\sum_{i=1}^{\infty} \frac{1}{i+1}\left[\left(\frac{i}{i+1}\right)^{i}-\frac{1}{e}\right] x^{i} \tag{10}
\end{align*}
$$

Now

$$
\begin{align*}
\frac{1}{e} \sum_{i=1}^{\infty} \frac{x^{i}}{i+1} & =\frac{1}{e x}\left[-x+\sum_{i=1}^{\infty} \frac{x^{i}}{i}\right]=-\frac{1}{e}+\frac{1}{e x} \ln \frac{1}{1-x} \\
& =-\frac{1}{e}+\frac{1}{e} \ln S+\frac{1}{e} \ln \frac{1}{(1-x) S}+\frac{1}{e x}(1-x) \ln \frac{1}{1-x} \tag{11}
\end{align*}
$$

We know that if $S \rightarrow \infty$, then $\frac{1}{(1-x) S} \rightarrow e$, hence $\frac{1}{e} \ln \frac{1}{(1-x) S} \rightarrow \frac{1}{e}$. On the other hand $\frac{1}{1-x} \rightarrow \infty$, and so the last summand tends to 0 . Finally, we obtain from (11) $\lim _{s \rightarrow \infty}\left[\frac{1}{e} \sum_{i=1}^{\infty} \frac{x^{i}}{i+1}-\frac{1}{e} \ln S\right]=0$. Applying this, (9) and (10) we get

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left[f(S)-\frac{1}{e}-S-\frac{1}{e} \ln S-\sum_{i=1}^{\infty} x^{i} \frac{1}{i+1}\left(\left(\frac{i}{i+1}\right)^{i}-\frac{1}{e}\right)\right]=0 . \tag{12}
\end{equation*}
$$

The series $\sum_{i=1}^{\infty} \frac{1}{i+1}\left[\left(\frac{i}{i+1}\right)^{i}-\frac{1}{e}\right]$ is convergent, because

$$
\begin{aligned}
\frac{1}{i+1}\left[\left(\frac{i}{i+1}\right)^{i}-\frac{1}{e}\right] & <\frac{1}{i+1}\left[\left(\frac{i}{i+1}\right)^{i}-\frac{1}{e}\right]+\frac{1}{i}\left[\frac{1}{e}-\left(\frac{i}{i+1}\right)^{i+1}\right] \\
& =\frac{1}{e i(i+1)}
\end{aligned}
$$

and so

$$
K=\sum_{i=1}^{\infty} \frac{1}{i+1}\left[\left(\frac{i}{i+1}\right)^{i}-\frac{1}{e}\right]<\frac{1}{e} \sum_{i=1}^{\infty} \frac{1}{i(i+1)}=\frac{1}{e} .
$$

If $S \rightarrow \infty$, then $x \rightarrow 1$ and obviously $\sum_{i=1}^{\infty} x^{i} \frac{1}{i+1}\left[\left(\frac{i}{i+1}\right)^{i}-\frac{1}{e}\right] \rightarrow K$. It follows by (12) that $\lim _{s \rightarrow \infty}\left(f(S)-S-\frac{1}{e} \ln S\right)=\frac{1}{e}+K$.

Remark 2 We can obtain both upper and lower estimates for $f(S)$ from Theorem 6. For example, if $S>1$, then we have $\frac{1}{e}+K<f(S)-S-\frac{1}{e} \ln S<$ $f(1)-1$, and by Theorem $5 f(1)<2$, so for $S>1$

$$
S+\frac{1}{e} \ln S+\frac{1}{e}+K<f(S)<S+\frac{1}{e} \ln S+1
$$

