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 NOTES ON NONNEGATIVE

 CONVERGENT SERIES

 The starting-point of this paper is the following well-known statement:

 oo

 a,- is convergent, where a,- > 0 for
 »=i

 oo

 every f, then y] a J*1 is convergent, too
 «=i

 We will investigate instead of the sequence of exponents | | another strictly
 increasing sequence, {c,-}, assuming c¿ > 0 and c,- - ► 1. First we give a
 necessary and sufficient condition for the validity of the analogue of (*). Then
 - assuming that this condition is satisfied - we fix the sum of the original series
 and consider the supremum of the sums of the transformed series, so a function
 / is defined:

 {oo H »=1 ai' 1 : H »=1 oo a* = 5 ļ J {oo H ai' 1 : H a* = 5 r • »=1 »=1 J

 and we investigate the properties of this function further on. The next question
 is: when is this supremum a maximum? We will find that f(S) is a maximum
 either for all S or for S < So with some So > 0 depending on the sequence
 {c,}. We derive equations for / and /' in the maximum case (5 < So), and
 infer that / is linear for S > So- We also prove results about the behavior of
 f(S) near 0 and near oo. In the last part of the paper we return to the special
 case: c¿ = j~. We give upper and lower estimates for /(5) in this case.

 Theorem 1 Lei {c,} be a strictly increasing sequence of positive numbers ,

 Ci - ► 1. Set m(x) - J2īLixl~Ci

 four conditions are equivalent :
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 (i) IfYlíL i ai *s convergent (ai > 0 for all i), then so is

 (ii) There exists a positive xo such that m(x o) < oo.

 (iii) L < oo.

 (iv) There is a constant c such that Ci > 1 ~ - 2> 3> • ■

 If these conditions are satisfied, then

 sup {x > 0 : m(x) < oo} = ~ .
 L

 Proof, (ii) => (i). Assume that xo > 0 and m(xo) < oo. Let at- > 0 and
 clí < oo. We need an upper bound for a'' For every i we have either

 c,

 a? I - < - a¿, 1 or af* 1 > -a,-. * In the last case xo > a?""0* 1 or x0"c' w > a£' • This I - Xo 1 1 Xq * 1 w •
 ct-

 means that for all i, ap < ^a,- + xQ~Ci , and so

 £ a«?i < T ž a'- + w iťi T Xo7ťi
 By our assumptions the right-hand side of (1) is finite and so (ii) implies (i).

 (i) ==> (ii). In order to prove (i) => (ii) we need a lemma.

 Lemma 1 If (ii) is not true (that is, for all positive x,tt?(x) is divergent),
 then for any positive S and M there exists a sequence {a,-}, ai > 0 such that
 ££i ai = S and a? > M.

 Proof. Observe that the inequality xCi > Kx ( K is a positive number) is

 valid, if 0 < X < Xi = (^) ł~e» . Then

 Hence there is an to > 0 such that xi < S < x»- Let a, = x,-,
 if 1 < i < io, a»o+i = S - =i an(* a • = 0* ^ * > *o + 1- Obviously

 a» = $ an<^ 0 < < x% f°r *> hence a?1 > Kai by the choice of x,-.
 Therefore YlîLi aV ^ KS- K may chosen to be M/S , which proves the
 lemma. □

 Now we prove (i) => (ii) of Theorem 1. Assume that (i) is true but
 (ii) is not. Let S and M be positive numbers. In view of Lemma 1 there
 are series {ani}£i , <*ni > 0 (where n = 1,2,...) with YliLi an(*
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 HĪLi ani - - ^et Ai = ūni' (These sums are finite, since a„¿ < ~.)
 It is easy to see that Ai = YlnLi = 0n the other hand Ylitzi A'*
 is divergent. Indeed, for arbitrary n obviously Ai > ani and so A
 hence A*' ^ ]Cí^i an¿ - n^* can be arbitrarily large we have
 found such a convergent series that the transformed series is divergent, and
 this contradicts our hypothesis.

 For the proof of (ii) <=> (iii) and the last assertion of the theorem we need
 two further lemmas.

 Lemma 2 Let x > 0 and m(x) < oo. Then xL < 1.

 Proof. Let a,- = xl-c* . Then - x = xra(x) < oo. So
 there is a j such that Yii=j+i Qi < è* an<^ a ^ ¿ such that jak < k- Clearly
 ori > ûf2 > . . ., because m(x) < oo implies x < 1, and is strictly
 increasing. Fori > k we thus have ia,- = ja,-f (i- j)a« < jafc+a¿+ H

 1, hence xi'1"0* = (la,)1"^ < 1. This proves that xL < 1. □

 Lemma 3 Let L < oo and 0 < x < j. Then m(x) < oo.

 Proof. Let x < y < Then L < -, so there is a j such that il~Ci < -

 for i > j. Set q = ļļ~. Since L > 1 (because il~c • > 1 for all i), we have

 In x < In n y < 0, therefore q > 1. Clearly x = yq , and < j for ť > so

 x1-*« = ^xl-c» = ~yl-c» < ^i~~q for i > j, which proves that m(x) < oo. □
 Now (ii) <=> (iii) is an immediate consequence of Lemma 2 and Lemma

 3. The proof of (iii) <=> (iv) is left to the reader. The last assertion (i.e.
 sup{x > 0 : m(x) < oo} = if (i) - (iv) are satisfied, for example if L < oo)
 also follows from Lemmas 2 and 3. □

 We will always assume in the sequel that for the sequence {c,} the equiv-
 alent conditions (i) - (iv) are satisfied. For a fixed sequence {e,} we define
 /(5) = sup {£«^1 <*,•' • ai = S] (S > 0). Observe that f(S) < oo by
 (1). (Obviously /(0) = 0.) This function / will be investigated below.
 We shall say that /(5) can be reached if there is a sequence {^4, }, Ai > 0

 such that
 oo oo

 2> = S and J>,?ł = /($)• (2)
 1 = 1 » = 1

 Theorem 2 Let p(x) = Y1ÎL i c/~c' *l~ei (f or x > 0) an d S > 0. Then f(S)
 can be reached if and only if there exists an x > 0 such that p(x) = S. If
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 f(S) can be reached , then there is only one sequence satisfying (2), namely

 Ai = c¡~Ci xl-ci , where p{x) = S.

 Proof. Assume first that S = p(x). Let <7»(y) = yCi - |y (ť = 1,2, . The
 derivative of the ťth function is </¿(y) = CiyCi~l - 1. From this it can be seen

 that in the interval [0, oo) the only maximum of <7,- is at A¡ = c/~c' x1-«* . By
 the choice of x, A% = S. Now we show that = /(^)- ^ ^e
 sequence {j4J} differs from {>!,•}, but ditesi A' = 5, then from the maximum-
 property of the numbers Ai we have A - ~Ai > Ai'Ci - £j4¿ for every t'.
 There is an 1 with «A,- / A'{ , and in this case the above inequality is strict and

 so £.~i A*1 - ¿5 > ÇSi iť? - ¿S, hence ^ A'Y- So, indeed
 {v4, } is the only maximal sequence.

 Assume now that f(S) can be reached with a sequence {-4,}. Since S > 0,
 there is an i > 1 with A' + Ai > 0. Then the function A,(y) = yCl + ( A' +
 Ai - y)c* |[o, Ai+At] has a maximum at A'> since otherwise A could be
 increased with a suitable change of A' and Ai and without changing the sum
 of the original series. The derivative of /»¿(y) is A{(y) = c'yCl"1 - Ci(A' +
 Ai - y)e,~ l. We see that limy_>o+o h'i(y) = 00 and limy-^+^o /i¿(y) = -00,
 hence hi has maximum neither at 0 nor at (A' + Ai). In particular A' = 0 is
 impossible. So h'{A') = 0, hence c'A'l~l = and

 1 1 ļ
 Ai = C;-'< - A'-c ' . (3)

 Lci J

 We have already seen that A' > 0. Consequently, A' -I- ^4,- > 0 for all i, and

 so (3) holds for all i, including i = 1. Hence if we write x = -^A'"Cli then
 S = Ai = p(x), which proves the theorem. □

 The two series defining the functions

 00 c 00 1

 m(x) = ^2 x*~Ci and P(x) - ci ~c* x l"e'
 »=1 »=1

 of Theorems 1 and 2 are equiconvergent for x > 0. Indeed,

 cj^ = [ l-(l-c,)]^r

 and, as c,- /* 1, c-~c' /" Therefore cj~c' x m(x) < p(x) < -x m( i)
 proving the equiconvergence for x > 0. So if we define H = sup{x > 0 :
 rn(x) < 00} , then also H = sup{x > 0 : p(x) < 00}. (By Theorem 1,
 H - T = lim sup, •) 0bvious|y 0 < H < I. For 0 < x < H m(x)
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 and p(x) are convergent, and for x > H they are divergent. But we have
 no information about the behavior of m(H) and p(//), they may be either
 divergent or convergent. These two cases are:
 Case 1 - m(i/) and p(H) are convergent,
 Case 2 - m(H) and p(H) are divergent.
 Both cases are possible. An example for Case 1 is

 In 2
 Ci = 1

 1 + In i + vTTT? 7=

 because then H = ,i-c. = and
 1 OO

 /X 1 1-fla t + Vln t
 mW /X = ,

 t=i

 so m(H) = m(|) = | YliLi < oo. For Case 2 one can take c,- =
 (this case will be discussed later on).

 Lemma 4 In Case 1 f(S) can be reached if and only if S < So, where So =
 p(H), In Case 2 f(S) can be reached for all S.

 Proof. In Case 1 p(II) = So is a finite number, and p is continuous in [0, H],
 because here the series defining p is obviously uniformly convergent. So for
 S < So there exists an x such that S = p(z). However, for S > So there is no
 such an x because p is increasing. In Case 2 m (H) and p(H) are divergent.
 The function p is continuous in [0, H)y since for any 0 < xo < //, p is uniformly
 convergent in [0, so]- On the other hand, p takes arbitrarily large values. Thus
 in Case 2 for all S > 0, p(x) = S with some x. Now using Theorem 2 the
 lemma is proved. □

 We have seen (Theorem 2) that if f(S) can be reached, then

 OO ļ OO e. e

 S = p(x) = ^ c#. ~C| x l-c« and f(S) = z(x) = c/ 1 x l~c* .
 »=i i=i

 Lemma 5 The series defining p(x) and z{x) are term by term differentiate
 in (0 ,tf).

 Proof. It is easy to see that > 1 for all i and > 1 for sufficiently
 large i (since c,- - ► 1). Obviously we may leave out a finite number of terms
 of "(x), and so it suffices to prove the following statement:
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 If F(x) = 52^1 where 6,- > 0, a¡ > 1, and F is convergent in
 (0, //), then F(x) is term by term differentiable in (0, H).

 By a well-known theorem it is enough to show that the series obtained by
 termwise differentiation of F(z) is uniformly convergent in any interval (0, xo),
 where xq < H . Let xo < Ho < H. Since bļXai is a convex function for all i by
 a¿ > 1, so for 0 < x < xq'

 As YIÎLi Ho-xo = < oo, and this series is independent of x,
 hence the series Ylitz i (bizai)' is uniformly convergent in (0,xo)i which proves
 the lemma. □

 Theorem 3 In Case 1 for S < So and in Case 2 for all S :

 ns) = = ;• " /<S) = i'
 Proof. By Lemma 5

 and

 P'(* ) = Y,T^-Tciê*7xT*7' 1 <=i 1 ~ Ci

 and we see that = Ì. As /(5) = 2 (p-1^)), hence /'(5) = p^-lļsļ) ,
 that is

 ''<S> = F¡W4 m
 lim,-^o f(S) = 0, therefore the improper integral p-'y)dv ls convergent,
 and by (4) f(S) = □

 Lemma 6 f(S ) - jjS is an increasing function.

 Proof. Let 0 < Si < So. We want to prove that /(So) - > /(5i) - ^5i,
 or ^Ss]Zs[Sl^ - W' ^ As it was seen, there is a maximum of the

 function gi(y) = yCi - -jpy at y,- = c¡~Ct //' l-c» and </, is strictly increasing in
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 [O, í/í]. Consider a sequence {a,} for which a* = Si. As W = P(^')>
 i.e., Yli^i y* }S divergent ( H ' > H), and YlîLi a • < °°» so there are infinitely
 many integers i so that a,- < y¿ , and if these indices are {i' , ¿2» • • • , ú , • • •} , then

 ICfcLi (y* fc " a*'fc) *s divergent. Therefore for some to > 0, Yll°=i (î/t *, - <*ik) <

 S2- Si < ]CÌ=V (ytir - o«fc)- Now let. ajk = yik for 1 < k < k0i let aJfco+l =

 <52 - S i + a»k0+i - 5ZÎ=i (at'fc - atfc ) , and put a{ = a,* for all other indices.
 From these definitions ]T^i a¿ = *^2- If ^ then a,- < a| < y,-, and
 hence a'¿* - 777 a{ > a-1 - 777 a,- for all i. We have from this a'¿' ~~
 777 S2 > 5Zi=i aí¿ 77T S'. So we have found for all sequences {a,} with
 °» = such a se(luence {ai*}- Hence a similar inequality is true for the
 suprema: /(S2) - jļr S2 > /(Si) - 777 Si. This may be written in the form
 ^ 777- As this is valid for all H ' > //, so also for //, which proves

 the îemîna. □

 Lemma 7 /(S) is a concave function .

 Proof. We want to prove: if ai,a2 >0, <*i -f a2 = 1, and Si,S2 > 0, then
 fM + »2S2) > ckif(Si) + ûf2/(So). Let YlîLi a» = Si and 6« = S2.
 We define a new sequence, {</,} : = aia,- 4- »26.*. The function xCi is
 concave, so d ?•' > oria¿' -f and for the sums = aiSi + 02S2,
 while 5Z¿^i > ai Hí^i a¿' + Qí2 5Zí^i tf*. Since for arbitrary {a,} and {6,}
 with sums Si and S2, respectively, there is such a sequence {</,}, therefore for
 the suprema the required inequality holds. □

 Now we can describe /(S) in the case when /(S) can not be reached.

 Theorem 4 In Case 1 for S > So f(S) is linear : f(S) = ^S + /(So) - 77 So-
 Also in Case 2 lim,-oo ^p- =

 Proof. By Lemma 6 it is clear that for S > So, /(S) > jjS -I- /(So) - 77 So-
 The converse inequality is a consequence of Theorem 3 and Lemma 7. Indeed,

 by Theorem 3 lim,_>,0_o /'(S) = lim,_>,0_o ^ and so, because / is
 concave, for S > So, < 77, or /(S) < ~S + /(So) - 77S 0, which
 gives the first assertion. The second assertion results from L'Hôpital 's rule, as
 in Case 2 lim^oo /'(S) = lim3_>oo ^ = 77. □

 Remark 1 lim,- 0 = 1. Indeed , ťAis statement follows from

 L'hôpitaVs rule, as lim,- 0 c/^if-i = 1> in <crms o/a; Mis /imi/ is easi/y 06-
 tained using /'(S) = £ anrf taking instead ofp(x) the leading term of the series
 for p(x). On the other hand obviously f(S) > SCl for all S > 0, because for
 a' = S, û2 = Û3 = • • • = 0 we have Y1ÎL' a* ~ S and aV ~ $Cl > an ^ by
 Theorem 2 {a,} can not be a maximal sequence.
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 c,

 Now we turn to the special case of c,- = Then m(x) = x1-«» =
 x*> ancl ls convergent for 0 < x < 1. So statement (*) is contained

 in Theorem 1 as a special case. Obviously we have II = 1 here. m(l) is
 divergent, therefore this case belongs to Case 2, so f(S) can be reached for all
 S , and

 CO / • ' » + 1 °° / ' I

 5 = P(x) = ¿ Ít^yJ v / • ' ' » + *i+' f(S) = *(*) = Y, (jļļ) v / ' ' I *'• 1=1 v ' 1=1 v '

 By (1), we have for f(S) the following upper bound, where xo is an arbitrary
 number from (0, 1) : f(S) < ^ + YlîLi xô = ļļ + ļT^- ^ *s easy *° ver*íy
 that the minimum of the right-hand side, as a function of xo, is S + 2'/5 (this

 value is taken at xo = ). Hence f(S) < S + 2y/S is the best estimation
 obtained in this way. Now we prove a better result.

 Theorem 5 If Ci = then f(S) < S + VS for all S > 0.

 Proof. By Remark 1 lim5_o = 1, because now c' = From this

 we have lim,-o = 1- ^ we prove that is a strictly decreasing

 function, it will follow obviously that < 1, so /(5) < S + '/S for
 S > 0. So now we show that the function t(S) = is strictly decreasing.

 Applying f'(S) = p-īļs) (Theorem 3) we obtain

 ,'<-5>4[(fw-i)vs-^,/<s)-s> ■
 It suffices to prove that

 i!(pW"i)s"/(s)+s<o- <5)
 Weknowthat5= E^i(jÍr),+1^+1. f(S) = £,~i (¿y)' *' « =
 p~l(S), and so (5) can be written in the form

 or x% (i+l) ~~ "" (t+i) j < s^ow ^at every coeffi-
 / • V+1

 cient is negative for i > 1 (for i = 1 the coefficient is 0). Indeed, 2 (7^7 J -
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 m - w* = (*)' [¡Ti - !]-(¥)' - ¥ [ur - (w-; <
 O, because < 7 < an(* so Pro°f ls finished. □

 Theorem 5 is interesting only for small numbers «Í», because for large num-
 bers we finally prove a stronger result.

 Theorem 6 If Ci = then the function f(S) - S- ļ In S is strictly decreas -

 fnff, anrflinWeo(/(S)- S- MnS) = A+ff, where K = ^ [(^)' - I .

 Proof. We have seen that S = p(x) = c< x l~c' ■ Using that c-"' <
 ci ļ J

 j < c/~c' we obtain £ CiX1^ < S < j xl-ci . Substituting c,- =
 ■4t we have »+1

 = i f-î 1 - in y-i 1 - - x ļ <s< ìyy+i c = ì e 1 - x m e z + 1 e L 1 - x 1 - x J c e 1 - x *=1 L J 1=1

 and
 In - - -

 x
 T^x

 If S - ► 00, then x - ► 1 and 00 • So by (7)

 lim eS(l - x) = 1. (8)
 #-*00

 On the other hand, from (6) S < < 7 717» aRd so £ - 1 - ¿ < 0.
 However, [f(S) - S - Mn S]' = ^ ~ 1 - an(J we obtain the first assertion
 of the theorem. If S - ► 00, then

 lim S ( - - lļ = lim f - - sļ = - (9)
 «-♦00 'x ) s->oo 'x J e

 by (8). Therefore we shall consider the difference /(S) - | instead of the
 difference f(S) - S.

 »-{ ■ frfW-Wl-frW*
 ■ itm •Ëiîi[(rrî)'-:]-'- »
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 Now

 1 ^ 1 [ , l 1,1, In 1
 - > - - - = - -X + , > - -

 e f-f i+l ex i e ex 1 - x
 1=1 L »=1

 We know that if S - ► oo, then - ► e, hence ļln On the
 other hand j-37 - 1 " 00, and so the last summand tends to 0. Finally, we obtain

 from (11) lim,_oo [7 iīT - £'n^] = 0- Applying this, (9) and (10) we
 get

 .'it ['<s> - ^ s - 7 '»s - f>'rn ((rrr)' -7)] =° <12>

 The series Yllii ?1T is convergent, because

 ¿I«,)'-!] • rh[(rh)'-i]-ilł-(r^rl
 1

 ~~ ei(i + 1 ) '

 and so

 If S - ► 00, then x - ► 1 and obviously £¿^1 X#7+T [(«+l) ~~ e ^
 follows by (12) that lim, _*oo ( f(S ) - S - 7 In 5) = ' 4- K. □

 Remark 2 We can obtain both upper and lower estimates for f(S) from The -
 orem 6 . For example, if S > 1, then we have - + A' < /(5) - S - - In S <
 /(1) - 1, and by Theorem 5 /(1) < 2, so for S > 1

 S+-lnS+- + K <f(S)<S+-'nS + l.
 e e e
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