Real Analysis Exchange Vol. 18(2), 1992/93, pp. 476-479

Sandra Meinershagen, Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468

THE PACKING MEASURE AND SYMMETRIC DERIVATION BASIS MEASURE-II

In the preceding paper "The Packing Measure and Symmetric Derivation Basis Measure" [2], the author noticed that the proof of the theorem suggested a better method of calculating the packing measure on a specific set than what was given in [2].

The definition of the packing measure is:

Definition 1 (Packing Measure) Let $h(\cdot)$ be any continuous, increasing function defined on the interval $[0, \infty)$ such that h(0) = 0. The premeasure of a set E is defined by $H_p(E) = \inf_{\delta \to 0} \{ \sup[\sum_i h(2r_i) : B(x_i, r_i) \text{ is any sequence} of pairwise disjoint balls in <math>\mathbb{R}^n$ with $x_i \in E$ and $r_i < \delta \}$. Then, the packing measure is $h_p(E) = \inf\{\sum_i H_p(E_i) : E \subset \bigcup_i E_i\}$.

The definition of symmetric derivation basis measure is:

Definition 2 (Symmetric derivation basis measure). Let h and E be defined as in Definition 1. Let $\delta(\cdot)$ be any positive, real function. Then, $H_s(E) = \sup\{\sum_i h(2r_i) : B(x_i, r_i) \text{ is any sequence of pairwise disjoint balls in } \mathbb{R}^n \text{ with} x_i \in E \text{ and } r_i < \delta(x_i)\}$. The symmetric derivation basis measure is $h_s(E) = \inf\{H_s(E) : \delta(\cdot) \text{ is any positive, real function}\}$.

It was shown in [1] that the packing measure and the symmetric derivation basis measure are the same on the real line. A referee has told the author that it should be stated that the results of [1] are valid in \mathbb{R}^n .

It is not necessary to take the infimum over all positive, real functions as is stated in Definition 2 nor is it necessary to take the infimum over all Baire 3 functions as in [2]. The positive, real functions needed to calculate the packing measure on a specific set are as in the following definition:

Received by the editors February 18, 1992

PACKING MEASURE AND SYMMETRIC DERIVATION BASIS MEASURE-II 477

Definition 3 [$\delta^*(\cdot)$ - functions] Let $\{E_{\alpha}\}$ be any countable collection of sets. Select an ordering of $\{E_{\alpha}\}$ such as $\{E_n\}_{n=1}^{\infty}$. Define $\delta^*(\cdot)$ on $\{E_n\}_{n=1}^{\infty}$ as follows:

$$\delta^{*}(x) = \begin{cases} \delta_{1} > 0 , & x \in E_{1} \\ \delta_{2} > 0 , & x \in E_{2} \sim E_{1} \\ \delta_{n} > 0 , & x \in E_{n} \sim (E, \cup \cdots \cup E_{n-1}) \\ 1 , & x \notin \cup_{n} E_{n} \end{cases}$$

Notice that $\delta^*(\cdot)$ depends not only on the countable collection of sets, but also the sequential ordering of the sets. If one changes the sequential ordering of the sets, a new $\delta^*(\cdot)$ results.

The measure that follows from the definition of the $\delta^*(\cdot)$ - functions is:

Definition 4 $[\delta^*(\cdot) - measure]$ Let $h(\cdot)$ and E be defined as in Definition 1. Let $\delta^*(\cdot)$ be any $\delta^*(\cdot) - function$ whose associated sets $\{E_n\}_{n=1}^{\infty}$ cover E (e.g. $E \subset \bigcup_n E_n$). Then, $H_s^*(E) = \sup\{\sum_i h(2r_i) : B(x_i, r_i) \text{ is any sequence of pairwise disjoint balls in } \mathbb{R}^n$ with $x_i \in E$, $x_i \in E_n \sim (E, \bigcup \cup \bigcup E_{n-1})$ for some n, and $r_i < \delta_n$. The $\delta^*(\cdot)$ - measure is $h_s^*(E) = \inf\{H_s^*(E) : \delta^*(\cdot) \text{ is any } \delta^*(\cdot) - function whose associated sets <math>\{E_n\}_{n=1}^{\infty}$ cover E (e.g. $E \subset \bigcup_n E_n$).

The proof of the following theorem is very similar to the theorem in [2].

Theorem 1 For any set E and function $h(\cdot)$ defined as above, $h_s^*(E) = h_s(E) = h_p(E)$.

PROOF. It is clear that a $\delta^*(\cdot)$ - function is a positive, real function. Since $h_s(E)$ is the infimum of $H_s(E)$ over all positive, real $\delta(\cdot)$ functions, $h_s(E) \leq h_s^*(E)$. If $h_s(E) = \infty$, then $h_s^*(E) = \infty$ and $h_s(E) = h_s^*(E)$. So, assume that $h_s(E)$ is finite. Since the symmetric derivation basis measure is the packing measure [1], $h_s(E) = \inf\{\sum_i H_p(E_i) : E \subset \bigcup_i E_i\}$. Let $\varepsilon > 0$ be given. Then there exists a sequence of sets $\{E_i\}$ such that $\sum_i H_p(E_i) < h_s(E) + \varepsilon$. For each *i*, choose $\delta_i > 0$ such that $\sum_j h(2r_{i,j}) < H_p(E_i) + \varepsilon/2^i$ for all pairwise disjoint sequence of balls $\{B(x_{i,j}, r_{i,j})\}_{j=1}^{\infty}$ with $x_{i,j} \in E_i$ and $r_{i,j} < \delta_i$. Define $\delta^*(\cdot)$ on $\bigcup_i E_i$ inductively by $\delta^*(x) = \delta_1$, on E_1 , $\delta^*(x) = \delta_2$ on $E_2 \sim E_1$, and $\delta^*(x) = \delta_n$ on $E_n \sim (E, \bigcup \cdots \bigcup E_{n-1})$ for any natural number *n*. Define $\delta^*(x) = 1$ on the complement of $\bigcup_i E_i$. Since $E \subset \bigcup_i E_i$, for any sequence of disjoint balls $\{B(x_k, r_k)\}$ with $x_k \in E$ and $r_k < \delta^*(x_k)$, $\sum_k h(2r_k) < \sum_i H_p(E_i) + \varepsilon < h_s(E) + 2\varepsilon$. Therefore, $h_s^*(E) \leq h_s(E)$ and $h_s^*(E)$ is equal to the packing measure.

Example 1 Let E be the union of the Cantor Set and the points $x_1 = (1/3) + (1/3)(1/2)$, $x_2 = (1/3) + (1/3)(1/4)$, $x_3 = (1/3) + (1/3)(1/8)$,..., $x_n = (1/3) + (1/3)(1/2^n)$,... in the interval (1/3, 2/3). Call $I_1 = \{x_1, x_2, \ldots\}$. Then, I_2^1 consists of the points $x_1^1 = (1/9) + (1/9)(1/2)$, $x_2^1 = (1/9) + (1/9)(1/4)$,..., $x_n^1 = (1/9) + (1/9)(1/2^n)$,... where I_2^1 is contained in the interval (1/9, 2/9). I_2^2 is defined similarly for the interval (7/9, 8/9). This pattern is repeated for all contiguous intervals to the Cantor Set. If the packing measure is calculated according to the original definition on set E, then the sum

$$P^{\alpha}(C) + \sum_{n=1}^{\infty} P^{\alpha}(\{x_n\}) + \sum_{i=1}^{2} \sum_{n=1}^{\infty} P^{\alpha}(\{x_n^i\}) + \dots + \sum_{i=1}^{n} \sum_{n=1}^{\infty} P^{\alpha}(\{x_n^i\}) + \dots = P^{\alpha}(C) = 2.$$

If the method of this paper is used, the first packing would be

B(0, 1/2), B(1, 1/2)

. The second δ 's used for a packing would be

$$B(0, 1/6), B(1/3, 1/6), B(2/3, 1/6) \text{ and } B(1, 1/6).$$

In the third packing different δ 's are used. The packing is

$$B(0, 1/18), B(1/9, 1/18), B(2/9, 1/18), B(1/3, 1/18), B(2/3, 1/18)$$

 $B(7/9, 1/18), B(8/9, 1/18), B(1, 1/18) \text{ and } B(1/2, 1/10^3).$

The sum becomes $2^3(1/3^2)^{\alpha} + (2/10^3)^{\alpha}$. At the next stage, using the same method, the sum becomes $2^4(1/3^3)^{\alpha} + 3(2/10^4)^{\alpha} + 2(2/10^43)^{\alpha}$. Finally, at the sixth stage, the sum becomes $2^6(1/3^5)^{\alpha} + 6(2/10^6)^{\alpha} + 2 \cdot 4(2/3^210^6)^{\alpha} + 2^23(2/3^410^6)^{\alpha} + 2^3(2/3^610^6)^{\alpha}$. So, the general sum is less than or equal to

$$2^{n}(1/3^{n-1})^{\alpha} + \sum_{i=1}^{n} (n+1-i)(2/3^{i-1}10^{n})^{\alpha}$$

= $2^{n}(1/3^{n-1})^{(\log 2/\log 3)} + \sum_{i=1}^{n} 2^{\alpha}(n+1-i)/(3^{i-1}10^{n})^{\alpha}$
= $2^{n}(1/2^{n-1}) + 2^{\alpha} \sum_{i=1}^{n} (1/2^{i-1})(n+1-i)(10^{n})^{\alpha}$
= $2 + (2^{\alpha}/10^{n\alpha}) \cdot \sum_{i=1}^{n} (n+1-i)/2^{i-1}$
 $\leq 2 + (2/10^{n})^{\alpha}(n/(1/2))2 + 2^{\alpha}(2n/10^{n\alpha}).$

PACKING MEASURE AND SYMMETRIC DERIVATION BASIS MEASURE-II 479

Since $(2n/10^{n\alpha}) \to 0$ as $n \to \infty$, the packing measure is 2 using Theorem 1.

References

- [1] Sandra Meinershagen, The Symmetric Derivation Basis Measure and the Packing Measure, Proc. Amer. Math Soc., 103 (1988), No 3, 813-814.
- [2] Sandra Meinershagen, The Packing Measure and Symmetric Derivation Basis Measure, Real Analysis Exchange, 17, No. 1 (1991–92).