Sandra Meinershagen, Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468

THE PACKING MEASURE AND SYMMETRIC DERIVATION BASIS MEASURE-II

In the preceding paper "The Packing Measure and Symmetric Derivation Basis Measure" [2], the author noticed that the proof of the theorem suggested a better method of calculating the packing measure on a specific set than what was given in [2].

The definition of the packing measure is:
Definition 1 (Packing Measure) Let $h(\cdot)$ be any continuous, increasing function defined on the interval $[0, \infty)$ such that $h(0)=0$. The premeasure of a set E is defined by $H_{p}(E)=\inf _{\delta \rightarrow 0}\left\{\sup \left[\sum_{i} h\left(2 r_{i}\right): B\left(x_{i}, r_{i}\right)\right.\right.$ is any sequence of pairwise disjoint balls in R^{n} with $x_{i} \in E$ and $\left.\left.r_{i}<\delta\right]\right\}$. Then, the packing measure is $h_{p}(E)=\inf \left\{\sum_{i} H_{p}\left(E_{i}\right): E \subset \cup_{i} E_{i}\right\}$.

The definition of symmetric derivation basis measure is:
Definition 2 (Symmetric derivation basis measure). Let h and E be defined as in Definition 1. Let $\delta(\cdot)$ be any positive, real function. Then, $H_{s}(E)=$ $\sup \left\{\sum_{i} h\left(2 r_{i}\right): B\left(x_{i}, r_{i}\right)\right.$ is any sequence of pairuise disjoint balls in R^{n} with $x_{i} \in E$ and $\left.r_{i}<\delta\left(x_{i}\right)\right\}$. The symmetric derivation basis measure is $h_{s}(E)=$ $\inf \left\{H_{s}(E): \delta(\cdot)\right.$ is any positive, real function $\}$.

It was shown in [1] that the packing measure and the symmetric derivation basis measure are the same on the real line. A referee has told the author that it should be stated that the results of [1] are valid in R^{n}.

It is not necessary to take the infimum over all positive, real functions as is stated in Definition 2 nor is it necessary to take the infimum over all Baire 3 functions as in [2]. The positive, real functions needed to calculate the packing measure on a specific set are as in the following definition:

Definition $3\left[\delta^{*}(\cdot)\right.$ - functions] Let $\left\{E_{\alpha}\right\}$ be any countable collection of sets. Select an ordering of $\left\{E_{\alpha}\right\}$ such as $\left\{E_{n}\right\}_{n=1}^{\infty}$. Define $\delta^{*}(\cdot)$ on $\left\{E_{n}\right\}_{n=1}^{\infty}$ as follows:

$$
\delta^{*}(x)=\left\{\begin{array}{lll}
\delta_{1}>0 & , & x \in E_{1} \\
\delta_{2}>0 & , & x \in E_{2} \sim E_{1} \\
\delta_{n}>0, & x \in E_{n} \sim\left(E, \cup \cdots \cup E_{n-1}\right) \\
1 & , & x \notin \cup_{n} E_{n}
\end{array}\right.
$$

Notice that $\delta^{*}(\cdot)$ depends not only on the countable collection of sets, but also the sequential ordering of the sets. If one changes the sequential ordering of the sets, a new $\delta^{*}(\cdot)$ results.

The measure that follows from the definition of the $\delta^{*}(\cdot)$ - functions is:
Definition $4\left[\delta^{*}(\cdot)\right.$ - measure] Let $h(\cdot)$ and E be defined as in Definition 1. Let $\delta^{*}(\cdot)$ be any $\delta^{*}(\cdot)-$ function whose associated sets $\left\{E_{n}\right\}_{n=1}^{\infty}$ cover E (e.g. $\left.E \subset \cup_{n} E_{n}\right)$. Then, $H_{s}^{*}(E)=\sup \left\{\sum_{i} h\left(2 r_{i}\right): B\left(x_{i}, r_{i}\right)\right.$ is any sequence of pairwise disjoint balls in R^{n} with $x_{i} \in E, x_{i} \in E_{n} \sim\left(E, \cup \cdots \cup E_{n-1}\right)$ for some n, and $\left.r_{i}<\delta_{n}\right\}$. The $\delta^{*}(\cdot)-$ measure is $h_{s}{ }^{*}(E)=\inf \left\{H_{s}{ }^{*}(E): \delta^{*}(\cdot)\right.$ is any $\delta^{*}(\cdot)$ - function whose associated sets $\left\{E_{n}\right\}_{n=1}^{\infty}$ cover $\left.E\left(e . g . E \subset \cup_{n} E_{n}\right)\right\}$.

The proof of the following theorem is very similar to the theorem in [2].
Theorem 1 For any set E and function $h(\cdot)$ defined as above, $h_{s}{ }^{*}(E)=$ $h_{s}(E)=h_{p}(E)$.

Proof. It is clear that a $\delta^{*}(\cdot)$ - function is a positive, real function. Since $h_{s}(E)$ is the infimum of $H_{s}(E)$ over all positive, real $\delta(\cdot)$ functions, $h_{s}(E) \leq$ $h_{s}{ }^{*}(E)$. If $h_{s}(E)=\infty$, then $h_{s}{ }^{*}(E)=\infty$ and $h_{s}(E)=h_{s}{ }^{*}(E)$. So, assume that $h_{s}(E)$ is finite. Since the symmetric derivation basis measure is the packing measure [1], $h_{s}(E)=\inf \left\{\sum_{i} H_{p}\left(E_{i}\right): E \subset \cup_{i} E_{i}\right\}$. Let $\varepsilon>0$ be given. Then there exists a sequence of sets $\left\{E_{i}\right\}$ such that $\sum_{i} H_{p}\left(E_{i}\right)<h_{s}(E)+\varepsilon$. For each i, choose $\delta_{i}>0$ such that $\sum_{j} h\left(2 r_{i, j}\right)<H_{p}\left(E_{i}\right)+\varepsilon / 2^{i}$ for all pairwise disjoint sequence of balls $\left\{B\left(x_{i, j}, r_{i, j}\right)\right\}_{j=1}^{\infty}$ with $x_{i, j} \in E_{i}$ and $r_{i, j}<\delta_{i}$. Define $\delta^{*}(\cdot)$ on $U_{i} E_{i}$ inductively by $\delta^{*}(x)=\delta_{1}$, on $E_{1}, \delta^{*}(x)=\delta_{2}$ on $E_{2} \sim E_{1}$, and $\delta^{*}(x)=\delta_{n}$ on $E_{n} \sim\left(E, \cup \cdots \cup E_{n-1}\right)$ for any natural number n. Define $\delta^{*}(x)=$ 1 on the complement of $\cup_{i} E_{i}$. Since $E \subset \cup_{i} E_{i}$, for any sequence of disjoint balls $\left\{B\left(x_{k}, r_{k}\right)\right\}$ with $x_{k} \in E$ and $r_{k}<\delta^{*}\left(x_{k}\right), \sum_{k} h\left(2 r_{k}\right)<\sum_{i} H_{p}\left(E_{i}\right)+\varepsilon<$ $h_{s}(E)+2 \varepsilon$. Hence $H_{s}{ }^{*}(E)<h_{s}(E)+2 \varepsilon$ and $h_{s}{ }^{*}(E)<h_{s}(E)+2 \varepsilon$. Therefore, $h_{s}{ }^{*}(E) \leq h_{s}(E)$ and $h_{s}{ }^{*}(E)$ is equal to the packing measure.

Example 1 Let E be the union of the Cantor Set and the points $x_{1}=$ $(1 / 3)+(1 / 3)(1 / 2), x_{2}=(1 / 3)+(1 / 3)(1 / 4), x_{3}=(1 / 3)+(1 / 3)(1 / 8), \ldots, x_{n}=$ $(1 / 3)+(1 / 3)\left(1 / 2^{n}\right), \ldots$ in the interval $(1 / 3,2 / 3)$. Call $I_{1}=\left\{x_{1}, x_{2}, \ldots\right\}$. Then, I_{2}^{1} consists of the points $x_{1}^{1}=(1 / 9)+(1 / 9)(1 / 2), x_{2}^{1}=(1 / 9)+$ $(1 / 9)(1 / 4), \ldots, x_{n}^{1}=(1 / 9)+(1 / 9)\left(1 / 2^{n}\right), \ldots$ where I_{2}^{1} is contained in the interval $(1 / 9,2 / 9) . I_{2}^{2}$ is defined similarly for the interval $(7 / 9,8 / 9)$. This pattern is repeated for all contiguous intervals to the Cantor Set. If the packing measure is calculated according to the original definition on set E, then the . sum

$$
\begin{aligned}
P^{\alpha}(C)+ & \sum_{n=1}^{\infty} P^{\alpha}\left(\left\{x_{n}\right\}\right)+\sum_{i=1}^{2} \sum_{n=1}^{\infty} P^{\alpha}\left(\left\{x_{n}^{i}\right\}\right)+\cdots+ \\
& \sum_{i=1}^{n} \sum_{n=1}^{\infty} P^{\alpha}\left(\left\{x_{n}^{i}\right\}\right)+\cdots=P^{\alpha}(C)=2
\end{aligned}
$$

If the method of this paper is used, the first packing would be

$$
B(0,1 / 2), B(1,1 / 2)
$$

. The second δ 's used for a packing would be

$$
B(0,1 / 6), B(1 / 3,1 / 6), B(2 / 3,1 / 6) \text { and } B(1,1 / 6)
$$

In the third packing different δ 's are used. The packing is

$$
\begin{gathered}
B(0,1 / 18), B(1 / 9,1 / 18), B(2 / 9,1 / 18), B(1 / 3,1 / 18), B(2 / 3,1 / 18) \\
B(7 / 9,1 / 18), B(8 / 9,1 / 18), B(1,1 / 18) \text { and } B\left(1 / 2,1 / 10^{3}\right) .
\end{gathered}
$$

The sum becomes $2^{3}\left(1 / 3^{2}\right)^{\alpha}+\left(2 / 10^{3}\right)^{\alpha}$. At the next stage, using the same method, the sum becomes $2^{4}\left(1 / 3^{3}\right)^{\alpha}+3\left(2 / 10^{4}\right)^{\alpha}+2\left(2 / 10^{4} 3\right)^{\alpha}$. Finally, at the sixth stage, the sum becomes $2^{6}\left(1 / 3^{5}\right)^{\alpha}+6\left(2 / 10^{6}\right)^{\alpha}+2 \cdot 4\left(2 / 3^{2} 10^{6}\right)^{\alpha}+$ $2^{2} 3\left(2 / 3^{4} 10^{6}\right)^{\alpha}+2^{3}\left(2 / 3^{6} 10^{6}\right)^{\alpha}$. So, the general sum is less than or equal to

$$
\begin{aligned}
& 2^{n}\left(1 / 3^{n-1}\right)^{\alpha}+\sum_{i=1}^{n}(n+1-i)\left(2 / 3^{i-1} 10^{n}\right)^{\alpha} \\
= & 2^{n}\left(1 / 3^{n-1}\right)^{(\log 2 / \log 3)}+\sum_{i=1}^{n} 2^{\alpha}(n+1-i) /\left(3^{i-1} 10^{n}\right)^{\alpha} \\
= & 2^{n}\left(1 / 2^{n-1}\right)+2^{\alpha} \sum_{i=1}^{n}\left(1 / 2^{i-1}\right)(n+1-i)\left(10^{n}\right)^{\alpha} \\
= & 2+\left(2^{\alpha} / 10^{n \alpha}\right) \cdot \sum_{i=1}^{n}(n+1-i) / 2^{i-1} \\
\leq & 2+\left(2 / 10^{n}\right)^{\alpha}(n /(1 / 2)) 2+2^{\alpha}\left(2 n / 10^{n \alpha}\right) .
\end{aligned}
$$

Packing Measure and Symmetric Derivation Basis Measure-II 479

Since $\left(2 n / 10^{n \alpha}\right) \rightarrow 0$ as $n \rightarrow \infty$, the packing measure is 2 using Theorem 1.

References

[1] Sandra Meinershagen, The Symmetric Derivation Basis Measure and the Packing Measure, Proc. Amer. Math Soc., 103 (1988), No 3, 813-814.
[2] Sandra Meinershagen, The Packing Measure and Symmetric Derivation Basis Measure, Real Analysis Exchange, 17, No. 1 (1991-92).

