Real Analysis Exchange Vol. 18(2), 1992/93, pp. 465-470

H. W. Pu, Department of Mathematics, Texas A&M University, College Station, Texas 77843

H. H. Pu, P.O. Box 1396, College Station, Texas 77841

STRONGLY BALANCED SELECTIONS *

1. Introduction

The notion of path derivates and derivative is introduced in [1] and the notion of selective derivates and derivative is introduced in [2]. It is proved (Theorem 3.4 in [1]) that for a system of paths E that is bilateral and satisfies the internal intersection condition there is a selection s such that every Edifferentiable function f is s-differentiable and $sf'(x) = f'_E(x)$ for every x. A partial answer to whether every selective derivative sf' can be realized as a path derivative f'_E is provided in [5] (p. 113) and is stated as a theorem here.

In general, selective derivatives do not have the property that a selectively differentiable monotone function is differentiable. This is pointed out by O'Malley in [2]. Hence conditions need to be imposed on selections so that this property holds. In this paper, a condition is found.

Let R denote the real line. We state some definitions from [1], [2], and [3] here.

For $x \in \mathbb{R}$, a path leading to x is a set $E_x \subset \mathbb{R}$ such that $x \in E_x$ and x is a point of accumulation of E_x . A system of paths is a collection $E = \{E_x : x \in \mathbb{R}\}$ such that each E_x is a path leading to x. For such a system E the E-derivates $\underline{f}'_E(x)$, $\overline{f}'_E(x)$ and the E-derivative $f'_E(x)$ of a function f at a point x is just respectively the usual derivates and derivative at x relative to the set E_x .

A system of paths $E = \{E_x : x \in \mathbb{R}\}$ is said to be bilateral at x if x is a bilateral point of accumulation of E_x , and nonporous at x if E_x has porosity zero at x. If E has any of these properties at each x, then we say that E has that property. E is said to satisfy the internal intersection condition (IIC) if there exists a positive function δ such that $E_x \cap E_y \cap (x, y) \neq \emptyset$ whenever $0 < y - x < \min\{\delta(x), \delta(y)\}$.

^{*}This paper is dedicated to the memory of Prof. Tsing-houa Teng. Received by the editors February 11, 1992

For convenience, we let [x, y] denote the interval having x and y as endpoints regardless of x < y or x > y. A selection s is an interval function defined on the class of all nondegenerate closed intervals [x, y] in \mathbb{R} such that s[x, y] is a point in (x, y). It is said to be balanced if there exist two functions α and δ on \mathbb{R} such that $0 < \alpha(x) < 1$ and $\delta(x) > 0$ for each $x \in \mathbb{R}$ and $s[x, y] \in (x, y)_{\alpha(x)}$ if $0 < |x - y| < \delta(x)$, where $(x, y)_{\alpha(x)}$ is the interval

$$\left(\frac{x+y}{2}-\alpha(x)\frac{|x-y|}{2}, \quad \frac{x+y}{2}+\alpha(x)\frac{|x-y|}{2}\right)$$

(This notation will be used in the sequel.)

Let s be a selection. The selective derivates and derivative with respect to s, or simply the s-derivates and s-derivatives, of a function f at x are, respectively

$$\underline{f}'(x) = \liminf_{y \to x} \frac{f(s[x, y]) - f(x)}{s[x, y] - x}$$

$$s\bar{f}'(x) = \limsup_{y \to x} \frac{f(s[x,y]) - f(x)}{s[x,y] - x},$$

and sf'(x) = the limit of the same quotient if it exists.

Finally, f is said to be *E*-differentiable or *s*-differentiable at x if the corresponding derivative exists and is finite. When the phrase "at x" is omitted, we mean that this is true at each x.

2. Results

First, we state the partial answer to the open question mentioned in the introduction.

Theorem 1 If s is a balanced selection with associated functions α and δ , then $E = \{E_x: x \in \mathbb{R}\}$ with $E_x = \{s[x, y]: 0 < |x - y| < \delta(x)\} \cup \{x\}$ is a system of paths such that $\underline{f}'_E(x) = s\underline{f}'(x)$ and $\overline{f}'_E(x) = s\overline{f}'(x)$ for every function f and every $x \in \mathbb{R}$.

It should be noted that this system of paths satisfies an intersection condition stronger than the *IIC*. We state it as follows:

Definition 1 A system of paths $E = \{E_x : x \in \mathbb{R}\}$ is said to satisfy the strong internal intersection condition (SIIC) if there exist functions α and δ on \mathbb{R} such that $0 < \alpha(x) < 1, \delta(x) > 0$ for each $x \in \mathbb{R}$ and $E_x \cap E_y \cap (x, y)_{\delta(x, y)} \neq \emptyset$ whenever $0 < |x - y| < \min{\{\delta(x), \delta(y)\}}$, where $\hat{\alpha}(x, y) = \min{\{\alpha(x), \alpha(y)\}}$.

466

Theorem 2 Let E be a nonporous system of paths that satisfies the SIIC. Then there exists a balanced selection s such that every E-differentiable function f is s-differentiable and $sf'(x) = f'_E(x)$ for all $x \in \mathbb{R}$.

Proof. Let α and δ_0 be the functions associated with the *SIIC* of *E*. Since, for each $x \in \mathbb{R}$, E_x has porosity zero at x, there exists $\delta_1(x) > 0$ such that $E_x \cap (x, y)_{\alpha(x)} \neq \emptyset$ whenever $0 < |x - y| < \delta_1(x)$. Let $\delta = \min\{\delta_0, \delta_1\}$. Then, with the functions α and δ , the selection s defined below is easily seen to be balanced.

(i) If $0 < |x - y| < \min\{\delta(x), \delta(y)\}$, take s[x, y] any point in $E_x \cap E_y \cap (x, y)_{\delta(x, y)}$.

(ii) if $0 < |x-y| < \delta(x)$ but $\ge \delta(y)$, take s[x, y] any point in $E_x \cap (x, y)_{\alpha(x)}$. (iii) if $|x-y| \ge \max\{\delta(x), \delta(y)\}$, take s[x, y] any point in (x, y).

The other part of the conclusion follows easily.

Since a nonporous system is bilateral, the hypothesis in Theorem 2 above is stronger than that in Theorem 3.4 of [1] and clearly the conclusion here is also stronger. Theorem 2 may lead us to ponder if the system in Theorem 1 is nonporous. The answer is negative.

Example 1 For x < y, we define $s[x, y] = \frac{1}{2}(x + y)$ if $x \neq 0$ or $y \ge 1$. If x = 0 < y < 1, there exists a unique integer *n* such that $(2/3)^{n+1} < y \le (2/3)^n$ and we define $s[x, y] = (2/3)^{n+2}$. Let $\delta(x) = 1$ and $\alpha(x) = 1/3$ for each $x \in \mathbb{R}$. We see easily that *s* is balanced. However,

$$E_0 = \left\{ s[0, y]: \ 0 < |y| < 1 \right\} \cup \{0\} = \left(-\frac{1}{2}, 0 \right] \cup \{(2/3)^n: \ n = 2, 3, \ldots \right\}$$

is not nonporous at 0 since the porosity of E_0 at x = 0 from the right is

$$\limsup_{r\to 0^+} \frac{\ell(0, r, E_0)}{r} = \frac{1}{3} > 0,$$

where $\ell(0, r, E_0)$ is the length of the largest open interval contained in $(0, r) - E_0$.

Definition 2 A selection s is said to be strongly balanced if there exist two sequences of functions $\{\alpha_n\}$, $\{\delta_n\}$ on \mathbb{R} and a dense subset Q of \mathbb{R} such that $0 < \alpha_n(x) < 1$, $\delta_n(x) > 0$ for each $x \in \mathbb{R}$, and each n, both $\{\alpha_n(x)\}$ and $\{\delta_n(x)\}$ decrease to zero for each $x \in \mathbb{R}$, and if $0 < |x - y| < \delta_n(x)$, then $s[x, y] \in (x, y)_{\alpha^*(x)}$, where $\alpha^*_n(x) = \alpha_n(x)$ if $y \in Q$, $= \alpha_1(x)$ if $y \notin Q$.

We can show that if s is a strongly balanced selection, then the system of paths $E = \{E_x : x \in \mathbb{R}\}$ with $E_x = \{s[x, y] : 0 < |x - y| < \delta_1(x)\} \cup \{x\}$ is nonporous. Before showing this, we present the following.

Theorem 3 Let f be an approximately differentiable function and let f'_{ap} denote its approximate derivative. Then there exists a strongly balanced selection s such that $sf'(x) = f'_{ap}(x)$ for each $x \in \mathbb{R}$.

Proof. Let Q be the set of x at which f is differentiable. Then Q is dense in \mathbb{R} . Also, for each $x \in \mathbb{R}$, there is a measurable set A_x such that A_x has density 1 at x and

$$f'_{ap}(x) = \lim_{\substack{y \to x \\ y \in A_x}} \frac{f(y) - f(x)}{y - x}.$$

Let μ denote the Lebesgue measure. Then for each positive integer n, there is a $\delta_n(x) > 0$ such that

$$\mu(A_x \cap I) > \frac{2n+1}{2n+2}\mu(I)$$

whenever $x \in I$ and $\mu(I) < \delta_n(x)$. $\delta_n(x)$ can be chosen such that $\delta_{n+1}(x) \leq \delta_n(x)$ $\delta_n(x)$ and $\lim_{n\to\infty} \delta_n(x) = 0$ for each x. Let |x-y| > 0 be given. We define $J_k = (x, y)_{1/(k+1)}$ for k = 1, 2, ... It

is routine to check that

$$\begin{split} \mu(A_y \cap J_m) &> \frac{1}{m+1} \frac{|x-y|}{2} & \text{if } |x-y| < \delta_m(y), \\ \mu(A_x \cap J_n) &> \frac{1}{n+1} \frac{|x-y|}{2} & \text{if } |x-y| < \delta_n(x), \\ \mu(A_x \cap A_y \cap J_1) > 0 & \text{if } |x-y| < \min\{(\delta_1(x), \delta_1(y)\}. \end{split}$$

If $|x-y| < \delta_1(x)$, then there exists a largest integer n such that $|x-y| < \delta_n(x)$. In the sequel, when we write $|x - y| \triangleleft \delta_n(x)$, we mean that, n is the largest one, that is, if we also have $|x - y| < \delta_k(x)$, then $k \leq n$. s[x, y] is chosen as follows:

- (i) If $|x y| \ge \max\{\delta_1(x), \delta_1(y)\}, s[x, y] \in (x, y).$
- (ii) If $\delta_1(x) \leq |x-y| \triangleleft \delta_m(y)$, or $|x-y| \triangleleft \min\{\delta_n(x), \delta_m(y)\}$ (i.e., $|x-y| \triangleleft \delta_n(x)$ and $|x - y| \triangleleft \delta_m(y)$ and $x \in Q$, $y \notin Q$, then $s[x, y] \in A_y \cap J_m$.
- (iii) If $\delta_1(y) \leq |x-y| \triangleleft \delta_n(x)$, or $|x-y| \triangleleft \min\{\delta_n(x), \delta_m(y)\}$ and $x \notin Q, y \in Q$, then $s[x, y] \in A_x \cap J_n$.
- (iv) If $|x-y| < \min\{\delta_n(x), \delta_m(y)\}$ and $x \notin Q, y \notin Q$, then $s[x, y] \in A_x \cap A_y \cap J_1$.
- (v) If $|x-y| < \min\{\delta_n(x), \delta_m(y)\}$ and $x \in Q, y \in Q$, then $s[x, y] = \frac{1}{2}(x+y)$.

Let $\alpha_n(x) = 1/(n+1)$ for each $x \in \mathbb{R}$. Then it can be checked that s is strongly balanced. Moreover, if $|x - y| < \delta_1(x)$ and $x \notin Q$, then $s[x, y] \in A_x$ and hence $sf'(x) = f'_{ap}(x)$ when $x \notin Q$. If $x \in Q$, since f is differentiable at x, we also have $sf'(x) = f'_{ap}(x)$. The proof is completed.

Theorem 4 Let s be a strongly balanced selection and f be a monotone function on \mathbb{R} . Then sf'(x) = f'(x) and $s\bar{f}'(x) = \bar{f}(x)$ for each $x \in \mathbb{R}$.

Proof. Let $\{\alpha_n\}$, $\{\delta_n\}$ and Q be associated with s as in Definition 2. Let $E_x = \{s[x, y]: 0 < |x-y| < \delta_1(x)\} \cup \{x\}$ for each $x \in \mathbb{R}$. Firstly, we show that the system $E = \{E_x: x \in \mathbb{R}\}$ is nonporous. Suppose the contrary. That is, we assume that for some $x \in \mathbb{R}$, E_x is porous at x, say from the right. Then there exists a sequence of positive numbers $\{h_k\}$ decreasing to zero such that, for some $\theta \in (0, 1)$,

(*)
$$E_x \cap \bigcup_{k=1}^{\infty} (x + \theta h_k, x + h_k) = \emptyset.$$

For each k, let $y_k = x + (1+\theta)h_k$. Then $y_k \in \left(x + \frac{1+3\theta}{2}h_k, x + \frac{3+\theta}{2}h_k\right)$ and we can pick $z_k \in Q \cap \left(x + \frac{1+3\theta}{2}h_k, x + \frac{3+\theta}{2}h_k\right)$. Let n_0 be an integer such that $\alpha_{n_0}(x) < (1-\theta)/(3+\theta)$. This is possible since $a_n(x) \searrow 0$ and $(1-\theta)/(3+\theta) > 0$. Also, there exists k_0 such that $h_k < \frac{2}{3+\theta}\delta_{n_0}(x)$ if $k \ge k_0$. It follows that $0 < |x - z_k| < \delta_{n_0}(x)$ if $k \ge k_0$. Since s is strongly balanced, $z_k \in Q$ and $0 < |x - z_k| < \delta_{n_0}(x)$, we have

$$s[x, z_k] \in (x, z_k)_{\alpha_{n_0}(x)} = \left(\frac{x + z_k}{2} - \alpha_{n_0}(x) \frac{|x - z_k|}{2}, \frac{x + z_k}{2} + \alpha_{n_0}(x) \frac{|x - z_k|}{2}\right)$$

Also,

$$\frac{x+z_k}{2} - \alpha_{n_0}(x) \frac{|x-z_k|}{2} > \frac{1}{2} \left(x+x + \frac{1+3\theta}{2} h_k \right) - \frac{1-\theta}{3+\theta} \frac{1}{2} \frac{3+\theta}{2} h_k = x + \theta h_k$$

$$\frac{x+z_k}{2} + \alpha_{n_0}(x) \frac{|x-z_k|}{2} < \frac{1}{2} \left(x+x + \frac{3+\theta}{2} h_k \right) + \frac{1-\theta}{3+\theta} \frac{1}{2} \frac{3+\theta}{2} h_k = x + h_k.$$

Hence $s[x, z_k] \in (x + \theta h_k, x + h_k)$. However, for $k \ge k_0$, $s[x, z_k] \in E_x$. This is a contradiction to (*). Therefore E is nonporous. Since f is monotone, by Theorem 4.4 of [1], we have $\underline{f'}_E(x) = \underline{f'}(x)$ and $\overline{f'}_E(x) = \overline{f'}(x)$ for each $x \in \mathbb{R}$. Thus Theorem 4 follows from this and Theorem 1.

Remark 1 In [4] O'Malley shows that sf' has the Denjoy-Clarkson property if f is s-differentiable. Hence, if s is balanced, then sf' has the Zahorski's \mathcal{M}_2 property. Now, if s is strongly balanced, we have shown that the corresponding system of paths E is nonporous and satisfies the SIIC and hence by Theorems 6.6.1 and 6.11 in [1] and our Theorem 1, sf' has the Zahorski's \mathcal{M}_3 property.

References

- A. M. Bruckner, R. J. O'Malley and B. S. Thomson, Path derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc., 283 (1984), 97-125.
- [2] R. J. O'Malley, Selective derivates, Acta Math. Acad. Sci. Hung., 29 (1-2) (1977), 77-97.
- [3] R. J. O'Malley, Balanced selections, Real Anal. Exchange, 8 (1982-83), 504-508.
- [4] R. J. O'Malley, Selective derivatives and the M₂ or Denjoy-Clarkson properties, Acta Math. Acad. Sci. Hung., 36 (1-3) (1980), 195-199.
- [5] R. J. O'Malley, Selective differentiation, Real Anal. Exchange, 11 (1985– 86), 97-120.