Zbigniew Grande*; Department of Mathematics, Pedagogical University, ul. Arciszewskiego 22 a, 76-200 Slupsk, Poland

FUNCTIONS WITH POINTWISE DISCONTINUOUS RESTRICTIONS

Abstract

The paper contains comparisons of classes functions whose restrictions to some special sets of positive outer measure have continuity points, quasi-continuity points or are cliquish at some points.

Let \mathbb{R} denote the set of reals and \mathbb{N}, the set of positive integers. A function $f: X \rightarrow \mathbb{R}(\emptyset \neq X \subset \mathbb{R})$ is said to be quasicontinuous (cliquish) at a point $x \in X([4],[6]$ (resp. [1])) if for every positive number r there is an open interval $I \subset(x-r, x+r)$ such that $I \cap X \neq \emptyset$ and $|f(t)-f(x)|<r$ for every $t \in I \cap X$ (resp. osc $f<r$ on $I \cap X$).

Let \boldsymbol{m} (resp. m_{e}) denote Lebesgue measure (resp. outer Lebesgue measure) in \mathbb{R}. Denote by $C(f), C_{q}(f)$ and respectively $C_{c}(f)$ the set of all continuity points of a function $f: X \rightarrow \mathbb{R}$, the set of all quasicontinuity points of f and the set where f is cliquish. Let $\mathrm{cl} A$ denote the closure of a set $A, \operatorname{int}_{X}$ the interior in $X \neq \emptyset$ and for $Y \subset X(Y \neq \emptyset)$ and $f: X \rightarrow \mathbb{R}$ let $f \mid Y$ denote the restriction of f to Y. Put
$A_{1}=\left\{X \subset \mathbb{R}: m_{e}(X)>0\right\}$,
$A_{2}=\left\{X \in A_{1}: X\right.$ is an F_{σ}-set $\}$,
$A_{3}=\left\{X \in A_{1}: m_{e}(I \cap X)>0\right.$ for every open interval I with $\left.I \cap X \neq \emptyset\right\}$,
$A_{4}=A_{3} \cap A_{2}$,
$A_{5}=\left\{X \in A_{2}: X\right.$ is closed $\} ;$
$A_{6}=A_{5} \cap A_{3}$,
$A_{7}=\left\{X \subset \mathbb{R}: X\right.$ is countable and $\left.\mathrm{cl} X \in A_{5}\right\}$, and
$A_{8}=\left\{X \subset \mathbb{R}: X\right.$ is countable and $\left.\mathrm{cl} X \in A_{6}\right\}$.

[^0]In this paper I compare the following families of functions:

$$
\begin{aligned}
H_{j} & =\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; C(f \mid X) \neq \emptyset \text { for every } X \in A_{j}\right\} \\
H_{j q} & =\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; C_{q}(f \mid X) \neq \emptyset \text { for every } X \in A_{j}\right\} \\
H_{j c} & =\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; C_{c}(f \mid X) \neq \emptyset \text { for every } X \in A_{j}\right\} \\
H_{0 j} & =\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; \operatorname{int}_{X} C(f \mid X) \neq \emptyset \text { for every } X \in A_{j}\right\}, \\
H_{0 j q} & =\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; \operatorname{int}_{X} C_{q}(f \mid X) \neq \emptyset \text { for every } X \in A_{j}\right\}, \text { and } \\
H_{0 j c} & =\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; \operatorname{int}_{X} C_{c}(f \mid X) \neq \emptyset \text { for every } X \in A_{j}\right\},
\end{aligned}
$$

$j=1,2, \ldots, 8$.
The family H_{6} was introduced in [3] and the families H_{1}, H_{2} were introduced and investigated in [2], where it is proven that $H_{1}=H_{2}$.

The following remark is obvious.
Remark 1 The following inclusions are true
$H_{0 j} \subset H_{j}, H_{0 j q} \subset H_{j q}, H_{0 j c} \subset H_{j c}, H_{j} \subset H_{j q} \subset H_{j c}$ and $H_{0 j} \subset H_{0 j q} \subset$ $H_{0 j c}$ for $j=1,2, \ldots, 8 . H_{1} \subset H_{3} \subset H_{4} \subset H_{6} . H_{1 q} \subset H_{3 q} \subset H_{4 q} \subset$ $H_{6 q} . H_{1 c} \subset H_{3 c} \subset H_{4 c} \subset H_{6 c} . H_{01} \subset H_{03} \subset H_{04} \subset H_{06} . H_{01 q} \subset H_{03 q} \subset$ $H_{04 q} \subset H_{06 q} . H_{01 c} \subset H_{03 c} \subset H_{04 c} \subset H_{06 c} . H_{1}=H_{2} \subset H_{5} \subset H_{6} . H_{1 q} \subset$ $H_{2 q} \subset H_{5 q} \subset H_{6 q} . H_{1 c} \subset H_{2 c} \subset H_{5 c} \subset H_{6 c} . H_{2} \subset H_{4} \subset H_{5} . H_{2 q} \subset H_{4 q} \subset$ $H_{5 q} . H_{2 c} \subset H_{4 c} \subset H_{5 c}$.

Theorem 1 We have $H_{01 c}=H_{02 c}=H_{05 c}=H_{07 c} \varsubsetneqq H_{i c} \varsubsetneqq H_{1 c}=H_{2 c}=$ $H_{5 c} \varsubsetneqq H_{3 c}=H_{4 c}=H_{6 c}=H_{8 c}=H_{08 c}=H_{06 c}=H_{04 c}=H_{03 c}$.

Proof. The inclusions $H_{01 c} \subset H_{02 c} \subset H_{05 c}$ follow from Remark 1. We will show that $H_{05 c} \subset H_{07 c} \subset H_{01 c}$. Let $f \in H_{05 c}$ and let $X \in A_{7}$. Then $\mathrm{cl} X \in A_{5}$ and there is an open interval I such that $I \cap \mathrm{cl} X \neq \emptyset$ and $I \cap \mathrm{cl} X \subset C_{c}(f \mid \mathrm{cl} X)$. Consequently, $I \cap X \neq \emptyset$ and $I \cap X \subset C_{c}(f \mid X)$. This proves the inclusion $H_{05 c} \subset H_{07 c}$. Now let $f \in H_{07 c}$ and let $X \in A_{1}$. There is a countable set $Y \subset X$ such that

$$
\begin{equation*}
\mathrm{cl}(\{(t, f(t)) ; t \in Y\}) \supset\{(t, f(t)) ; t \in X\} \tag{1}
\end{equation*}
$$

Since $Y \in A_{7}$ and $f \in H_{07 c}$, there is an open interval I such that $I \cap Y \neq \emptyset$ and $I \cap Y \subset C_{c}(f \mid Y)$. Fix $x \in I \cap Y, r>0$, and an open interval J containing x. There is an open interval $K \subset I \cap J$ such that $K \cap Y \neq \emptyset$ and osc $f<r / 2$ on $K \cap Y$. By (1), osc $f \leq r / 2<r$ on $K \cap X$. Thus $I \cap Y \subset C_{c}(f \mid X)$. Since $C_{c}(f \mid X)$ is closed in X, we have $I \cap X \subset C_{c}(f \mid X)$. This proves the inclusion $H_{07 c} \subset H_{01 c}$. So, $H_{01 c}=H_{02 c}=H_{05 c}=H_{07 c}$.

Let $F \subset[0,1]$ be a nowhere dense set belonging to A_{6}. In each component I_{n} of the set $\mathbb{R} \backslash F$ we find a Cantor set F_{n} of measure zero. Let $F_{n}=F_{n, 1} \cup F_{n, 2}$, where all sets $F_{n, 1}, F_{n, 2}$ are disjoint non Borel, dense in F_{n}. Let

$$
f(x)=\left\{\begin{array}{cl}
1 / n & \text { for } \\
0 & \text { otherwise }
\end{array} \quad x \in F_{n, 1}, n \in \mathbb{N},\right.
$$

and

$$
g(x)=\left\{\begin{array}{lll}
1 & \text { for } & x \in F_{n, 1}, n \in \mathbb{N} \\
0 & \text { otherwise }
\end{array}\right.
$$

Then $f \in H_{1 c} \backslash H_{05 c}, f \in H_{5 c} \backslash H_{7 c}$, and $g i H_{6 c} \backslash H_{5 c}$. The proof of the inclusion $H_{7 c} \subset H_{5 c}$ is similar as the proof of the inclusion $H_{07 c} \subset H_{01 c}$. So, by Remark $1, H_{07 c} \varsubsetneqq H_{7 c} \varsubsetneqq H_{5 c}$.

Now we shall prove that $H_{1 c}=H_{2 c}=H_{5 c}$. By Remark 1, $H_{1 c} \subset H_{2 c} C$ $H_{5 c}$. Let $f \in H_{5 c}$ and let $X \in A_{1}$. Then $\mathrm{cl} X \in A_{5}$ and $C_{c}(f \mid c l X) \neq \emptyset$. If the set $C_{c}(f \mid \mathrm{cl} X)$ is dense in the set $I \cap \mathrm{cl} X$ for an open interval I with $I \cap X \neq \emptyset$, then $I \cap \mathrm{cl} X \subset C_{c}(f \mid \mathrm{cl} X)$ since the set $C_{c}(f \mid \mathrm{cl} X)$ is closed. Consequently, in this case $I \cap X \subset C_{c}(f \mid X)$. Assume that the set $C_{c}(f|c| X)$ is nowhere dense in $\mathrm{cl} X$. Then

$$
\mathrm{cl} X \backslash C_{c}(f \mid \mathrm{cl} X)=\bigcup_{n \in N}\left(I_{n} \cap \mathrm{cl} X\right)
$$

where I_{n} are mutually disjoint open intervals such that $I_{n} \cap \mathrm{cl} X \neq \emptyset$ for $n \in \mathbb{N}$. Since $f \mid \mathrm{cl} X$ is not cliquish at any point $u \in \mathrm{cl} X \backslash C_{c}(f \mid \mathrm{cl} X)$, we have $m\left(I_{n} \cap \mathrm{cl} X\right)=0$ for $n=1,2, \ldots$. Thus there is a point $x \in X \cap C_{c}(f \mid \mathrm{cl} X)$ and the restricted function $f \mid X$ is cliquish at x. So $C_{c}(f \mid X) \neq \emptyset$ and the equalities $H_{1 c}=H_{2 c}=H_{5 c}$ are proved.

For the proofs of the remaining equalities we remark that the inclusions $H_{3 c} \subset H_{4 c} \subset H_{6 c}, H_{03 c} \subset H_{04 c} \subset H_{06 c}$ and $H_{0 j c} \subset H_{j c}$ for $j=1, \ldots, 8$ follow from Remark 1. Let $f \in H_{6 c}$ and let $X \in A_{3}$. Then $\mathrm{cl} X \in A_{6}$ and $C_{c}(f \mid \mathrm{cl} X)=\mathrm{cl} X$. Consequently, $C_{c}(f \mid X)=X$ and $f \in H_{03 c}$. So the inclusion $H_{6 c} \subset H_{03 c}$ is valid, and $H_{3 c}=H_{4 c}=H_{6 c}=H_{03 c}=H_{04 c}=H_{06 c}$.

Analogously, if $f \in H_{6 c}$ and $X \in A_{8}$, then $\mathrm{cl} X \in A_{6}$ and $C_{c}(f \mid \mathrm{cl} X)=$ $\mathrm{cl} X$. Thus $C_{c}(f \mid X)=X$ and $f \in H_{08 c}$. So $H_{6 c} \subset H_{08 c} \subset H_{8 c}$. Suppose that there is a function $f \in H_{8 c} \backslash H_{6 c}$. Then there is a set $X \in A_{6}$ such that $C_{c}(f \mid X)=\emptyset$. There is a countable set $Y \subset X$ such that (1) is satisfied. Since $f \in H_{8 c}$, the set $C_{c}(f \mid Y)$ is nonempty. If $x \in C_{c}(f \mid Y)$, then $x \in X$ and by (1), $x \in C_{c}(f \mid Y)$. This is contrary with the equality $C_{c}(f \mid X)=\emptyset$. So $H_{8 c} \subset H_{6 c}$ and the proof is completed.

Theorem 2 We have

$H_{01}=H_{02}=H_{05}=H_{01 q}=H_{02 q}=H_{05 q}=H_{07}=H_{07 q}=H_{7}=H_{7 q} \subsetneq$ $H_{03}=H_{04}=H_{06}=H_{08}=H_{8}=H_{03 q}=H_{04 q}=H_{06 q}=H_{08 q}=H_{8 q}$.

Proof. The inclusions $H_{01} \subset H_{02} \subset H_{05}, H_{01 q} \subset H_{02 q} \subset H_{05 q}, H_{03} \subset$ $H_{04} \subset H_{06}, H_{03 q} \subset H_{04 q} \subset H_{06 q}, H_{0 j} \subset H_{0 j q}$ for $j=1, \ldots, 8 . H_{07} \subset$ $H_{7}, H_{08} \subset H_{8}, H_{07 q} \subset H_{7 q}$ and $H_{08 q} \subset H_{8 q}$ follow from Remark 1.

Let $f \in H_{05}$ and let $X \in A_{1}$. Then $\mathrm{cl} X \in A_{5}$ and there is an open interval I such that $I \cap \mathrm{cl} X \neq \emptyset$ and $I \cap \mathrm{cl} X \subset C(f \mid \mathrm{cl} X)$. Consequently, $I \cap X \neq \emptyset$ and $I \cap X \subset C(f \mid X)$. This proves that $f \in H_{01}$. So $H_{05} \subset H_{01}$ and $H_{01}=H_{02}=H_{05}$. The proof of the inclusion $H_{05 q} \subset H_{01 q}$ is the same and hence $H_{01 q}=H_{02 q}=H_{05 q}$. Similarly we can prove that $H_{05} \subset H_{07}$ and $H_{05 q} \subset H_{07 q}$. So $H_{05} \subset H_{7}$ and $H_{05 q} \subset H_{7 q}$. Suppose that $f \in H_{7}$ and $X \in A_{5}$. For an indirect proof assume that int ${ }_{X} C(f \mid X)=0$. There is a countable set $Y \subset X \backslash C(f \mid X)$ such that condition (1) from the proof of Theorem 1 is satisfied. Then $Y \in A_{7}$ and $\emptyset \neq C(f \mid Y) \subset C(f \mid X)$ contrary to $C(f \mid Y) \subset Y \subset X \backslash C(f \mid X)$. So $H_{7} \subset H_{05}$. The proof of the inclusion $H_{7 q} \subset H_{05 q}$ is similar. So $H_{05}=H_{7}$ and $H_{05 q}=H_{7 q}$. Now we shall show that $H_{06}=H_{06 q}$. It suffices to prove that $H_{06 q} \subset H_{06}$. In the proof of this inclusion an idea from Natkaniec is used. (See [5].) Let $f \in H_{06 q}$ and let $X \in A_{6}$. Suppose that $\operatorname{int}_{X} C(f \mid X)=\emptyset$. Let $I_{n, k}=\left((k-1) / 2^{n}, k / 2^{n}\right)$ for $n=1,2, \ldots$ and $k=0, \pm 1, \pm 2, \ldots$ There are indices n_{1}, k_{1} such that $m\left(I_{n_{1}, k_{1}} \cap X\right)>0$ and $I_{n_{1}, k_{1}} \cap X \subset C_{q}(f \mid X)$. Let $x_{1,1} \in X \cap I_{n_{1}, k_{1}}$ be a point at which $f \mid X$ is not continuous. Then $a_{1}=\operatorname{osc}(f \mid X)\left(x_{1,1}\right)>0$. There is an open interval J_{1} such that $x_{1,1} \in J_{1} \subset \operatorname{cl} J_{1} \subset I_{n_{1}, k_{1}}$ and $m\left(J_{1}\right)<m\left(X \cap I_{n_{1}, k_{1}}\right) / 8$. Let $U_{1}=J_{1} \cap \operatorname{int}_{X}\left(\left\{x \in X ;\left|f(x)-f\left(x_{1,1}\right)\right|<a_{1} / 2\right\}\right)$. Then the set U_{1} is open in X and $x_{1,1} \notin U_{1}$.

In the second step we consider open intervals $I_{n_{1}+1, k_{2}}, I_{n_{1}+1, k_{2}+1}$ such that $\mathrm{cl} I_{n_{1}, k_{1}}=\mathrm{cl} I_{n_{1}+1, k_{2}} \cup \mathrm{cl} I_{n_{1}+1, k_{2}+1}$. If $m\left(\left(X \backslash \operatorname{cl} U_{1}\right) \cap I_{n_{1}+1, k_{2}+j}\right)>$ $0, j=0$ or 1 , there is a point $\left.x_{2, j+1} \in\left(I_{n_{1}+1, k_{2}+j} \cap\left(X \backslash \operatorname{cl} U_{1}\right)\right) \backslash C(f \mid X)\right)$. For $j=0,1$ set $a_{2, j} \operatorname{osc}(f \mid X)\left(x_{2, j+1}\right)$ and let

$$
U_{2, j}=J_{2, j} \cap \operatorname{int}_{X}\left(\left\{x \in X ;\left|f(x)-f\left(x_{2, j+1}\right)\right|<a_{2, j} / 2\right\}\right),
$$

where $J_{2, j}$ is an open interval such that $x_{1,1} \notin \mathrm{cl} J_{2, j}, x_{2, j} \in J_{2, j} \subset \mathrm{cl} J_{2, j} \subset$ $I_{n_{1}+1, k_{2}+j}$, and $m\left(J_{2, j}\right)<m\left(X \cap I_{n_{1}+1, k_{2}+j}\right) /\left(2 \cdot 8^{2}\right)$. In the $n^{\text {th }}$ step we consider open intervals $I_{n_{1}+n, k_{n}}, I_{n_{1}+n, k_{n}+1}, \ldots, I_{n_{1}+n, k_{n}+2^{n}-1}$ such that cl $I_{n_{1}, k_{1}}$ $=\operatorname{cl}\left(I_{n_{1}+n, k_{n}}\right) \cup \cdots \cup \operatorname{cl}\left(I_{n_{1}+n, k_{n}+2^{n}-1}\right)$, and we find points

$$
x_{n, j+1} \in\left(I_{n_{1}+n, k_{n}+j} \cap\left(X \backslash \bigcup_{i=1}^{n-1} \bigcup_{k=0}^{2^{\prime}-1} \operatorname{cl}\left(U_{i, k}\right)\right) \backslash C(f \mid X)\right.
$$

(whenever the last set on the right side is nonempty). Next we find open intervals $J_{n, j}, j=0,1, \ldots, 2^{n-1}-1$, such that

$$
x_{n, j+1} \in J_{n, j} \subset \operatorname{cl} J_{n, j} \subset I_{n_{1}+n, k_{n}+j}
$$

$$
x_{i, 1} \notin \mathrm{cl} J_{n, j} \text { for } i<n \text { and } 1<2^{i},
$$

and

$$
\begin{equation*}
m\left(J_{n, j}\right)<m\left(X \cap I_{n_{1}+n, k_{n}+j}\right) /\left(2^{n-1} \cdot 8^{n}\right) \tag{2}
\end{equation*}
$$

and set

$$
U_{n, j}=J_{n, j} \cap \operatorname{int}_{x}\left(\left\{x \in X ;\left|f(x)-f\left(x_{n, j+1}\right)\right|<a_{n, j} / 2\right\}\right),
$$

where $a_{n, j}=\operatorname{osc}(f \mid X)\left(x_{n, j+1}\right)>0$. The possibility of finding such points $x_{n, k}$ follows from the inclusion $X \cap I_{n_{1}, k_{1}} \subset C_{\varphi}(f \mid X)$ and from the fact that $\operatorname{osc}(f \mid X)\left(x_{n-1, j+1}\right)=a_{n-1, j}>0$. Observe that $x_{n, j+1} \notin U_{n, j}$ for $j=0,1, \ldots, 2^{n}-1$ and that for each

$$
x \in X \backslash \bigcup_{i=1}^{n} \bigcup_{k=1}^{2^{i}-1} \mathrm{cl} U_{i, k}
$$

there is an index $j \leq 2^{n}-1$ such that $\left|x-x_{n, j+1}\right| \leq 2^{-n}$. Let

$$
Y=\operatorname{cl}\left(X \backslash \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{2^{n}-1} U_{n, k}\right) .
$$

Fix $x=x_{n, j+1}$ where $j<2^{n}$, and an open interval I containing x. There are an open interval $I_{n_{1}+m, k_{m}+j^{\prime}}$ and a point $x_{m, j^{\prime}+1}(m>n)$ such that

$$
x_{m, j^{\prime}+1} \in I_{n_{1}+m, k_{m}+j^{\prime}} \subset I .
$$

It follows from our construction and from (2) that

$$
\begin{aligned}
m(I \cap Y) & \geq m\left(I_{n_{1}+m, k_{m}+j^{\prime}} \cap Y\right) \\
& \geq m\left(I_{n_{1}+m, k_{m}+j^{\prime}} \cap X\right)-\sum_{k=1}^{\infty} m\left(I_{n_{1}+m, k_{m}+j^{\prime}} \cap X\right) / 2^{k-1} \cdot 8^{k} \\
& =m\left(I_{n_{1}+m, k_{m}+j^{\prime}} \cap X\right)-2 m\left(I_{n_{1}+m, k_{m}+j^{\prime}} \cap X\right) / 15 \\
& =13 m\left(I_{n_{1}+m, k_{m}+j^{\prime}} \cap X\right) / 15>0 .
\end{aligned}
$$

Let $Z=\{x \in Y ; m(I \cap Y)>0$ for each open interval $I \ni x\}$. Then $Z \in A_{6}$ and $x_{n, j+1} \in Z \backslash C_{q}(f \mid Z)$ for $n \in \mathbb{N}$ and $j<2^{n}$ contrary to $f \in H_{06 q}$. So $H_{06}=H_{06 q}$.

Now we show that $H_{05 q} \subset H_{05}$. Let $f \in H_{05 q}$ and let $X \in A_{5}$. If $X \in A_{6}$, then by the equality $H_{06}=H_{069}$, there is an open interval I such that $I \cap X \neq \emptyset$ and $I \cap X \subset C(f \mid X)$. Suppose that $X \in A_{5} \backslash A_{6}$ and that $\operatorname{int}_{X}(C(f \mid X))=\emptyset$. Let I be an open interval such that $I \cap X \neq \emptyset$ and $I \cap X \subset$
$C_{q}(f \mid X)$. Let $Y=\{x \in X ; m(J \cap X)>0$ for every open interval $J \ni x\}$. Then $Y \in A_{6}$ and $m(X \backslash Y)=0$. Since $X \in A_{5} \backslash A_{6}$ and $\operatorname{int}_{X}(C(f \mid X))=\emptyset$, we can assume that the endpoints of the interval I belong to $\mathbb{R} \backslash X$ and that $\mathrm{cl}(X \cap(I \backslash Y))=(X \cap(I \backslash Y)) \cup(I \cap Y)$. There is a sequence of disjoint nonempty open sets U_{n} such that $U_{n} \cap(X \backslash Y)$ is a nonempty closed set for $n \in \mathbb{N}$ and $I \cap(X \backslash Y)=\bigcup_{n}\left(U_{n} \cap(X \backslash Y)\right)$. For every n the set $V_{n}=U_{n} \cap(X \backslash Y)$ is closed, $V_{n} \subset C_{q}\left(f \mid V_{n}\right)$ and $\operatorname{int}_{V_{n}}\left(C\left(f \mid V_{n}\right)\right)=\emptyset$. So by Natkaniec's theorem ([5]) for $n \in \mathbb{N}$ there is a nonempty closed set $W_{n} \subset V_{n}$ such that int $W_{n}\left(C_{q}\left(f \mid W_{n}\right)\right)=\emptyset$. Let $W=Y \cup \bigcup_{n=1}^{\infty} W_{n}$. Then $W \in A_{5}$ and $\operatorname{int}_{W}\left(C_{q}(f \mid W)\right)=\emptyset$ contrary to $f \in H_{05 q}$. So $H_{05}=H_{05 q}$. The proofs of the inclusions $H_{06} \subset H_{03}$ and $H_{06 q} \subset H_{03 q}$ are the same as the proof of the inclusion $H_{05} \subset H_{01}$. So $H_{03}=H_{04}=H_{06}$ and $H_{03 q}=H_{04 q}=H_{06 q}$. Since $H_{06}=H_{06 q}$, we have $H_{03}=H_{04}=H_{06}=H_{03 q}=H_{04 q}=H_{06 q}$. The proofs of the inclusions $H_{06} \subset H_{8}, H_{06 q} \subset H_{8 q}$ are similar to the proof of the inclusion $H_{05} \subset H_{01}$.

Let $f \in H_{8}$ and let $X \in A_{6}$. Assume that $\operatorname{int}_{X}(C(f \mid X))=\emptyset$. Let $Y \subset X \backslash C(f \mid X)$ be a countable set such that (1) from the proof of Theorem 1. Then $Y \in A_{8}$ and there is a point $x \in Y$ at which the restricted function $f \mid Y$ is continuous. Fix $r>0$ such that $r<\operatorname{osc}(f \mid X)(x) / 2$. There is an open interval $I \ni x$ such that $|f(t)-f(x)|<r / 2$ for each $t \in I \cap Y$. From (1) it follows that

$$
\begin{equation*}
|f(t)-f(x)| \leq r / 2 \text { for each point } t \in I \cap X \tag{3}
\end{equation*}
$$

Since $\operatorname{osc}(f \mid X)(x)>2 r$, there is a point $u \in I \cap X$ such that

$$
|f(u)-f(x)|>3 r / 4
$$

contrary to (3). So $H_{8} \subset H_{06}$ and $H_{8}=H_{06}$.
For the proof of the inclusion $H_{8 q} \subset H_{06 q}$ we fix $f \in H_{8 q}$ and $X \in A_{6}$. If $\operatorname{int}_{X}\left(C_{q}(f \mid X)\right)=\emptyset$, then there is a countable set $Y \subset X \backslash C_{q}(f \mid X)$ such that (1) can be proved from Theorem 1. Since $Y \in A_{8}$ and $f \in H_{8 q}$, there is a point $x \in Y$ at which $f \mid Y$ is quasicontinuous. From the inclusion $Y \subset X \backslash C_{q}(f \mid X)$ and from the fact that $x \in Y$ there is $r>0$ such that
(4) $([x-r, x+r] \cap X) \times([f(x)-2 r, f(x)+2 r]) \cap\{(t, f(t)) ; t \in C(f \mid X)\}=\emptyset$.

Let $I \subset(x-r, x+r)$ be an open interval such that $I \cap Y \neq \emptyset$ and

$$
\begin{equation*}
|f(t)-f(x)|<r \text { for each } t \in I \cap Y \tag{5}
\end{equation*}
$$

Since $f \in H_{8 q} \subset H_{8 c}=H_{06 c}$ and $X \in A_{6}$, there is a point $x \in I \cap C(f \mid X)$ contrary to (1), (4), and (5). So $H_{06 q}=H_{8 q}$. This implies that $H_{08} \subset H_{8} \subset$ H_{06} and $H_{08 q} \subset H_{8 q} \subset H_{06 q}$. The proofs of the inclusions $H_{06} \subset H_{08}$ and $H_{06 q} \subset H_{08 q}$ are similar to the proof of the inclusion $H_{05} \subset H_{01}$. Thus

$$
H_{03}=H_{04}=H_{06}=H_{08}=H_{8}=H_{03 q}=H_{04 q}=H_{06 q}=H_{08 q}=H_{8 q} .
$$

The function g from the proof of Theorem 1 belongs to $H_{06} \backslash H_{01}$. This completes the proof.

Theorem 3 We have
(a) $H_{1}=H_{2} \subsetneq H_{3}=H_{4} \subsetneq H_{6}$,
(b) $H_{2} \subsetneq H_{5}$,
(c) $H_{1 q}=H_{2 q} \subsetneq H_{3 q}=H_{4 q} \varsubsetneqq H_{6 q}=H_{6}$,
(d) $H_{2 q} \subsetneq H_{5 q}$,
(e) $H_{5} \backslash H_{3 q} \neq 0$,
(f) $H_{6}=H_{6 q}=H_{6 c}$,
(g) $H_{5} \subset H_{5 q} \subsetneq H_{5 c}$,
(h) $H_{5 c} \subsetneq H_{6}$,
(i) $H_{1} \subset H_{1 q} \subsetneq H_{1 c}$,
(j) $H_{3} \subset H_{3 q} \subsetneq H_{3 c}$.

Proof. (a) By Remark 1, $H_{1}=H_{2} \subset H_{3} \subset H_{4} \subset H_{6}$. The function g from the proof of Theorem 1 belongs to $H_{3} \backslash H_{2}$. Let $f \in H_{4}$ and let $X \in A_{3}$. If $C(f \mid X)=\emptyset$, then $X=\cup_{n=1}^{\infty} X_{n}$

$$
\begin{equation*}
Y=\cup_{n=1}^{\infty} \mathrm{cl} X_{n} . \tag{6}
\end{equation*}
$$

Observe that for $n \in \mathbb{N}$

$$
\begin{equation*}
\operatorname{cl} X_{n} \subset\{x \in Y ; \operatorname{osc}(f \mid Y)(x) \geq 1 / n\} \tag{7}
\end{equation*}
$$

Since $X \subset Y \subset \mathrm{cl} X$, since $X \in A_{3}$ and since Y is an F_{σ} set, $Y \in A_{4}$. Thus there is a point $y \in C(f \mid Y)$, in a contradiction with (6) and (7). So, $H_{3}=H_{4}$. Let $\left(G_{n}\right)$ be a sequence of nowhere dense sets belonging to A_{6} such that $G_{i} \cap G_{j}=\emptyset$ for $i \neq j(i, j \in \mathbb{N})$ and $m\left(\mathbb{R} \backslash \cup_{n=1}^{\infty} G_{n}\right)=0$. Put

$$
h(x)=\left\{\begin{array}{cl}
1 / n & \text { for } \\
0 & \text { otherwise }
\end{array} \quad x \in G_{n}, n \in \mathbb{N} .\right.
$$

Since h is a Baire 1 function, $h \in H_{6}$. If $C_{q}\left(h \mid\left(\cup_{n=1}^{\infty} G_{n}\right)\right) \neq \emptyset$, then there is a point $x \in \cup_{n=1}^{\infty} G_{n}$ at which $h \mid \cup_{n=1}^{\infty} G_{n}$ is quasicontinuous. Let $x \in G_{n_{0}}$. There is an open interval I such that

$$
\begin{equation*}
h(t) \geq 1 /\left(2 n_{0}\right) \text { for each } t \in I \cap \cup_{n=1}^{\infty} G_{n} \tag{8}
\end{equation*}
$$

Let $y \in I \backslash \cup_{n=1}^{\infty} G_{n}$. Then $y \in C(h)$ and $h(y)=0$ contrary to (8). So

$$
h \in H_{6} \backslash H_{4 q} \subset H_{6} \backslash H_{4}
$$

(b) By Remark 1, $H_{2} \subset H_{5}$. The function $h \in H_{5} \backslash H_{2}$.
(c) By Remark 1, $H_{1 q} \subset H_{2 q} \subset H_{3 q} \subset H_{4 q} \subset H_{6 q}$ and $H_{6} \subset H_{6 q}$. Let $f \in H_{2 q}$ and let $X \in A_{1}$. If $C_{q}(f \mid X)=\emptyset$, then $X=\cup_{n=1}^{\infty} X_{n}$, where

$$
X_{n}=\left\{x \in X ; x \notin \operatorname{cl}^{\left(\operatorname{int}_{\lambda}(\{t \in X ;|f(t)-f(x)|<1 / n\})\right), n \in \mathbb{N} . . . ~}\right.
$$

If $Y_{n}=\operatorname{cl} X_{n}$ and $Y=\cup_{n=1}^{\infty} Y_{n}$, then Y is an F_{σ}-set and

$$
Y_{n} \subset\left\{x \in Y ; x \notin \operatorname{cl}\left(\operatorname{int}_{Y}(\{t \in Y ;|f(t)-f(x)|<1 / n\})\right) .\right.
$$

Consequently $Y \in A_{2}$ and $C_{q}(f \mid Y)=\emptyset$ contrary to $f \in H_{2 q}$. So $H_{1 q}=H_{2 q}$. The proof of the inclusion $H_{4 q} \subset H_{3 q}$ is analogous. So $H_{3 q}=H_{4 q}$. The function g from the proof of Theorem 1 belongs to $H_{3 q} \backslash H_{2 q}$. The function h belongs to $H_{6 q} \backslash H_{4 q}$. Let $f \in H_{6 c}$ and let $X \in A_{6}$. There are open intervals $I_{n}, n \in \mathbb{N}$, such that for $n \in \mathbb{N}$
$I_{n} \cap X \neq \emptyset, \operatorname{cl} I_{n+1} \subset I_{n}$, the diameter $d\left(I_{n}\right)<1 / n$, and osc $f<1 / n$ on I_{n}.
Then $\cap_{n=1}^{\infty} I_{n}$ is a singleton set $\{x\} \subset X$ and $f \mid X$ is continuous at x. So $H_{6 c} \subset H_{6}$ and consequently $H_{6 c}=H_{6 q}=H_{6}$. This finishes the proof of (c) and proves (f).
(d), (e) and (g) The function h belongs to $H_{5} \backslash H_{3 q} \subset H_{5 q}-\backslash H_{2 q}$. By Remark $1, H_{2 q} \subset H_{5 q}$. Let $F \subset[0,1]$ be a nowhere dense set belonging to A_{6}. In each component $I_{n}(n \in \mathbb{N})$ of the set $\mathbb{R} \backslash F$ we find a Cantor set F_{n} of measure zero and two non Borel sets $F_{n, 1}, F_{n, 2}$ such that $F_{n}=F_{n, 1} \cup F_{n, 2}$ and $F_{n, 1} \cap F_{n, 2}=\emptyset$. There are two disjoint sets $\mathbb{N}_{1}, \mathbb{N}_{2}$ such that $\mathbb{N}=\mathbb{N}_{1} \cup \mathbb{N}_{2}$ and both the sets $U_{n \in N_{1}} F_{n}$ and $U_{n \in N_{2}} F_{n}$ are dense in F. Put

$$
k(x)=\left\{\begin{array}{cll}
1 / n & \text { for } & x \in F_{n, 1}, n \in N_{1} \\
1-1 / n & \text { for } & x \in F_{n, 1}, n \in N_{2} \\
1 & \text { for } & x \in F_{n, 2}, n \in N_{2} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Then $k \in H_{5 c} \backslash H_{5 q}$. The inclusions $H_{5} \subset H_{5 q} \subset H_{5 c}$ follow from Remark 1.
(h) By Theorem 1, $H_{5 c} \subsetneq H_{6 c}=H_{6}$.
(i) By Remark 1, $H_{1} \subset H_{1 q} \subset H_{1 c}$. The function k belongs to $H_{1 c} \backslash H_{1 q}$.
(j) By Remark 1, $H_{3} \subset H_{3 q} \subset H_{3 c}$. The function h belongs to $H_{3 c} \backslash H_{3 q}$.

Problems. Are the following equalities true?
(a_{1}) $H_{1}=H_{1 q}$.
$\left(\mathrm{a}_{2}\right) H_{3}=H_{3 q}$.
(a3) $H_{5}=H_{59}$.

References

[1] W. W. Bledsoe, Neighbourly functions, Proc. Amer. Math. Soc. 3 (1972), 114-115.
[2] Z. Grande, Quelques remarques sur les familles de fonctions de Baire de première classe, Fund. Math. 84 (1974), 87-91.
[3] Z. Grande, Sur la mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 813-816.
[4] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
[5] T. Natkaniec, On some problem of Grande concerning B_{1}^{*} functions, (in preparation).
[6] T. Neubrunn, Quasi-continuity, Real Analysis Exchange 14 (1988-89), 259-306.

[^0]: *Supported by KBN research grant (1992-94) Nr 211449101
 Received by the editors July 30, 1992

