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FUNCTIONS WITH POINTWISE
DISCONTINUOUS RESTRICTIONS

Abstract

The paper contains comparisons of classes functions whose restric-
tions to some special sets of positive outer measure have continuity
points, quasi-continuity points or are cliquish at some points.

Let R denote the set of reals and N, the set of positive integers. A function
f: X =R (@ # X CR) is said to be quasicontinuous (cliquish) at a point
z € X ([4), [6) (resp. [1])) if for every positive number r there is an open
interval I C (z — r,z + r) such that INX # @ and |f(t) — f(z)| < r for every
teINX (resp. osc f <ronlINX).

Let m (resp. m,) denote Lebesgue measure (resp. outer Lebesgue measure)
in R. Denote by C(f),C,(f) and respectively C(f) the set of all continuity
points of a function f : X — R, the set of all quasicontinuity points of f and
the set where f is cliquish. Let ¢l A denote the closure of a set A, inty the
interiorin X #0and for Y C X (Y #0) and f : X — R let f|Y denote the
restriction of f to Y. Put

A, = {XCR:m.(X)>0},

A2 = {X €A;:Xisan F,-set},

A3 = {X €A :m(INX)>0 for every open interval I with I N X #0},
Ay = AszNA,,

A = {X € Ay: X is closed};

As = AsNAs,

A7 = {X CR:X iscountable and cl X € A5}, and

Ags = {X CR:X is countable and ¢l .X € Ag}.

*Supported by KBN research grant (1992-94) Nr 2 1144 91 01
Received by the editors July 30, 1992

400



FUNCTIONS WITH POINTWISE DISCONTINUOUS RESTRICTIONS 401

In this paper I compare the following families of functions:

Hi = {f:R—R;C(f|X)# 0 for every X € 4;},

Hijg = {f:R—R; Co(fIX) # 0 for every X € 4;},
Hie = {f:R—R; C.(f|X)# 0 for every X € 4;},
Ho; = {f:R—R;intx C(f|X) # 0 for every X € A;},

Hojqy = {f:R—R;intx Co(f]X) # 0 for every X € A;}, and
Hoje = {f:R—R;intx Cc(f|X) # 0 for every X € 4;},

j=12,...,8.
The family Hg was introduced in [3] and the families H,, H, were introduced
and investigated in [2], where it is proven that H; = H,.

The following remark is obvious.
Remark 1 The following inclusions are true

Hoj C Hj, Hojq C Hjq, Hoje C Hje, H; C Hjq C Hje and Hoj C Hojq C
Hoje for j = 1,2,...,8. Hy C H3 C Hs C He. Hyy C H3y C Hy C
Heq. Hye C H3. C Hse C Hee. Hoy C Hos C Hog C Hos. Hoyg C Hozg C
Hoaq C Hoeg. Hore C Hosze C Hose C Hoge- Hy = Ha C Hs C He. Hyy C
H?q - H5q Cc HGq- ch Cc H?c - HSc Cc Hsc- H2 Cc H4 C H5° H2q Cc H4q C
HSq- H‘.’c Cc H4c C H5c-

Theorem 1 We have Hore = Hoze = Hose = Hore G Hre G Hie = Hae =
Hs. G Ha. = Hse = Hee = Hse = Hose = Hose = Hoae = Hoae.

PRroOF. The inclusions Hoi. C Ho2e C Hos. follow from Remark 1. We will
show that Hgs. C Hoze C Hoie. Let f € Hose and let X € A7. Thencl X € As
and there is an open interval I such that INcl X # @ and INcl X C C.(f|cl X).
Consequently, INX # @ and INX C Cc(f|.X). This proves the inclusion
Hose C Hoze. Now let f € Hoz. and let X € A;. There is a countable set
Y C X such that

(1) cd({(t f); te Y}) D {(t, f(1)); t € X}.

Since Y € A7 and f € Hoze, there is an open interval I such that INY # 0
and INY C C.(f|Y). Fixz € INY, r > 0, and an open interval J containing
z. There is an open interval K C I NJ such that K NY # 0 and osc f < r/2
on KNY. By (1),0sc f<rf2<ron KNX. ThusINY C C.(f|X). Since
C.(flX) is closed in X, we have IN X C C.(f|.X). This proves the inclusion
Hoze C Hoje. So, Hore = Hoz2e = Hose = Hoze.
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Let F C [0, 1] be a nowhere dense set belonging to A¢. In each component
I, of the set R\ F we find a Cantor set F,, of measure zero. Let F,, = F,, jUF, 2,
where all sets Fy, 1, Fy, 2 are disjoint non Borel, dense in Fy,. Let

1/n for t€F,,,neN
fle) = { otherwise ’

and ] F N
_J 1 for z€Fuy, neE
9(z) = { 0 otherwise )

Then f € Hy.\ Hose, f € Hsc \ Hze, and g1He. \ Hs.. The proof of the
inclusion H7, C Hs, is similar as the proof of the inclusion Hgze C Hoie. So,
by Remark l, Ho7¢ g H7¢ ;Ct HSc-

Now we shall prove that Hy. = Ho, = Hs.. By Remark 1, Hy C Ha, C
Hs,.. Let f € Hs. and let X € A;. Then cl X € As and C.(f|cl X) # 0. If the
set Ce(f|cl X) is dense in the set INcl X for an open interval I with INX # @,
then I'Necl X C Cc(flcl X) since the set Cc(f|cl X) is closed. Consequently, in
this case I N X C C.(f]X). Assume that the set C.(f|cl X) is nowhere dense
in c1 X. Then

A X\ Ce(fld X) = | J I nelX),
neN

where I, are mutually disjoint open intervals such that I, Ncl X # @ for
n € N. Since f|cl X is not cliquish at any point « € ¢l X \ C.(f|cl X), we have
m(InNeclX) =0for n=1,2,.... Thus there is a point z € X N C(f|cl X)
and the restricted function f|.X is cliquish at z. So C.(f|.X) # @ and the
equalities Hy, = Hs. = Hs, are proved.

For the proofs of the remaining equalities we remark that the inclusions
H3. C H4e C Hee, Hoze C Hosae C Hose and Hoje C Hj for j = 1,...,8
follow from Remark 1. Let f € Hec and let X € A3. Then cl X € As
and C.(flcl X) = cl X. Consequently, C.(f|.X) = X and f € Hos.. So the
inclusion Hg. C Hoa. is valid, and Hz. = Hs. = He. = Hoze = Hose = Hoge.

Analogously, if f € Hg. and X € Ag, then cl X € Ag and C.(f|cl X) =
clX. Thus C.(f|X) = X and f € Hos.. So Hgc C Hos. C Hgc. Suppose
that there is a function f € Hg. \ Hs.. Then there is a set X € Ag such that
C.(f|X) = 0. There is a countable set Y C X such that (1) is satisfied. Since
f € Hg, the set Cc(f|Y) is nonempty. If z € Cc(f|Y), then z € X and by(1),
z € C.(f|Y). This is contrary with the equality C.(f|X) = 0. So Hg. C Hs.
and the proof is completed.

Theorem 2 We have
Ho1 = Hoz = Hos = Hoig = Hozg = Hosg = Hor = Horg = Hr = H7y G
Hos = Hoq = Hoe = Hog = Hg = Hoag = Hoag = Hosq = Hogg = Hs,.
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ProoF. The inclusions Hoy C Hoa C Hos, qu C Hog,, C H05q, Hys C
Hoy C Hog, Hosy C Hoag C Hosq, Hoj C Hojg for j = 1,...,8. Hoz C
Hz, Hog C Hg, Ho7y C H7g and Hogy C Hg, follow from Remark 1.

Let f € Hos and let X € A;. Then ¢l X € As and there is an open
interval I such that INeclX # @ and I Ncl X C C(f|cl X). Consequently,
INX # 0 and INX C C(f|X). This proves that f € Hoy. So Hos C Hoy
and Hoy = Hoz2 = Hos. The proof of the inclusion Hosy C Hoyq is the same
and hence Hoyy = Hozq = Hosy. Similarly we can prove that Hos C Hoz
and Ho,r,, C H(m,. So Hgs C H7 and Hosq C H7,. Suppose that f € Hy
and X € As. For an indirect proof assume that intx C(f|.X) = 0. There is
a countable set Y C X \ C(f]|X) such that condition (1) from the proof of
Theorem 1 is satisfied. Then Y € A7 and @ # C(f|Y) C C(f|X) contrary
to C(flY) Cc Y € X\ C(f|X). So H7 C Hgs. The proof of the inclusion
H7q C Hosg is similar. So Hos = H7 and Hosg = H7,. Now we shall show that
Hog = Hoeq. It suffices to prove that Hogg C Hog. In the proof of this inclusion
an idea from Natkaniec is used. (See [5].) Let f € Hogq and let X € Ag.
Suppose that intxC(f|X) = 0. Let I, = ((k—1)/2",k/2") forn = 1,2,...
and k = 0,+1,%2,.... There are indices ny, ky such that m(I,, x, N X) > 0
and I, 1, N X C Cy(f|X). Let 2, € X N1,, 1, be a point at which f|X
is not continuous. Then a; = osc(f|X)(z1,1) > 0. There is an open interval
Ji such that z,, € Jy C clJy C In,k, and m(J;) < m(X NI, 1,)/8. Let
Uy = Jinintx({z € X; |f(z) = f(z1,1)| < a1/2}). Then the set U, is open in
X and T1,1 ¢ Ul.

In the second step we consider open intervals In,41,t,, In,+1,k,41 such
that cl Iﬂx.h =cl Iﬂ|+l,kg Uecl In,-l-l,k,-l-l- If m((X \ cl Ul) n In,+1,k,+j) >
0, j = 0 or 1, there is a point z3j41 € (In,+1,k:4j N (X \ clU1)) \ C(£]X)).
For j = 0,1 set a3 josc(f|X)(z2,;+1) and let

Uaj = Ja,j Nintx ({z € X; |f(2z) — f(z241)| < a2,;/2}),

where Ja ; is an open interval such that z;; € clJaj, 22 € Joj CclJaj C

In,41,k24j, and m(Jz;) < m(X N1y 41,8,45)/(2-82). In the nth step we con-
sider open intervals I, yn ko, Iny4n,ka41s - - s Iny4n,ka+2n—1 such that cl I, &,
=cl(In,4n,k ) U -Ucl(In,4n ka+2n-1), and we find points

n=-12'-1

Znj41 € (Iny4n ket DX\ {J U dUip)\ C(£1X)

i=1 k=0

(whenever the last set on the right side is nonempty). Next we find open
intervals J, j, § =0,1,...,2"~1 — 1, such that

Znj+1 € Jnj CclUnj Clnyinkati
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zig@clJyjfori<nand1<?2,

and
(2) m(J”J) <m(Xn Iny4nkats )/(2n-1 -8"),

and set
Unj = Jn; Nintx({z € X; |f(2) = f(zn,j+1)] < an ;/2}),

where an; = osc(f|X)(zn,j4+1) > 0. The possibility of finding such points
zn, ¢ follows from the inclusion X N I, x, C Cy(f|X) and from the fact
that osc(f|X)(zn-1,j41) = @n-1,;j > 0. Observe that z, ;41 & Un; for
7 =0,1,...,2" — 1 and that for each

n 2-1

zex\|J U dUis

i=1 k=1

there is an index j < 2" — 1 such that |z — 2, j41| < 27" Let

Y=d (X\ D 2UlU,,,;,.) :

Fix £ = 2z, j41 where j < 2", and an open interval I containing z. There are
an open interval I, ym i, +j’ and a point zp, jo41 (m > n) such that

zm,j'-l-l € In|+m,k,..+j’ Cc I'
It follows from our construction and from (2) that

m(INY) 2 m(In4mkn+i’NY)

(= <]

> mIn,4mpkn+j NX) — Z m(In, 4m k4 nX)/2k-1 . gk
k=1

m(In,4mkm+i' N X) = 2m(In, 4m ki N X)/15
13m(Iny 4 gt N X)/15 > 0.

Let Z={z €Y; m(INY) > 0 for each open interval I 3 z}. Then Z € A¢
and z, 41 € Z \ Cy(f|Z) for n € N and j < 2" contrary to f € Hogg. So
Hog = Hoeq.

Now we show that Hosq C Hos. Let f € Hosg and let X € As. If
X € As, then by the equality Hog = Hoeq, there is an open interval I such
that INX # @ and IN X C C(f]X). Suppose that X € As \ As and that
intx(C(f|X)) = 0. Let I be an open interval such that INX #@and INX C
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Ci(f1X). Let Y = {z € X; m(J NX) > 0 for every open interval J 5 z}.
Then Y € Ag and m(X \Y) = 0. Since X € As \ As and intx(C(f|X)) =0,
we can assume that the endpoints of the interval I belong to R\ X and that
 (XN(I\Y)) = (XN(I\Y))U(INY). There is a sequence of disjoint nonempty
open sets U, such that U, N (X \ Y) is a nonempty closed set for n € N and
IN(X\Y) = U,(UnN(X\Y)). For every n the set V,, = U,N(X\Y) is closed,
Va C Cy(f|Vn) and inty, (C(f|Va)) = 0. So by Natkaniec’s theorem ([5]) for
n € N there is a nonempty closed set W, C V,, such that intyw, (Co(f|W,)) = 0.
Let W =Y Uy Wan. Then W € As and intw (Co(f|W)) = @ contrary to
Jf € Hosq. So Hos = Hosg. The proofs of the inclusions Hos C Hos and
Hoeq C Hoag are the same as the proof of the inclusion Hos C Hoi. So
Hoz = Hog = Hos and Hoszg = Hoaqg = Hoeg. Since Hog = Hoeq, We have
Hos = Hos = Hos = Hozg = Hosq = Hoeq. The proofs of the inclusions
Hos C Hg, Hosq C Hgq are similar to the proof of the inclusion Hos C Hos.
Let f € Hg and let X € Ag. Assume that intx(C(f|X)) = 0. Let
Y C X\ C(f|X) be a countable set such that (1) from the proof of Theorem
1. Then Y € As and there is a point £ € Y at which the restricted function
flY is continuous. Fix r > 0 such that r < osc(f|X)(z)/2. There is an open
interval I 3 z such that |f(t) — f(z)] < r/2 for each t € INY. From (1) it
follows that
(3) |f(t) = f(z)| < r/2 for each point t € IN X.

Since osc(f|X)(z) > 2r, there is a point u € I N X such that

|f(u) - f()| > 3r/4

contrary to (3). So Hg C Hoe and Hg = Hoe.

For the proof of the inclusion Hg; C Hoeq we fix f € Hgq and X € Ag. If
intx (Cq(f]X)) = 0, then there is a countable set Y C X \ Cy(f|X) such that
(1) can be proved from Theorem 1. Since Y € Ag and f € Hgg, there is a point
z €Y at which f|Y is quasicontinuous. From the inclusion Y C X \ C,(f|X)
and from the fact that z € Y there is » > 0 such that

(4) ([z = rz+ 1IN X) x ([f(z) - 2r, f(z) + 2r]) N {(t, £(2));t € C(f1X)} = 0.
Let I C (z — r,z+r) be an open interval such that INY # @ and
(5) |f(t) = f(z)] < r for each t € INY.

Since f € Hgy C Hg. = Hos. and X € Ag, there is a point z € I N C(f|X)
contrary to (1), (4), and (5). So Hoeq = Hgy. This implies that Hos C Hg C
Hoe and Hogq C Hgq C Hoeq. The proofs of the inclusions Hos C Hos and
Hoeq C Hog, are similar to the proof of the inclusion Hos C Hoy. Thus

Hos = Hos = Hos = Hos = Hg = Hoaq = Hoag = Hosq = Hogg = Hsy.
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The function g from the proof of Theorem 1 belongs to Hog \ Hoy. This
completes the proof.

Theorem 3 We have
(a) H1=H22H3=H45H5,
(b) H, g Hs,
(¢) Hig = Haq % Hag = Haq 5 Heq = Hs,
(d) Haq S Hgq,
(e) Hs\ H3g # 0,
(f) He = Heq = Hee,
(8) Hs C Hsq G Hse,
(h) H5c g HG:
(l) Hl C qu g ch,
(3) Hs C Hsy G Hs..

Proor. (a) By Remark 1, H, = H» C Hs C H4 C Hg. The function g from
the proof of Theorem 1 belongs to H3 \ Ha. Let f € Hy and let X € Az. If
C(f|X) =0, then X = U, X,

(6) Y = Ug°=1cl Xn.
Observe that for n € N
) cdX, C {z€Y; osc(f|]Y)(z) > 1/n}.

Since X C Y C X, since X € As and since Y is an F, set, Y € Ay.
Thus there is a point y € C(f|Y), in a contradiction with (6) and (7). So,
H3 = H4. Let (Gy) be a sequence of nowhere dense sets belonging to A¢ such
that GiNG; =0 fori # j (i,j € N) and m(R \ U%,Gr) = 0. Put

_J 1/n for z€Gn, n€EN
h(z) = { 0 otherwise )

Since h is a Baire 1 function, h € Hes. If Cg(h|(U3%,Gn)) # 0, then there is
a point z € U3L,Gn at which h|US%, G, is quasicontinuous. Let z € Gy,.
There is an open interval I such that

8) h(t) > 1/(2no) for each t € INUSL,Gr.
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Let y € I \ U3%,Gn. Then y € C(h) and h(y) = 0 contrary to (8). So
h € He¢\ Hyy C He \ Hy.

(b) By Remark 1, H, C Hs. The function h € Hs \ Ha.
(c) By Remark 1, Hyy C Hay C H3g C Hyy C Hgq and He C Hgq. Let
f € Hyg and let X € Ay. If Cg(f|X) = 0, then X = UR%, X, where

Xn,={z€X; z¢&cl(intx({t € X; |f(t) - f(z)| < 1/n})), n€N.
If Yo =clX, and Y = U,Y,, then Y is an F,-set and
Yo C{z€Y; zgcl(inty({t €Y; |f(t) - f(z)| < 1/n})).

Consequently Y € Az and Cy(f|Y) = @ contrary to f € Hay. So Hyg = Haq.
The proof of the inclusion Hyq C Haq is analogous. So H3y = Hy4y. The
function g from the proof of Theorem 1 belongs to Hzq \ Ha,. The function A
belongs to Hey \ Haq. Let f € He. and let X € Ag. There are open intervals
I,, n € N, such that forn € N

I.NX #0, clIn4 C I, the diameter d(I,) < 1/n, and osc f < 1/non I,.

Then N, I, is a singleton set {z} C X and f|X is continuous at z. So
He. C Hg and consequently He. = Hgy = Hes. This finishes the proof of (c)
and proves (f).

(d), (e) and (g) The function h belongs to Hs\ Ha; C Hsg — \H4. By
Remark 1, Hyg C Hsq. Let F C [0,1] be a nowhere dense set belonging to
Ag. In each component I,, (n € N) of the set R\ F we find a Cantor set F,
of measure zero and two non Borel sets Fy, 1, Fyy 2 such that F, = F, ; U Fy, 2
and F,, 1 N F, 2 = 0. There are two disjoint sets Ny, Nj such that N = N;UN,
and both the sets Upen, Fn and Upen, Fy are dense in F. Put

1/n  for 2€ Fpy,n €N,
k(z): l—l/n for zan,l, n € N,
1 for ZE€ Fuo, n€ENy ~
0 otherwise

Then k € Hs \ Hs,. The inclusions Hs C Hgy C Hg, follow from Remark 1.
(h) By Theorem 1, Hs, g Hs. = H.
(i) By Remark 1, H; C Hyy C Hjc. The function k belongs to Hj. \ Hi,.
(3) By Remark 1, H3 C Hs, C H3.. The function h belongs to Hs. \ Haq.

Problems. Are the following equalities true?
(a1) Hy = Hy,.
(az) Hz = Ha,.
(as) Hs = Hsq.
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