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 BAIRE ONE STAR FUNCTIONS

 1. Introduction

 The class of Baire-one-star functions has already been studied in real analysis
 for a long time, under various names and from different points of view. The
 impetus for writing this paper mainly comes from two sources. First, the
 important role these functions played in the recent studies of finely continuous
 functions. (See [1], [2] and the references there.) Secondly, it stems from the
 fact that the connections between different notions of a function "being better
 than a Baire-one function" seem not. to be known to the extend they should
 be. Before explaining this impression in detail, we must introduce the precise
 definitions:

 Definition 1 Let (A 'p) and (V, a) be metric spaces. A map f : X - ► Y is
 said to be

 (i) a first Borei class function (written f € B'(X,Y)) if the f-preimage
 of any open subset of Y is of type Fa in X , see [6].

 (ii) a first level Borei function if the f-preimage of any closed subset of Y
 is of type F a in X , see [6].

 (iii) a Baire-one- star function (written f G if for any F C X
 nonempty closed there is a nonvoid U C F relatively open in F such thai
 the restriction of f to F is continuous on U , see [10].

 (iv) a piecewise continuous function if there exist closed subsets
 of X such that (J^j ^ = ^ an^ ^iQt any of the restrictions f'p% is
 continuous, see [6]. (Of courat , ont can always assume Fi C '.)
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 It is easy to see, but. worth mentioning, that in (iii) the assumption that
 F is closed can be dropped. Moreover, using, for example, some ideas from
 below, it can be seen immediately that / 6 iff for any 0 ^ F C X the
 restriction f'p has at least one point of continuity.
 In [11] the author considered first, level Borei functions / : [0, 1] - ► IR having

 the Darboux property. A special case of [6] implies that on [0, 1] first level
 Borei functions are piecewise continuous and it. follows rather easily that the
 functions from [11] are Darboux Baire-one-star functions. (See, for example,
 Theorem 13 in [3].) Consequently, the result of [11] is, in a stronger form,
 contained in Theorem 4 of [10]. We will return to this question in the last
 part of our paper in more generality.
 As already indicated, the paper [6] contains several very general results

 about the relationship between the notions just defined, we only quote the
 main one.

 Theorem 1.1 [6] A first level Borei function, mapping a metric space , X,
 that is an absolute Souslin-F set, into a metric space , Y , is piecewise contin-
 uous.

 Note, that any Borei (or even analytic) subset, of an arbitrary complete
 metric space is, considered as a metric subspace, an absolute Souslin-^7 set.
 However, the generality of the situation considered in [6] demands a rather
 complicated proof based on techniques from descriptive set theory. We shall
 give here a self contained and relatively easy proof of this result for the case
 that the domain space A' is complete, see Theorem 5 below. Moreover, a
 minor modification of our proof gives a very general version of the results
 from [1] and [2] about the Baire-one-starness of continuous functions between
 fine topologies.

 Besides the paper [6], there are many other works containing valuable in-
 formation about Baire-one-star functions, we mention here only [9] including
 some remarks about, the history of the subject (see chap. 2. D. Exercises and
 Remarks), further [3], [4], and [10] where special properties of Darboux func-
 tions in #J(M,1R) are derived. Our whole exposition is probably related to
 further papers, however, we did our best in referring to all significant sources.

 We shall use the following notations. For .4 a set. in a metric space B(A, r)
 [U(Ai ?•)], r > 0, denote the set of all points having distance from A at most r
 [less than r]. So B(x, r), U{xy r) are the closed and open balls. If / is a map-
 ping between topological spaces, we denote by C(f) the set of all points in the
 domain space at which / is continuous and by D(f) the set of all such x G X for
 which the restriction f'{x}uC(j) is discontinuous. Let {-„}n>i be a sequence in
 a topological space (Z, r), then we define dus ({~n}) = H»»» > i izn I 77 - m}
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 which is of course nonvoid provided Z is compact. The most advanced topolog-
 ical topics we will use are paracompactness and Cech-Stone-compactification,
 however, see Remark 6. Let (Y, <r) be a bounded metric space and ßY its
 Cech-Stone-compactification, see [8]. Then we uniquely define the extension
 <7 : ßY X Y K of its metric cr by the request that à has to be separately
 continuous in the first entry. Since ßY is an Hausdorff space, one easily finds
 ã(x,y) > 0 whenever x € ßY ' Y .

 2.

 Lemma 2.1 Let (A', p) and (V, cr) be metric spaces, the first of them being
 complete , and let f : X Y belong to the first Borei class.

 (i) Then C(f) is dense and hence residual in X .

 (ii) If int C(f) = 0, then the set f(U fl D(f)) is infinite whenever U C X is
 open and nonvoid.

 Proof.

 (i) This statement is a classical one. (See for example, [12] for a stronger
 version, where it is proved that / is Baire one provided that y is a Banach
 space. Note that we can always embed Y in such a space.), But for the
 sake of completeness, we will give an independent proof. If X ' cl C(f) ^ 0,
 then Baire's theorem ensures the existence of an e > 0 such that the closed

 {x I (/, x) > 3s} is somewhere dense. Hence, (/, •) > 3s on some U which
 is nonvoid and open. Therefore, for any y G Y the F^-set U fi f"ì(U(y)e))
 has empty interior and is of the first category. Again the category argument
 implies that for any countable set. M C A' and for any 0 ^ V C U which is
 open, there is an x 6 V with (f(x),f{M)) > e. This ensures, that one can
 easily find a sequence C U such that for all i ^ j <r(f(xi)y f(xj)) > e
 and p(x¿,z»+2») < 2"*n if 1 < i < 2 rì,n > 0. Then S = | i > 1} is
 countable without isolated points and f(S) is closed in Y . Therefore,

 s = /-'(/(5)) ' U i)) ' {*}]
 xes

 is a G¿-set minus an F^-set, and hence of type G¿. But then S is simulta-
 neously residual and of the first category in the perfect and complete metric
 subspace cl S of X .

 (ii) First, we show that cl D(f) = A'. Else, we have B(x,e) fl D(f) = 0
 for some x and e with 0 < c < (/, x)/'2. Since x £ D(f ), we get f(C(f) fl
 ¿?(x,6)) C B(f(x),e) for suitable 6 > 0. However, there is a y € U(x,6) with
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 (/(y), B(f(x),e)) > 0. Because y is a cluster point of C(f) fi U(x, 5), we infer
 y e D(f).

 Next, let f(D(f) C'U(x,e)) = for some x G X,e > 0. Since
 due to the foregoing /(C(/)fl(7( *•,£-)) C cl (f(D(f)nU(x,e))) and f(U(x}e)'
 D(f)) C cl f(C(f) C'U(x,e)) by (i) and the definition of D(f ), we infer
 /(t/(x,e)) C {yi, . . .,ynj. But then any level set U(x,e) fl f~l(yk) is not
 only of type G¿, but also an F^-set. We find at G {l,...,n} such that
 f~l{yk) H U(x,e) is, like C(f) fl U(x,€) itself, a second category set in A'.
 Therefore, int. C(f) D int f~l(ļjk) 0> which is a contradiction, finishing the
 proof.

 Proposition 2.2 Let (A'p) and (V, or) be metric spaces , the first of them
 being nonempty and complete , and the second being bounded. If f : X - ► Y is
 a first level Borei function, then C(f) has nonvoid interior .

 Proof. Assume the opposite to be true, i.e. int. C(f) = 0. We will inductively
 construct a sequence of quadruples

 such that

 (i) always x,- G D{f)' xitn G C(f); G (0,oo); and G 0Y .

 (ii) If i > 1, then limn_co Xļ,n = xiy a¿ G clus ¿y ({/(*»'n)}~=i), and
 v(f(xitn)if(xi)) > 2si whenever n > 1.

 (iii) For 1 < i í j both <r(f(xi),f(xj)) > Si + Sj and , /(^»)) > £» hold.

 (iv) p(x¿,xl+ o*) < 2*"* whenever t > 0 and 1 < i < 2k.

 For this purpose, suppose that such quadruples fulfilling (i), . . . ,(iv)* have
 already been chosen for 1 < i < 2* -I - j, where t > 0 and 1 < j < 2k. Indeed,
 due to Lemma 2.1 there are no problems in finding suitable *i, {*i,n}£Li ,£i,
 and a'. We put M = 'J { jB(/(x¿ ),£*«) | i < 2*+ j }, then cij £ clpy M according
 to (ii),(iii) and the continuity of the maps (t(-, /(x, )) on 0Y . Therefore, we can
 find z = xjtn G U(xj,2-k~l)nC(f) with f(x) £ M . We fix a 6 G (0.2-*-1)
 such that 6 < (f(B(x, 6)), A/)2. Again Lemma 2.1 ensures the existence of
 a point x2k+j G D(f) fl U(x,6) C B(xj/2~k) satisfying /(x2*+¿) £ ía* I * <
 2* +i}. Next, we select an £2 *+j G (0,6) such that

 • £2*+; < ^(°i» /(x2*+;)) f°r 1 < * < 2* + j; and that

 1 whenever all symbols which appear are well defined
 2In the second part of the paper we will deal with certain modifications of this proof

 putting some additional conditions on x and 6.
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 • there is a sequence {a^+j.nlnki C C(f)f'U (x, 6) with limn- oo x2k+j,n =
 x2k+j and ^(/(x2*+j)>/(*2*+;'n )) > 2¿2*+j for 71 > 1.

 Finally, we pick up any a2fc+¿ € clus ßy ({/(xofc+jn)}^)- It is easy to see
 that the quadruples (x,-, {^»,n}J^=1 , £», a,), now defined for 1 < i < 2* + j,
 fulfill (i)- (iv) again. (Notice that € cbv f(U(x,6)) C n»<2fc+i{2 ^
 ßY I à(zìf(xi)) > Si -f £}.) Consequently, we may assume the existence of
 the desired sequence of quadruples. (It is worth mentioning3 that until now
 we have only used / 6 #i, but. never that / is a first level function.)
 Let G = [Ji^i U(f(xi),€i). Using (iii) one easily verifies that

 CO

 {*» I i > 1} = rl(G) ' 'J{f-HU(f(xi),ei)) ' {*,}] .
 » = 1

 As in the proof of Lemma 2.1 , but using the definition of first level Borei
 functions, we infer that {x¿ | y > 1} is a first category dense G¿-subset of the
 perfect and complete metric space cl ({x,: | i > 1}). This contradiction shows
 that int C(f) ^ 0.

 Theorem 2.3 Let (X,p) and (V, a) be metric spaces and f : X -*Y a map.
 Consider the following statements :

 (i) / is a first level Borei function.

 (ii) / is a BI -function.

 (iii) / is piecewise continuous.

 Then (ii)=>(iii)=>(i) and in case that (X, p) is complete , we have (i)=>fii).

 Proof. As before, we may assume a to be bounded.
 (i)=^(ii) Since the restriction of / to any subspace of À' is again a first level

 function there, the implication follows from Proposition 2.2.
 (ii)=^(iii) Let Q be the family of all open U in X such that f'u is piecewise

 continuous. First, we show |Ji7 6 (7. Since the metric space (G,p), where
 G = (J (7, is paracompact ([8]), there is a family T of open sets with =
 G, each U € T is contained in some V G Q, and for any x € G there is
 an ex > 0 such that the subfamily Tx = {U € T | U fi U(xyex) ^ 0} is
 finite. Obviously, for any U € T there are closed sets F(U, n), n > 1, with
 UnLi F(U,n) = U, (F(f/, ?i), X ' U) > 1/n, and f'F(V,n) ¡s continuous for
 each n > 1. Then each of the sets F(n) = 'J{F{U,n) ' U € T} is closed in
 X and f'F(n) is always continuous. Indeed, if x Ç G ' F(n ), then (x, F(n)) >

 3 and will be used in the proof of Theorem 7
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 min({£r}U{ (x, F(U , n)) | U 6 Tx}) > 0. Furthermore, if M C Y is closed and
 x € F(n)'f"ì(M)ì then (xtfmml(M)nF(n)) > min({ex} U { (x, F(U} n) fl
 /-1(A/)) I U € Fx}) > 0. Hence, (f'F(n))~l{M) is closed in F(n). Since
 'JKLinn) = G9Gec.
 Let F = A' ' G. If F ^ 0, then / £ Bi*(X,Y) implies that there are

 X G F and r > 0 such that f'mu(x,r) is continuous. Obviously, G'JU(x,r) =
 UnLi ^(n) U[Ffl B(x , - Ì)] G (7. Hence x € G. This contradiction shows
 that F = 0, A' G {/, and we are done.
 (iii)=>(i) If A' = UnLi Fn with each Fn closed and f'pn continuous, then
 for any F C Y closed f~l(F) = UÍT=i(^»» ^ as required in the
 definition of first level Borei functions, an Fa-set.

 Remark. • As already mentioned, the implication (i)=^ (iii) is due to [6].
 The relation between (ii) and (iii) was investigated first in [3] and in a more
 general setting in [9]. Our proof of (ii) => (iii) merely carries out Exercise
 2.D.14.d of [9].
 • Note that the "advanced" topological tools used here can be avoided in the
 separable cases. Indeed, if the space Y is separable, then we use the fact that it
 is homeomorphic to a completely bounded metric space Ý ([8]) and obviously
 Y can be replaced by Ý without changing any statement. But now, we can
 simply use the completion of y instead of ßY . The case of a separable X is
 even more simple. In this case the paracompactness, used only in the proof of
 (ii) => (iii), can be replaced by the Lindelöf property of G.
 • Using the foregoing ideas, mainly from the proof of Proposition 2.2, it is not
 difficult to show that / : (A', p) - ► (y, a) is in B' (X, Y ) iff for any (closed and)
 totally bounded 0 ^ M C A', f''f is continuous on some non void relatively
 open subset of M . (Note, that one can show also that the restriction of / to
 any nonvoid closed subset has a point of continuity iff its restriction to any
 nonempty closed and totally bounded subset does so. However, the proof is
 a little bit longer.) Therefore, if we have (X,p) complete, then Theorem 2.3
 implies that / is piecewise continuous iff its restriction to any compact subset
 is also. (Compare also with page 182 of [6].)

 3.

 Theorem 3.1 Let (A 'p) and (Y, a) be metric spaces , the first of them being
 complete. Assume that both X and Y are equipped with topologies r and i],
 respectively , finer than those induced by the metrics. Suppose that:

 (i) For any M C X there is a Gs-set A with int TM C A C cl rM, and

 (ii) For any disjoint F, A C Y such that F is closed , A is countable and
 discrete (in the metric topology), there ts a continuous g : (y, r¡) - ► [0, 1]
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 satisfying g(F) C {0}, and g (A) C {1}.

 Then any continuous map f : (A', r) - > (Y', i]) belongs to £?J((A', p), (Y', cr)).

 Proof. First, we show that li e B' ((A'p), (Z, r/)) whenever (Z, d) is a metric
 space and h : (A', r) (Z,d) is continuous. Indeed, let. F C Z be an arbitrary
 closed set. Then due to (i) we find for any n > 1 a G¿-set. An C X with

 h-l({z'd(s,F)<±)) C int. rh-l({z'd(z,F)<±))

 C AnCh-i({z'd{z,F)<±}).

 Obviously, A = fļn=i is G¿ and fulfills .4 = h'l(F)i which was to be
 shown.

 Now, let / : (A', r) - ► (Y, ?;) be continuous but not. in Bi((X,p), (Y', o')).
 Then there is an X C A' non void and closed such that / = int $C(f) = 0.
 We know from the foregoing that / as well as g o f (whenever g : (y, r¡) - ►
 R is continuous) is in the first Borei class (w.r.tē the metrics). Therefore,
 we can follow the proof of Proposition 2.2 (Compare with the last footnote
 there.) in order to find sequences {x»}^ C -Ý and C (0,oo) such
 that p(xi, xf+2fc) < 2~fc for k > 0, 1 < i < 2* and <r(f(xi), /(*;)) > £> + € j
 if i ^ j. Now our assumption (ii) ensures that there is a continuous g :
 (Y', i]) - ► [0,1] with g(f{xi)) = 1 for all i > 1 and g(y) = 0 whenever y €
 VAUím U (/(**)» £»)• Hence, the set S = (go f)~l[ 1/2, 1] is G¿. Since ļ i >
 !} = 5'|J¿>i (f~l(U(f(xi),ei)) ' {*,}), we again obtain that | i > 1} is
 a countable G¿-set without isolated points. This leads to the already known
 contradiction and finishes the proof.

 This theorem, although having a rather simple proof, almost directly ap-
 plies to many different situations including the higher dimensional variants of
 the ¿¡¡-results from [1],[2]. However, in the following discussion of the two as-
 sumptions made above we will see that a few modifications are still necessary.
 Assumption (i) is of course the Gi-in$ert.ion property from Chap.2.D of [9],
 and is implied e.g. by the essential radius condition see Exercise 2.D.16 in
 [9]. In particular, (X, r) can be any of the following spaces (for definitions see
 again [9]):

 • the fine topology generated by an ideal not containing any open nonvoid
 set,

 • the ordinary density topology (e.g. for X = Mn) or any of its (coarser)
 modifications, e.g. O'Malley's topologies, strong density topology etc.,
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 • the *-porosity or porosity topology on (.Y, p), see [13] Theorem 3, (These
 are higher dimensional variants of the I-density and deep-î-density
 topology. See Corollaries 2.4.6. and 2.7.10 in [2].) and the *-strong
 porosity or strong porosity topology on (X,p) being an Hilbert space.
 (See [7] Theorem 2b.)

 Assumption (ii) causes many more troubles. Actually, it is formulated
 in a way unnecessarily strong. Of course, it is related to the Lusin-Menchoff-
 Property of the fine topology ij. (See Chap. 3 of [9].) In fact, it is a consequence
 of the latter provided that any countable and metrically discrete set is 77-closed.
 Therefore, we see that (y, rj) can be Mn, n > 1, with the ordinary density
 topology . Note that we just obtained Theorem 3 of [1]. Unfortunately, the
 other topologies mentioned in the previous paragraph do not meet assumption
 (ii), even those having the Lusin-MenchofT-Property as O'Malley's a.e., or r-
 topology, or the porosity topology. (See Chap. 7.1 - 2. of [9] and Theorem lb
 in [7].) In the sequel we will show how to modify the proof of Proposition 2.2
 in order to apply also to these topologies.

 Proposition 3.2 Proposition Let (A 'p) and r be as in Theorem. 3.1 and let
 (y, 77) be Rn, n> 1, with the O'Malley a.e .- or r-topology. Then any continu-
 ous f : (A', r) (Mn,77) is in Bļ((X, p), E'1).

 Proof. We proceed almost as before. Since / is in the first Borei class,
 we may assume that f(X) is bounded in Kn, and hence that all a¿, j > 1,
 are chosen from Mn. (See Remark 1.) An easy modification of the proof of
 Proposition 2.2 ensures that

 ''f(xi+2k) - a,*||, |ļo,+2fc - a, 'U < 3~* for le > 0 and 1 < i < 2fc.

 From this one derives by induction with respect to the integer part of log2(/)
 that ||at'+/-2* - a,- 1 1 < 2 • 3~* for / > 1 (We will carry out similar estimates in
 more detail in the next section.) and in the very same manner one sees that
 for any k > 0

 2*

 Ã = {/(*,)}£ 1 c {/(*;)}/=! u U ^,2.3-').
 ;=i

 Consequently, cl A has Lebesgue measure zero. In the case of the a.e.-
 topology we simply write A = A and for ?; being the r-t.opology we put
 A = cl (j4) U(f(x¡),Si). In any case, .4 is an ?;-cIosed set containing
 all /(z,)'s and disjoint from K" ' IJ^j ), £» )• Since 7; has the Lusin-
 MenchofT-Property w.r.t . (R'' II II), it now suffices to follow the proof of
 Theorem 3.1.
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 The remaining (*-)porosity topology demands a more careful study, and
 we will devote the following section to it.

 4.

 We will prove here that Theorem 3.1 is valid also in the case that (Y, rj) is a
 normed linear space (V, || ||)4 equipped with the porosity topology p. Indeed,
 since the *-porosity topology is a refinement of p, it suffices to consider p.
 We briefly recall that a set M C (Y, cr) is porous at z € Y iff there is an
 € > 0 such that for all R > 0 we can find an r £ (0, R) and a y £ Y with
 B(y1er) C B(x, r) ' M. A set E is superporous at x if E U M is porous at x
 whenever M is so, and p is defined to be the family of all G C Y such that
 Y ' G is superporous at each y G G. Then p is a topology on Y having the
 Lusin-Menchoff property w.r.t. the metric topology. (See Theorem la in [7].)
 This means, whenever A C Y is p-closed and F C Y ' A is closed, then there
 exists a continuous g : (Y,p) - * [0, 1] with g(F) C {0} and g(A) C {1}. We
 shall use the following simple consequence of Proposition 2a' in [7]:

 Corollary 4.1 Let (Y, || ||) be a normed linear space, e > 0 and M C Y such
 that for all x G Y and R > 0 there is an y G Y with J5(y, sR) C B(x> R) ' M.
 Then M is p-closed.

 Let us first consider the (main) case that (Y, || ||) is finite dimensional. As
 before, we start with the proof of Theorem 3.1, and we can focus on the case
 that / is bounded on the "bad" subspace A' Since Y is boundedly compact, we
 may again carry out the whole construction from Proposition 2.2 in cl f(X);
 in particular, a¿ G Y. We show now how to achieve the p-closedness of the set

 For this purpose we have to introduce a few auxiliary notions which allow
 a more detailed study of the construction provided in the proof of Proposition
 2.2. For n > 1 denote min{¿ | 2* > n} by deg(n) >0. If n > 2 we define
 two kinds of predecessors. First, pr(n) = ri - 2deg(n^~1. Note that pr(n) is
 the unique j with k > 1, 1 < j < 2* and n = 2* + j. Secondly, for k > 1
 let n[k] = n* where 2*"1 < n' < 2h and 2k~x divides n - n' . Obviously,
 n[deg(n)] = n, deg(7?.[fc]) = k and n[k] > 2 hold whenever these expressions
 are well defined Moreover, the following properties can be easily verified:

 (1) n[l] = (n[&])[/] whenever 1 < / < fc, and

 (2) pr(n) e {n[deg(n) - 1], jw(w[deg(n) - 1])} for all n > 3.

 4 This is surely not the most general setting possible!
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 Now define for n > 2

 (3)

 r" = ¿minÍÍHa< ~ I 1 ^ ''j < ") u - °ill I 1 ^ <n)' {0}).

 and select the x,6 in the proof of Proposition'2.2 such that for all z G B(x16)
 the inequality ||apr(n) - /(*) II < rn holds. Again, this is the only modification
 needed. Next, we denote cipr(n) by 6n, then due to (2)

 (4) b„ € {a„[ci€g(n)_i],6„[deg(»)-i} whenever n > 3.

 Hence, we infer

 (5) ||6n - /(Xn)||, II bn - «»II < »•„ for n > 2.

 This implies

 (6) 0 < rn < ?*n_ i/65 whenever n > 3.

 Now we derive a few more basic properties of the objects just defined.

 (7) f(xn) G B(bn , 64?'n) C U(bn[k),2rn[k]), Vi > 1 ,n[4] > 2.

 Indeed, due to (5) and (1) it suffices to prove {7(6n[deg(n)-i]> 2r n[deg(n)-i]) D
 ß(6n,64rn). But this follows from 64?łn < 7vł[deg(n)-i]> (See 6.), and bn G
 £(^[deg(n)-i],*n[deg(n)-i])i according to (4), (5).

 For 2 < ?77 < n either B(bm , 32rm) fl J9(6„ , 32rn) = 01
 (8) or ß(6n,64r„) C JS(6m,2rm). If deg(?7) = deg(?7i), then >

 either 6n = bm or B(vn, 327*n) n B(vm , 32?'ni) = 0. J

 To see this, let n' = n[deg(?i) - 1]. If n' = 777, then due to (4) bn = 6m
 or bn = am G B(bm,rm) and 64 < 7*m. In case 77' < m (e.g. if deg(Ti) =
 deg(77i)) and bn ^ bm we have ''opr(n) - flpr(m)|| > 65rm > 64rn since pr(in) <
 m, (3) and pr(n) G {pr(n')»n/} C {2,... ,777 - 1}. Therefore, B(bnj32rn) Ci
 B(bmì32rm) = 0. Finally, if 77' > m we use B(6n,64rn) C B(bn>, 64?v) from
 (7) and induction with respect to n.

 (9) For m > 2 we have f(xm) G B(bm,rm)' [J B(bn, 64rn).
 n>m

 Indeed, if n > m then (3) implies ||/(xm) - 6„|| = ||/(*m) - <V(n)|| > 64rn.
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 Lemma 4.2 Let {f(xn) ' n > 1} be constructed above according to (1),
 . . . ,(5) and let B(x,R), x G Y and R > 0, be arbitrary. If for some N > 1,
 bit G B(x,R/ 3), rs > R/20, and rm < R/ 30 whenever m > N , then there is
 a y with

 I » > I}-

 Proof. We consider the case N >2 only. The case N = 1 is much simpler
 since due to (7), f(xn) G B^i/Ir?) for all n and 2ro < R/ 30. So the first
 part of the proof can be skipped. First suppose there is an n > 1 such that

 (10) f(xn)eB(x,R)' B(bNĄ)U{f(xN))UB(aN,ź) .
 Since B(6;v,32rjv) D B(x,R), we infer from (9) that n > N. According

 to (5) and (7) f(xn) G JB(6n/,2rn#) where n' = n[deg(N)]. Now (8) implies
 6n/ = and hence ||6n/ - /(*n)|| > Ä/15 guarantees n' < N . Therefore,
 n" = n[deg(7V) + 1] fulfills N < n" < n, f(xn) G J3(6n„,2?v,), 2rn„ < R/ 15
 and 6n// G {ani,6n/}. Consequently, (10) shows that n' < N and from (3) we
 obtain that R/ 20 < rs < ||an'-&n'||/65. Hence, ||an/- 6tv|| = ||on' - &n'|| > 3 R
 and bnn G {b^} U (Y ' B(x/2R)). We conclude f(xn) G B(bnn,2rnu) C
 B(btf,R/ 15) U (Y ' ß(x, 2Ä - (Ä/15)), a contradiction to (10). We have just
 shown that

 {/(in) I n > 1} n B(x, R) C B(bN,Ą) lo U {f(xN)} U B(aN, -£)• 15 lo 15

 Finally, we choose t/i, . . y4 € B(x,ZR/A) with ||y¿ - y¿|| > R/ 2 for i ^
 j. Then the balls B(yi,R/6) C B(xyR) are at least R/ 6 apart each from
 each other, and hence, any of the sets ß(6^,Ä/15), {/(*tf)}, B(aņ}R/ 15)
 intersects at most one of them. So, we can choose y to be the center y,- of one
 of the nonintersected £(yi, R/ 6).

 Theorem 4.3 Let {f(xn) | n > 1} be constructed above according to (1),
 . . . ,(5) and let B(x,R) be an arbitrary ball with x G Y and R > 0. Then we
 find a point y such that

 B{y,R/ 48) C B(x%R) ' {/(*„) 'n>l).

 Proof. Let no = min{n | f(xn) G B(x,R/ 4)}. If this is not well defined,
 then there is nothing to prove.
 First, suppose that

 {/(*«) I n > 1} n B(x, |) C B(f(xno), |) u B(a„0, ģ).
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 We choose a unit vector e with ||/(£n0) - «II« = /(*» o) - x. Obviously, the set
 [-R/4ìR/4]'[''f(xno)-x''-R/6ì ||/(^,i0)-^i| + Ä/6] contains closed intervals
 I' , I2 of length R/ 24 and of distance at least R/ 25. Denote by p'ip2 the
 middle points of I' , /2 and put pi = x -f p¿e. Then B(pi , Ä/48) C B(x, ß/4) '
 ß(/(xno),Ä/6) and (J5(plf/í/48)fB(p2,«/48)) > 2 • Ä/60. Therefore, at
 most one B(p», Zř/48) intersects J3(ano, iî/60), and there remains at least one
 B(pj,R/4 8) making the conclusion of the theorem true.
 Therefore, we may suppose that

 (u)

 /(*m) € B(x , Ä/4) ' -^) U ß(o„0, for some m > n0

 Put ?7i" = m[deg(no)]. First, consider the case 6no ^ bmn. We denote
 K = min{fc I 6no[*] ¿m[¿]} - 1. Obviously 1 < K < deg(n0). Put
 n'0 = no[K + 1] < no, ra' = ra [A' + 1] < ra. Since pr(7?./0),pr(m/) < 2A' <
 ra, no, we have rnļ,7*m/ < |ļ6nļ - 6m/ļļ/65 Consequently, 61/65 < || f(xno) -
 f(xm)''/''bn'0 - bm> II < 69/65, because due to (7) ||/(x/) - 6/[*j|| < 2 rl[k) when-
 ever 1 < k < deg(/). This shows 3Ä/4 > ||6n& - 6m#|| > (65/69)(Ä/6) > 2Ä/13
 and rnļ,rm# < 3Ä/260. Therefore, 6n^,òm< G J5(x, 7Ä/24). Obviously, there
 is an / G {ra, no} such that ||6/[/c+i] - 6/[/ť]|| > Ä/13. We are going to prove
 that the assumptions of Lemma 4.2 are fulfilled for N = l[K]. If b n = bm> or
 bjç = òno then obviously b^ G 5(a:, Ä/3). Else, (4) implies that 6n> = ano[K],
 bm* = ûm[/f] and n0[A'] ^ ra[A]. Hence, /_ := min{n0[/f], m[/ťft < /+ :=
 max{no[/ť], ra[A]}. Because 6/_ = 6/+ = 6#, we infer ||a/_ - 6tv||/65 >
 ||a/+ ~ bs''. Consequently, 2Ä/3 > || a/_ - o/+|| > (64/65)||o./_ - b^'' and
 |ja/+ - 6^|| < R/ 65. Since a/+ E ß(x,7Ä/24), 6^ € B(xiR/ 3) follows in any
 case. Furthermore, Ä/13 < ||ajv - b^'' < rpj since according to (4) 6/[/oi] =
 ai[K]- Finally, for k > N we estimate?** < ||a/v-6jv||/65 < (2Ä/3)/65 < R/ 30.

 Observe, that we can also suppose

 (12) ''f(Xm) 6/11 ^ 2í i whenever / ^ no and 0/ - bf iq.

 Else, r/ < ||/(xno) - 6no||/65 and ||/(xm) - &»0|| < 2» •/. Hence, (67/65)||6no ~
 /(*n0)H > ll/(*no) - /(*m)|| > (63/65)||6„0 - /(x„0)||, which implies 3Ä/4 >
 (Ä/2)(65/63) > ||6n0-/(®n0)ll > (Ä/6)(65/67) > Ä/16. Consequently, rno >
 Ä/20, r* < (l/65)(3 R/4) < 7?./30for all k > n0 and therefore, ||&w0~/(xm)|| <
 Zř/15 and bno G B(x,R/ 3). Now, the conclusion would follow from Lemma
 4.2 for N = no.

 In the remaining case we have therefore, bmn = 6no, ||/(xm) - &m"|| < 2rm//
 due to (7) and consequently m" < n0. Denote rai = ra[deg(no) + 1]. Then
 no < rai < ra and again (7) and (12) imply that 6mi ^ 6m«, i.e. 6mi =
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 am// holds. We may exclude also the case m" = no, since then || f(xm) -
 anoll = ll/(*m) - bmi'' < 2 rmi < (2/65)||/(a;„0) - ano'' implies ''f(xm) -
 /(sno)ll > (63/65)||/(xno) - flii0||. Because f(xno)J(xm) G J3(x,Ä/4), we
 conclude || f(xm) - a.no'' < R/ 63, a contradiction to (11).
 Hence, m" < no, and we finish the proof of the theorem by showing that

 N = m" fulfills the assumption of the Lemma 4.2. Indeed, according to (5)
 and (7) we can estimate ||6„0 - /(*n0)|| < ||a/v - bno''/6b and ||/(xm)-a^|| =
 ||/(*m)-&mi|| < 2(||a,v-6no||/65). Therefore, (62/65)||ajv -bno'' < ||/(xm)-
 /(zno)ll ^ Ä/2 which êives lkv ~ bfiQ II < 65Ä/124 and ||6„0 - f(xno) || <
 Ä/124. We infer, as required, 6,v = bno G B(x,R/ 3), > ||a^ - bx'' >
 (65/68)||/(xno)-/(xm)ll > (65/68)(Ä/6) > R/ 20, and rth < ''aN-bN''/65 <
 R/ 30 whenever m > N.

 Proposition 4ģ4 Proposition Let (X,p) and r be as in Theorem 3.1 and let
 (y,p) be a linear norined space with the porosity topology. Then any continuous
 function f : (X, r) - (V» is in ¿^((A',p), (7, || ||)).

 Proof. The finite dimensional case was considered above. Here the crucial

 result, namely the p-closedness of the modified follows from Corol-
 lary 4.1 and Theorem 4.3. The infinite dimensional case is much simpler. A
 short look at the proof of Proposition 2.2 shows that we can also in this case
 force the set {/(xi)}^ to be totally bounded. Indeed, make all the occurring
 f(U(x¡ Ó)) sufficiently small and ensure that on each step n of the construction
 the set i/(x,6) is contained in the corresponding set of its predecessor pr(n).
 Now it follows from Riesz' theorem about almost orthogonality that each ball
 B(x,R), R > 0, in the infinite dimensional Y contains infinitely many balls
 of radius R/ 4 and of distance at least R/ 4 each from each other. Of course, a
 totally bounded set can never meet all these balls and therefore Theorem 4.3
 as well as this Proposition follow again.

 5.

 Here we discuss the question, as to how big the /-image of the set of points
 of continuity of a first level Borei function / is. The following result is a
 generalization of [11].

 Proposition 5.1 Lei X and Y be complete metric spaces , the second being
 locally compact and let f : X - * Y be a first level Borei function. Suppose
 that for each x £ X and e > 0 there is a neighborhood U C B(xye) of x with
 cl (f(U)) connected. Then f(C(f)) is dense in f(X).

 Proof. Consider gr(f) = {(x,/(ar)) | x e X} C X x Y and put M =
 cl (í7r(/))- Observe that gr(f) is an ambivalent set in X x Y , i.e. both of type
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 F* and G¿. Indeed, gr(f) is an Fa-set since / is piecewise continuous and
 since any continuous function has a closed graph. (Compare [6].) Secondly,
 gr(f) is G¿ whenever / is a Baire-one function; in our case we have simply
 9r(f) = flmsiU*'*/) I x $ Fm or cr(f{x)yy) < 1 /in) with nondecreasing
 Fm from Definition 1 .iv). Since A/ is complete, we see that gr(f) is residual
 and M ' gr(f) nowhere dense in M. Consequently, cl (int m gr(f)) = M
 and it suffices to prove that x G C(f) whenever (xyf(x)) G int m <7r(/)-
 Otherwise, we find 6 > 0 and sets x G Un+i C Un C B(x,l/n) such that
 B(f(x)}6) is compact and any cl f(Un) is connected and intersecting Y '
 B(f(x)>6). It follows from the proof of Lemma 6.1.25 in [5] that for each
 n > 1 the connected component of f(x) in cl /([/n)nß(/(i), S) is a continuum
 meeting Y'i/(/(x),6). Hence, C = 0^=1 c' /(^n)nß(/(i),{) is a continuum
 containing f(x) and intersecting Y'U (/(*), Ó). We choose n > 1/6 such that
 {(a^Ì/O ^ M I p(x,x') a(y,1f(x)) < 1/n} C gr(f). Obviously, we find
 yf G C with p(f(x)1 y') = 1/2 n. Now, for any m > 1 there is an x ' G Um such
 that <r(f(x')}ļ/) < 1/rn and hence ((x,y,)igr(f)) < 2/m. This shows that
 (x, y') G M ' gr(f). This is a contradiction, finishing the proof.
 If we drop the assumption of "almost connected" images of small neigh-

 borhoods, ¿{o} is a trivial counterexample. However, we construct a more
 complicated one which is related to questions considered in [6]. A function
 f : X -+ Y is said there to be a first level Borei isomorphism provided / is
 a bijection and / as well as f~l are first level Borei functions. The question
 appears whether such an / is a homeomorphism between residual subsets of
 X and Y. In [6] an affirmative answer was given for X and Y being locally
 Euclidean of dimension n > 1. The following example shows that even for
 X = Y C [0, 1] compact the situation can be bad.
 Let C C [0, 1] be the classical (l/3)-Cantor set and put X = C U [2/3, 1].

 (Obviously, X is not locally Euclidean.) Define g : A' - ► A' by

 x x £ C
 t ' _ J I iecn[o,i]
 s(l)-| t ' _ * - f «6Cn(¡,il ' , 1-3(1-«) *ecn[§, l)

 Then g(X ' C) = X ' C ; g(C) = C and g is injective and continuous on
 both C and X ' C. Since X ' C and C are Fa-sets in AT, we infer that g is a
 first level Borei function. Because X is compact, g maps F^-sets onto Fa-sets
 and is even a first level Borei isomorphism. Now, let D C X be dense and
 such that g'D is continuous. We show that g(D) fl [2/9,3/9] = 0. Indeed,
 we have cl (D'C) D [2/3, 1] and therefore, g(x) ^ x = limj,-*^^ ^(x)
 whenever a: G Cfl [2/3, 1]. This shows D fi C fi [2/3, 1] = 0 and g(D) C
 9(X ' (C fi [2/3, 1])) C X ' [2/9, 3/9].
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