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 Paradoxical decompositions using Lipschitz functions1

 Let Gk denote the group of isometries of R*. The sets A, B C Rfc are called
 equidecomposable, if there are partitions A = Ai U . . . U An, B = B' U . . . U Bn
 and isometries f' , . . . , fn € Gk such that fi(Ai) = B{ (t' = 1, ... , n). We shall
 denote this by A ~ B. By a well-known theorem of S. Banach and A. Tarski
 [3], if A , B are bounded subsets of R* (k > 3) with non-empty interior, then
 A ~ B. The proof is based on the fact that for k > 3 the group Gk contains
 free subgroups [13].

 In R2 such a paradox does not exist. Banach proved in 1923 that for
 k = 1,2 the Lebesgue measure on R* can be extended to the power set of R*
 as an invariant and finitely additive measure [1]. This implies that if A, B C
 R* (k = 1,2) are measurable and A ~ B, then A(>1) = A (B). As it was realized
 later by J. von Neumann, the existence of the Banach measures in R and R2 is
 the consequence of the fact that the groups G' and Gļ are solvable, and hence
 amenable: they support a finitely additive invariant measure (see [13], Chapter
 10)-

 Still, paradoxical sets do exist in R2. S. Mazurkiewicz and W. Sierpiński
 showed in [8] that there is a non-empty set A C R2 which can be decomposed
 into two disjoint subsets congruent to A. (Proof: let c be a transcendental
 complex number with ļcļ = 1, and put A = {a„cn + . . . ao : ai € N}. Then
 A = (c • A) U (A + 1) is a partition of A into sets congruent to A.)

 Sierpiński proved in 1946 that such a paradox does not exist in R. More-
 over, no set A C R can be partitioned into two subsets which are equidecom-
 posable to A (see [12], p. 56). The underlying fact is that the group G' is
 not only amenable, but is also supramenable: for every H C G', H 0 there
 is a finitely additive invariant measure p on G ' such that n(H) = 1 (see [13],
 Chapter 12).

 In spite of the fact that paradoxical sets do not exist in R if only isometries
 can be used, there are paradoxical decompositions in R which use Lipschitz
 functions (in particular, contractions).

 A map / : A - ► R (A C R) is called piecewise contractive if there is a
 finite partition A = A' U . . . U An such that the restriction f'A{ is a contraction
 for every i = 1, . . . , n. Von Neumann proved in [9] that every interval can be
 mapped, using a piecewise contractive map, onto a longer interval. This easily

 1 This paper is an expanded version of a talk presented at the Fifteenth
 Summer Symposium in Real Analysis, Smolenice, Czechoslovakia

 439



 implies that whenever A, B are bounded subsets of R with nonempty interior,
 then A can be mapped, using a piecewise contractive map, onto B (see [13],
 Theorem 7.12, p. 105). Indeed, let I and J be intervals such that I C A
 and B C J. Let <f> be an injective contraction mapping A into inti?. By von
 Neumann's theorem, there is a piecewise contractive bijection rp from I onto J.
 Let xļ>o denote the restriction of ip to rp~1(B), then ipQ1 is an injective map from
 B into A. By a theorem of Banach [2], there are partitions A = Ai U Aļ, B =
 B' U Bļ such that <ļ>(A') = Bi and ^0(^.2) = #2- Thus the map / defined
 by f(x) = <f>(x) ( X € Ai), f(x) = V*o(®) (® 6 Ą) is a piecewise contractive
 bijection from A onto B.

 In the next theorem we determine the range of the Lebesgue measure of
 B, supposing that the number of pieces in the partition of A is given. The
 Lebesgue outer measure will be denoted by A. If J is an interval then we write
 |J| = X(I).

 Theorem 1.

 (i) Let A, B C R be measurable and suppose thai there is a map f : A -+ R
 and a partition A = Ai U . . . U An such that B = f(A) and f'Ai is a
 contraction for every i = 1, . . . , n. Then A (B) < n • '{A)/2.

 (ii) Let A C R be measurable and let J be an interval with ' J' < n • A(A)/2,
 where n is a positive integer. Then there is a map f : A - * R and a
 partition A = A' U ... U An such that f(A) = J and f'A{ is a contraction
 for every i = l,...,n. If A is an interval, then f can be chosen to be a
 bijection between A and J.

 Let J be an interval with 1 < | J' < 3/2. Then (ii) of Theorem 1 implies
 that there is a bijection from [0, 1] onto J which consists of three contractions;
 that is, von Neumann's paradox can be realized using three pieces. On the
 other hand, such a paradoxical decomposition does not exist if only two pieces
 can be used, eis (i) of Theorem 1 shows.

 The first statement of the theorem is an immediate consequence of the
 following result. Let Lip g = sup{|(flí(x) - g(y))/{x - y)| : x,y G C, x ± y}
 denote the Lipschitz constant of the function g : C - ► R. Let A = A' U . . . U An
 be a partition of the set A C R and let / : A - ► R be a map such that f'Ai
 is a Lipschitz function with Lip (f'Ai) < Mi for every i = 1, . . . ,n. Then the
 inner Lebesgue measure of f(A) is at most M • '(A), where

 (1) M = max , . . . , Mn , it

 (see [6], Theorem 4).
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 If the restrictions f'Ai are contractions, then we may apply this estimate
 with

 Mi = . . . = M„ = 1 - e, and obtain (i) of Theorem 1.
 As the next theorem shows, the estimate given above is sharp. Then (ii)

 of Theorem 1 will follow again by putting Mi = . . . = Mn = 1 - e.

 Theorem 2. Let Mi,...,Mn be positive numbers and let M be defined
 by (1). Then for every measurable set j4cR and for every 0 < d < M • A(A)
 there is a partition A = A' U . . . U An and there is a function f : A - ► R such
 that f'Ai is a Lipschitz function with Lip (/|A¿) < M,- for every i = l,...,n
 and f(A) is an interval of length d.

 If A is an interval, then f can be chosen to be a bijection.

 The proof of Theorem 2 can be found in [7]. Here we only mention two
 features of the proof: the use of graph theory and of locally commutative ac-
 tions.

 Graph theory was first applied to problems of equidecomposability by D.
 König, when he proved the "cancellation law" for the semigroup of equide-
 composability types. This semigroup, introduced by Tarski, can be defined as
 follows. We may assign to every A C R* a type [A] such that [A] = [B] if and
 only if A ~ B. (We may define [A] = {B : A ~ £}•) If [-A] = a and [6] = b and
 A fi B = 0, then we define a + b = [A U B'. This is a well-defined operation on
 the set of types of bounded subsets of R* (and can be extended to the types
 of all subsets, see [13], Chapter 8) which makes the set of types a commutative
 semigroup S with identity element 0 = [0]. In 1924 Tarski asked whether or not
 2 a = 2b implies a = b for every a, 6 € S. An affirmative answer was given by
 Kuratowski in [5]. The general cancellation law ( na = nb =$■ a = b) was proved
 by D. König and S. Valkó in [4]. They realized that this is an easy consequence
 of the following theorem: every n-regular bipartite graph contains a perfect
 matching. (A bipartite graph is a subset T of X x Y, where X and Y are dis-
 joint sets. The elements of X'JY are called points, the pairs (x, y) 6 T are called
 lines; the number of lines containing a point u € X U Y is called the degree of
 u. r is n-regular, if the degree of every point is n. M C T is a perfect matching
 if there is a bijection / from X onto Y such that M = {(x, f(x)) : x € X}.)

 In the proof of Theorem 2 we use the following condition for the existence
 of a perfect matching: if T is connected, the degree of each point of T is finite
 and at least two, and if T contains at most one cycle, then T contains a perfect
 matching.

 Let X be a non-empty set, and let G be a group of bijections of X onto
 itself. We say that G is locally commutative provided that whenever two ele-
 ments of G have a common fixed point then they commute. The role of local
 commutativity in the theory of equidecomposability was discovered by R. M.
 Robinson in [10]. In this paper he finds the minimal number of pieces which
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 are needed to duplicate a ball. Banach and Tarski in their paper [3] did not
 specify the number of pieces to obtain a paradoxical decomposition of the ball.
 In 1929 von Neumann remarked that 9 pieces suffice. Sierpiński used 8 pieces in
 [11]. Finally, Robinson showed in [10] that the minimal number is 5. His proof
 is based on the fact that the group of the rotations of a sphere is locally com-
 mutative: if two rotations have a common fixed point then they have the same
 axis and hence they commute. As for the applications of local commutativity
 in questions of equidecomposability, see [13], Chapter 4.

 Von Neumann proved his paradox by observing that a system of fractional
 linear transformations (a,x + 6¿)/(c¿x + di) generates a free group, if the coef-
 ficients a.i,bi,Ci,di are algebraically independent over the field of rationals [9].
 The proof of Theorem 2 uses the fact that this group is also locally commutative.

 Using these results, the proof of Theorem 2 is the following. Suppose
 first that A is an interval, and let J be an interval such that | J' = d < M •
 |A|. Then there are functions fi : A -* J such that Lip fi < M,- for every
 i and the sets fi(A) cover each point of J twice (let /,• consist of two linear
 functions of slopes and -Mi ). Using fractional linear transformations with
 algebraically independent coefficients, we can construct functions gi : A - ►
 J (i = 1, . . . , n) approximating the functions /,• in such a way that Lip <7, < M,-
 for every i, and the sets gi(A) cover each point of J twice. Then, applying the
 local commutativity of the group of the fractional linear transformations we can
 check that each connected component of the graph

 r = {(x, y) : X G A, y G J, y = fi(x ) for some i = 1, . . . , n}

 satisfies the condition given above for the existence of a perfect matching. These
 matchings together constitute a perfect matching M for I' Then we define Ai =
 {x G A : (x,fi(x)) G M} ( i = 1, . . . ,n) and f(x) = fi(x) (x G i = l,...,n);
 it is easy to see that / satisfies the requirements of Theorem 2.

 If A C R is measurable, then we argue as follows. Let J be an interval of
 length d < M - A(A). Let K be a compact subset of A such that d < M • A (K),
 and let I = [0, A(üf)]. As we proved above, there is a partition I = C' U . . . U Cn
 and there is a function g : I -* R such that g(I) = J and Lip (g'Ci) < Mi for
 every i - 1, . . . , n.

 Let h(x) = A (K fl (- oo,x]) (x G ^4), then Lip h < 1. Since K is compact,
 it is easy to see that h(K ) = I. Thus h(K) C h(A) C I implies that h maps A
 onto I. Therefore the sets Ai = h-1 (Ci) (t = 1, . . . , n) and the function / = goh
 satisfy the requirements of Theorem 2.

 We conclude by mentioning some problems concerning the higher dimen-
 sional analogues of the previous results. Let A C R* be measurable, and let
 / : A - ► R* be a map such that Lip (f'Ai) < Mi for every i = 1, . . . , n. Then

 442



 the inner Lebesgue measure of f(A ) is at most M • A(A), where

 (2) M =

 (see [6], Theorem 4). This implies that (i) of Theorem 1 remains valid in every
 dimension. We do not know, however, whether or not (ii) of Theorem 1 or
 Theorem 2 remain valid in R*. It is easy to see that the value of M given by
 (2) is sharp; for every measurable A C Rfc and d < M • A(A) there is a function
 f : A -* R* and a partition A = A' U . . . U An such that Lip /|A,- < for
 every i = 1, . . . , n and f(A) is a measurable set of measure d. The problem is
 that we cannot ensure that f(A) is an interval. (Even if A is an interval, the
 proof only gives a set f(A) which is a finite union of intervals.) Therefore the
 following problem remains open.

 Problem 1. Let I C R* be an interval and let be given
 positive numbers. What is the supremum of the measures of those intervals J
 for which there is a function / : I - ► R* and a partition I = A' U . . . U An such
 that Lip /I Ai < Mi for every i = 1, . . . , n and /(/) = J?

 In particular, what is the supremum of the measures of those intervals J
 for which there is a piecewise contractive map of I onto J using n pieces?

 Of course, we may ask the same question for every measurable A C R*
 instead of an interval I. In this case, however, we do not know even the existence
 of a piecewise Lipschitz map of the set A onto an interval. (As we saw above, in
 R every measurable set of positive measure can be mapped, using a Lipschitz
 function, onto an interval.) Therefore we face the following question.

 Problem 2. Let A C R* be a measurable set of positive measure. Does
 there exist a Lipschitz map / : A - ► R* such that f(A) is an interval?
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