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 Three Forms of Chaos and
 Their Associated Attractors1

 1. Introduction.

 What strange behavior does the term chaos suggest? The existence of strange
 attractors? Some form of sensitive dependence on initial conditions? Actually,
 the two notions are intimately connected as we shall see. One finds a variety
 of definitions of chaos for continuous self-maps of an interval in the literature.
 These all carry the notion, in some form or another, that points close together
 can have orbits or w-limit sets (attractors) that spread apart or are far apart.
 Here we discuss three such notions, two standard ones, and a new one that is
 intermediate to the other two in a sense we shall make precise. We also point
 out how the notions of chaos relate to the kinds of attractors possible.

 Throughout this paper, we shall consider continuous functions / that map
 I = [0, 1] into itself. A set 0, is called an u>-limit set for / there exists x G [0, 1]
 such that Ū is the cluster set of the sequence {/"(x)}. (Here, as usual, f1 - f
 and /n+1 = / o/n, n = 1, 2, 3 ... ). We write u>(x, f) = Q, to indicate Q, is the
 u;-limit set of x under /.

 2. An Example.
 We illustrate the ideas we develop with a rudimentary example. Let

 io l'
 3a; on 0, -

 ^ < i i Í1 21 gyx) ^ = < i i on 3' 3

 3(1 -x) on |,1 .
 To analyze the iterative behavior, we represent points by their ternary expan-
 sions,

 x = .X1X2X3 . . . , (xi =0,1,2).

 i il n 2
 It is easy to verify that for x G 0, - , g(x) = .X2X3 . . . while for x E -, - ,

 O O ü

 [2 ļ
 g(x) = 1 (so g2(x) = 0), and for x € -, 1 , g(x) = .x^x^ . . . , where x * = 2-

 1This paper is a transcription of a talk presented at the Fifteenth Summer Symposium in
 Real Analysis, Smolenice, Czechoslovakia
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 Thus, if a ternary expansion of x contains a 1, then for some n, gn(x) =
 <7n+1(x) = 0. All but countably many points of the Cantor set Q have unique
 expansions containing only O's and 2's. Thus the orbits of most points of the

 set Q miss the interval -, - , and one finds various sorts of w-limit sets within
 ô ó

 Q; e.g. periodic orbits of all periods, countable w-limit sets, and the entire set
 Q-

 9

 For example, - = .2200 has period 2. All other periods can be obtained

 by considering points whose ternary expansions are of the form x = .200 . . . 0;
 if there are n > 1 0's in the block, x has period n + 1. If a point x € Q
 has a ternary expansion in which every block of O's and 2's appears, then the
 trajectory of x is dense in Q : io(x, g ) = Q.
 To find an x with u>(x, g ) countable, let x be of the form x = .0 ... 02 ... 20 . . .
 02 ... 2 ... , the lengths of the blocks of O's as well as the lengths of the blocks
 of 2's approaching infinity. One finds that x is attracted to the countable set

 o° /j' *
 <°>uU u (decimal notation).

 k=0 ^ '

 Suppose now that y is another point with a similar ternary expansion, and the
 blocks of O's and 2's are properly mismatched.

 Then lim sup | gn(x) - gn(y ) | = 1
 n- ► oo

 while liminf | <7n(x) - gn(y) ' = 0.
 fl - ►OO

 We say x and y belong to a scrambled set.

 Definition 2.1. A set S is called a scrambled set for f if for i,y€5,(i^y)

 lim sup I fn(x) - fn(y) I > 0
 n- ► oo

 and liminf | fn(x ) - fn(y ) | = 0.
 fl - ►OO

 Now, it was noted by Jankova and Smital [JS] that if / possesses a two-point
 scrambled set, then f possesses an uncountable scrambled set. (See [KS] for a
 proof.)

 Definition 2.2. The function f is chaotic if f possesses an uncountable scram-
 bled set.

 Thus the function g under consideration is chaotic.
 We now show that g is also chaotic in a different sense. Let n be a positive

 integer, and let
 Xn = {x : Xi = 0 for all i > n} D Q
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 Suppose x, y € Xn, ( x ^ y). Let k be the smallest integer for which x* ^ yjt,
 say xjfe = 0 and y* = 2. Thus the ternary expansions take the form

 x = .X1X2X3 . . . xjk_iOxjt+i . . . xn0,

 and y = .X1X2X3 ...Xfc_i2yjfc+i ...ynÕ.

 One finds _
 ' .Oxjfc+1 . . . £n0, _

 gk~1(x) = < or
 k .2x*k+1...x*n2

 while _
 •2yjfe+i . . . yn 0,

 0*-1(y) = < or
 k -°yt+i ---Vn 2

 Thus

 U'-'W-j'-'tyJIS: .1

 We have seen that for each n there is a set Xn of cardinality 2n such that
 for x, y € Xn, (x ^ y), one of the first n iterates of g separates x and y by at
 least .1. This shows that the topological entropy of g is positive, according to
 the following definition.

 For given e > 0 and positive integer n , let S = S(f, e , n) be a set of maximal
 cardinality such that for x, y € S and x ^ y, there is an integer k with 0 < k < n
 such that I fk(x ) - fk(y) ' > e. With the preceding notation we define the
 topological entropy h(/) of a function / as follows:

 Definition 2.3. h(/) = lim limsup - log card S(f,e,n).
 €-0 „-oc n

 Thus the function g has h(<?) > log 2.
 Positive topological entropy represents another form of chaos that is more

 severe than the form first mentoned involving scrambled sets. We discuss this
 in the next section. At the moment, we mention only that if h(/) > 0, then /
 possesses scrambled sets, but the converse is not true.

 Both forms of chaos we have discussed involve the separation of trajectories
 of points. Perhaps the most direct method of measuring this separation of
 trajectories can be obtained via the map x - ► u>(x, /). We furnish the space
 of compact subsets K oî I with the Hausdorff metric, and study the continuity
 properties of u>/ : I - ► K, defined by u>/(x) = u>(x,f).

 To illustrate with our function g, we observe first that u >(x,g) = {0} for all
 x ^ Q. Thus to g is continuous on a dense, open set. This suggests nonchaotic
 behavior. On the other hand, the restriction of u)g to the Cantor set Q is
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 discontinuous everywhere on Q. To see this, observe first that for x, y € Q, say
 x = .X1X2X3 . . . and y = .yiy2î/3 . . . , a point z = .X1X2X3 • • • ^n^ViVīVz • • • can
 be chosen arbitrarily close to x with <7n+1(x) = y. Thus u>(z, g) = u>(y, g). It
 follows that Lüg takes all of the values it takes in Q in every portion of Q. Hence
 u g Iq is everywhere discontinuous. (Incidentally, for the tent function t, u>t is
 everywhere discontinuous.)

 Thus g is chaotic in the strong sense that h(y) > 0, yet ug is continuous on a
 dense open set of full measure. If we wish to use continuity criteria for chaotic
 behavior, we should be able to detect the chaotic behavior that may occur on
 "small" sets such as Cantor sets. A useful notion here involves the Baire class

 of u>f. Our function g has ug 'q everywhere discontinuous, thus u>g is not in
 B', the first Baire class. Just how the Baire class of u>f fits into the picture of
 chaos can be described briefly by the following result [BC].

 Theorem 2.4. Let f be continuous, f : I -* I. Then

 1) u/ G #2, the second Baire class.
 2) If f is nonchaotic, then uif G Bi (but the converse fails).
 3) Ifujf Ç. Bļ, then h (/) = 0 (but the converse fails).

 Thus the condition that w/ £ ßi is a form of nonchaos strictly intermediate
 to the other forms discussed.

 3. Chaos and u>-limit sets.

 When a function exhibits any of the forms of chaos we have discussed, its
 iterative patterns are rather complex. One can also view "complexity" of the
 iterative patterns of / in terms of the types of a>-limit sets / possesses. Intu-
 itively one may expect that uncomplicated iterative patterns should lead to the
 existence of relatively simple o>-limit sets, while complicated patterns should
 lead to more esoteric u;-limit sets. In fact, the Baire class of a>/ is closely linked
 to the type of a>-limit sets / can (or must) possess.

 First we mention two facts:

 Theorem 3.1. [ABCP], [BSi]
 A nonempty compact set S is an uj -limit set for some continuous function f

 if and only if S is either nowhere dense, or a fìnite union of intervals.

 The second fact is that the existence of certain kinds of u;-limit sets for /
 implies the existence of certain other kinds. Sharkovski's famous theorem, for
 example, provides an order on the positive integers such that if p precedes q
 in the order, and u>(x, f ) has cardinality q, then there exists y € I such that
 u;(y, /) has cardinality p. (This order begins with 1 and ends with 3: if / has
 a periodic point of period 3, it has periodic points of all periods.)

 The chart below does two things: firstly it indicates an order on certain kinds
 of 07-limit sets relevant to our discussion. Secondly, it relates our three notions
 of chaos to the levels of complexity of w-limit sets that are possible (or that
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 must exist). The right column lists possible types of a>-limit sets in order of
 decreasing complexity, while the left column lists our three forms of chaos in
 order of decreasing severity. In this chart, ft always denotes an w-limit set.

 Chart 3.2. .
 There exists ft with . interior

 i
 Hf) > 0 < - ► * There exists countably infinite ft
 i I
 Uf £ B i < - ► There exists uncountable ft with isolated points
 i 1

 / chaotic - ► ** There exists perfect ft
 I

 For every n, there exists ft with cardinality 2"

 * This is equivalent to the existence of a finite u;-limit set of cardinality not a
 power of 2.
 ** There exist nonchaotic functions with perfect u>-limit sets.

 It may be worth mentioning that the very desirable situation that u>f be
 continuous rarely occurs. In terms of w-limit sets one can say [BC] u>/ is con-
 tinuous if and only if all w-limit sets have cardinality 1 or 2, and the union of
 all w-limit sets is connected. A more interesting situation occurs in connection
 with the condition u ;/ G B*. Recall the class Bf consists of those functions
 whose restriction to each perfect set contains a portion (i.e. relative interval)
 of continuity. This can be compared with the analogous characterization of B'
 in which the word portion is replaced by point. In particular, a function in Bļ
 is continuous on a dense open set rather than just on a dense set of type G$.
 One finds that if / has only finitely many w-limit sets, then u>f G Bļ, while if
 u>f G Bf , then every u;-limit set for / is finite.

 It may be instructive to look at the well-studied logistic family fk(x) =
 fcx(l - a;), 0 < k < 4, defined on I . The chart below relates this family to our
 forms of chaos.

 Chart 3.3.

 Baire class classification
 k a>-Iimit sets of u>r of chaos

 k < 1 {0} continuous nonchaotic

 1 < k < ko finitely many, all Bļ , but not nonchaotic
 (fco = 3.57) representing periodinontinuous

 orbits whose period
 is a power of 2
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 fc = fco A Cantor set and B' , not B* nonchaotic
 infinitely many (periodic)
 finite sets of arbitrarily
 high cardinality, all
 powers of 2

 k > ko many complicated sets B2 > not B' h(/) > 0
 and finite sets of

 various cardinalities

 k = 4 many types, including Bļ, not B' h(/) > 0
 the entire interval [0, 1] nowhere

 continuous

 For this particular family, as k increases through fco, we pass suddenly from
 nonchaos to positive entropy.

 It may be helpful to discuss the situation as k approaches fco from below. If
 the periodic orbit of highest period for /* has period 2p(k' then p(k) - » oo as
 k -*■ fc(T- For fc = fco the situation is as follows: Let f = fk- There is a sequence
 of compact intervals { Jn} such that

 i) Ji D J2 D Ą D ...
 ii) Jn is periodic with period 2n

 iii) Q= ñ U /'(•>»)
 n=l j= 1

 From ii) we see that each Jn contains a periodic orbit of period 2n. If x G Q,
 then for every n, x is in the periodic orbit of Jn, from which one sees that
 u >(x,f) = Q, and the trajectory of x is approximatable by cycles of period 2n.
 As n - ► oo, the approximation improves.

 In general, nonchaotic functions do possess approximatable trajectories -
 every trajectory can be approximated by cycles when / is nonchaotic, but if
 / is chaotic, the sense of such approximations is much weaker. Suppose / is
 chaotic, but h(/) = 0. There will be an infinite w-limit set ÎÎ. There will also
 be a system of periodic intervals { Jn} as above but for

 Sn = max{diam (f*( Jn)) : j = 0, 1, . . . , 2n - 1}, lim Sn > 0.
 n - ►oo

 oo 2n

 Thus, condition iii) is replaced by Í2 C fļ U /J(«^n) = K. The set K has
 n= 1 j=l

 interior.

 We can write K ' int K = Q U C, where Q is a Cantor set and C is countable
 or empty. (If C is empty, Q = fì). There will be a scrambled set S with
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 u(x, f) = Q for all X 6 5 and lim sup | f'(x) - f*(y) | = lim 6n > 0 for all
 j- ►OO TI-+00

 i ^ y ē S. If C Ý <j>, then some intervals contiguous to Q will contain one
 or two components of int K. One endpoint of such a component will be in C.
 This point may but need not be in fi. In any case, Cl can contain at most two
 isolated points in each interval contiguous to Q. The set Q is also an w-limit
 set for /.

 These and other comparisons of these forms of chaotic and nonchaotic be-
 havior can be found in [FSS]. These remarks can form the basis for a striking
 contrast among the three types of chaotic behavior we have discussed.

 Suppose Q is a perfect u;-limit set for a function / with h(/) = 0. Then
 Q is minimal - Q contains no proper subsets that are w-limit sets for /. If /
 is nonchaotic, Q is also maximal - Q is not properly contained in any w-limit
 set. Furthermore, / is 1 - 1 on Q. If / is chaotic, but u>f £ B', then Q is still
 maximal, but / is not 1 - 1 on Q.

 When u)f ^ B', the situation is more complicated. The set Q is not maximal.
 There will always be a countable set C such that Í2 = Q U C is also an u;-limit
 set for /. Sharkovski [S] was the first to prove what we indicated earlier - that
 the set C can contain at most two points in each interval J contiguous to Q ,
 with J contained in the convex hull [a, 6] of Q, and at most one point in [0, a]
 or in [6, 1]. How many such sets Í2 can there be? Uncountably many! In fact,
 the following holds:

 Theorem 3.4. Let Q be a Cantor set in [0,1]. Let C be a countable set
 satisfying the cardinality conditions stated above, such that C D Q. Let C =
 OO

 1J Cjfc such that for each k,
 k=l

 a continuous function f with h (/) = 0, and such that for eveiy collection M of
 positive integers, the set Q U (J Ck is an cv -limit set for f, and every Ck is a

 k£M

 full orbit under f.

 These results as well as many refinements, can be found in [BS2]. In particu-
 lar, there are uncountably many o;-limit sets Í2 for / satisfying Q C iî C Q U C,
 a fact that had already been known to Sharkovski.

 We end with the following characterizations of those / for which u>f € B'.
 It may be contrasted with the corresponding characterizations for nonchaos in
 the other two senses (see [FSS]).

 Theorem 3.5. Let f : I - ► I be continuous. The following are equivalent:

 1) u)f G Bļ
 2) every u>-limit set is fìnite or a Cantor set
 3) every u >-limit set is maximal
 4) every u>-limit set is minimal
 5) every u>-limit set is internally generated by every point
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