F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207.

COMPARING THE RANGES OF CONTINUOUS FUNCTIONS

If f and g are differentiable real valued functions on $I=[0,1]$ such that $\left|f^{\prime}\right| \geq$ $\left|g^{\prime}\right|$ on I, someone might expect that the length of the interval $g(I)$ cannot exceed the length of $f(I)$. This need not be true, as the counterexample $f(x)=\left|x-\frac{1}{2}\right|^{3}$ and $g(x)=\left(x-\frac{1}{2}\right)^{3}$ shows. The trouble seems to be that some points u and $v(u \neq v)$ satisfy $f(u)=f(v)$ and $g(u) \neq g(v)$. Suppose we require that the equation $f(u)=f(v)$ implies $g(u)=g(v)$. Then must length $f(I) \geq$ length $g(I)$? Under reasonable circumstances the answer is yes, as we now show.

We will use continuous real valued functions on I. We will say that a function f is an N-function if f maps each set of Lebesgue measure zero to a set of measure zero. Let λ denote Lebesgue outer measure. We offer:

THEOREM 1. Let f and g be continuous N-functions, differentiable almost everywhere on I. Let $\left|f^{\prime}(x)\right| \geq\left|g^{\prime}(x)\right|$ almost everywhere on I. For $u, v \in I$, let the equation $f(u)=f(v)$ imply the equation $g(u)=g(v)$. Then $\lambda f(I) \geq \lambda g(I)$.

THEOREM 2. Let f and g be continuous N-functions, differentiable almost everywhere on I. Let $\left|f^{\prime}(x)\right|=\left|g^{\prime}(x)\right|$ almost everywhere on I. For $u, v \in I$, let each equation $f(u)=f(v)$ and $g(u)=g(v)$ imply the other. Then either $f+g$ is constant or $f-g$ is constant on I.

For functions f and g that are absolutely continuous or everywhere differentiable on I, we deduce from Theorem 2 that if $\left|f^{\prime}(x)\right|=\left|g^{\prime}(x)\right|$ almost everywhere on I, if each equation $f(u)=f(v), g(u)=g(v)(u, v \in I)$ implies the other, then either $f+g$ is constant or $f-g$ is constant on I.
N-functions are essential in Theorems 1 and 2. For example, let h be a continuous nondecreasing nonconstant function such that $h^{\prime}(x)=0$ almost everywhere on I, let $f(x)=x$ and $g(x)=x+h(x)$ on I. Then $\lambda g(I)>\lambda f(I)$. But all the hypotheses of Theorem 2 are satisfied, except that g is not an N-function.

We require five Lemmas.

LEMMA 1. Let the hypothesis be as in Theorem 1. Then for any subinterval J of $I, \lambda f(J) \geq \lambda g(J)$.

Proof. Put $U=\{x \in J: f$ is differentiable at $x\}$, and $V=\{x \in J:$ g is differentiable at $x\}$

For each real number y, let $B(f)(y)$ denote the number of points in the set $U \cap f^{-1}(y)$ and let $B(g)(y)$ denote the number of points in the set $V \cap g^{-1}(y)$. For each $x \in I$, let $h_{1}(x)=1 / B(f)(f(x))$ and $h_{2}(x)=1 / B(g)(g(x))$. (Here we understand that $1 / \infty$ means 0 and $1 / 0$ means ∞.)

Let $X=\{x \in I: f$ is not differentiable at $x\}$ and $X_{0}=\left\{x \in I: f^{\prime}(x)=0\right\}$. Then $\lambda f\left(X_{0}\right)=0$ by [HS, Exercise (18.48)] and $\lambda f(X)=0$ because $\lambda(X)=0$ and f is an N-function. Now if $B(f)(y)$ is infinite, then $f^{-1}(y)$ contains an accumulation point x of $f^{-1}(y)$, and x must be in $X \cup X_{0}$. Thus $y \in f\left(X \cup X_{0}\right)$. Hence $\{y: B(f)(y)$ is infinite $\} \subset f\left(X \cup X_{0}\right)$ and $\{y: B(f)(y)$ is infinite $\}$ has measure zero. Likewise $\{y: B(g)(y)$ is infinite $\}$ has measure zero. From [C, Theorem 9] we infer that the functions $h_{1}(x)\left|f^{\prime}(x)\right|$ and $h_{2}(x)\left|g^{\prime}(x)\right|$ are measurable on J, and

$$
\begin{aligned}
& \lambda f(J)=\int_{J} h_{1}(x)\left|f^{\prime}(x)\right| d x \\
& \lambda g(J)=\int_{J} h_{2}(x)\left|g^{\prime}(x)\right| d x
\end{aligned}
$$

But from the hypothesis it follows that $h_{1}(x)\left|f^{\prime}(x)\right| \geq h_{2}(x)\left|g^{\prime}(x)\right|$ almost everywhere on J, so $\lambda f(J) \geq \lambda g(J)$.

To prove Theorem 1, put $J=I$ in Lemma 1. To prove Theorem 2, we require more Lemmas.

LEMMA 2. Let the hypothesis be as in Theorem 2. Then for every subinterval J of $I, \lambda f(J)=\lambda g(J)$.

Proof. This follows from Lemma 1.
In the Lemmas that follow, f and g need not be N-functions and need not be differentiable.

LEMMA 3. Let f and g be continuous functions on I such that for any subinterval J of $I, \lambda f(J)=\lambda g(J)$. Let (a, b) be a subinterval of I such that $f(x)>f(a)$ for $a<x<b$. Then $|f(a)-f(b)|=|g(a)-g(b)|$.

Proof. We assume, without loss of generality, that f is not constant on I; for otherwise $f(I)$ and $g(I)$ have length zero, and g is constant also.

Let $x_{0}=a$ and let x_{1} be the smallest value in $\left[x_{0}, b\right]$ for which $f\left(x_{1}\right)=$ $\max f\left[x_{0}, b\right]$. Note that $f\left[x_{0}, x_{1}\right]=f\left[x_{0}, b\right]$. Let x_{2} be the smallest value in $\left[x_{1}, b\right]$ such that $f\left(x_{2}\right)=\min f\left[x_{1}, b\right]$. Note that $f\left[x_{1}, x_{2}\right]=f\left[x_{1}, b\right]$. In general we let x_{k} be the smallest value in $\left[x_{k-1}, b\right]$ such that $f\left(x_{k}\right)=\max f\left[x_{k-1}, b\right]$ if k is odd, and $f\left(x_{k}\right)=\min f\left[x_{k-1}, b\right]$ if k is even. By induction we define x_{k} for all positive integers $k,\left(x_{k}\right)$ is nondecreasing, and $f\left[x_{k-1}, x_{k}\right]=f\left[x_{k-1}, b\right]$ for all $k \geq 1$. Let $x^{\prime} \in[a, b]$ be the limit of the sequence $\left(x_{k}\right)$ in $[a, b]$. It follows from the construction that f is constant on $\left[x^{\prime}, b\right]$, and $\left(f\left(x_{k}\right)\right)$ converges to $f\left(x^{\prime}\right)=f(b)$. Likewise, g is constant on $\left[x^{\prime}, b\right]$ because $f\left[x^{\prime}, b\right]$ and $g\left[x^{\prime}, b\right]$ both have length zero. So $g\left(x^{\prime}\right)=g(b)$ also.

We assume, without loss of generality, that $g\left(x_{1}\right) \geq g\left(x_{0}\right)$. For if $g\left(x_{1}\right)<g\left(x_{0}\right)$, we replace g with $-g$ in the argument. We assume, without loss of generality, that $g\left(x_{0}\right)=f\left(x_{0}\right)$. Otherwise use $g+f\left(x_{0}\right)-g\left(x_{0}\right)$ in place of g.

Now for any $u \in\left(x_{0}, x_{1}\right)$ we have $f\left(x_{0}\right)<f(u)<f\left(x_{1}\right)$ and consequently $\lambda f\left[x_{0}, x_{1}\right]>\lambda f\left[x_{0}, u\right]$ and $\lambda f\left[x_{0}, x_{1}\right]>\lambda f\left[u, x_{1}\right]$. Hence $\lambda g\left[x_{0}, x_{1}\right]>\lambda g\left[x_{0}, u\right]$ and $\lambda g\left[x_{0}, x_{1}\right]>\lambda g\left[u, x_{1}\right]$. It follows from this, together with $g\left(x_{1}\right) \geq g\left(x_{0}\right)$, that $g\left(x_{0}\right)=\min g\left[x_{0}, x_{1}\right]$ and $g\left(x_{1}\right)=\max g\left[x_{0}, x_{1}\right]$. Thus

$$
g\left(x_{1}\right)-g\left(x_{0}\right)=\lambda g\left[x_{0}, x_{1}\right]=\lambda f\left[x_{0}, x_{1}\right]=f\left(x_{1}\right)-f\left(x_{0}\right)
$$

But $g\left(x_{0}\right)=f\left(x_{0}\right)$, so

$$
\begin{equation*}
f\left(x_{1}\right)=g\left(x_{1}\right) \tag{1}
\end{equation*}
$$

Moreover, $g(x) \leq f\left(x_{1}\right)=g\left(x_{1}\right)$ for $x \in\left[x_{1}, b\right]$; for otherwise $g(x)>f\left(x_{1}\right)$ and $g[a, b]$ would contain $g(x)$ and $g\left(x_{0}\right)=f\left(x_{0}\right)$, and

$$
\lambda g[a, b]>f\left(x_{1}\right)-f\left(x_{0}\right)=\lambda f[a, b] .
$$

Also $g(x) \geq f\left(x_{2}\right)$ for $x \in\left[x_{1}, b\right]$; for otherwise $g(x)<f\left(x_{2}\right)$ and $g\left[x_{1}, b\right]$ would contain $g(x)$ and $g\left(x_{1}\right)=f\left(x_{1}\right)$, and

$$
\lambda g\left[x_{1}, b\right]>f\left(x_{1}\right)-f\left(x_{2}\right)=\lambda f\left[x_{1}, b\right] .
$$

It follows that

$$
g\left[x_{1}, b\right] \subset\left[f\left(x_{2}\right), f\left(x_{1}\right)\right]=f\left[x_{1}, b\right]
$$

and from $\lambda g\left[x_{1}, b\right]=\lambda f\left[x_{1}, b\right]$ we infer that

$$
\begin{equation*}
g\left[x_{1}, b\right]=f\left[x_{1}, b\right] \tag{2}
\end{equation*}
$$

It follows from (2) that $g\left(x_{2}\right) \geq f\left(x_{2}\right)$. It also follows that $g\left(x_{2}\right) \leq f\left(x_{2}\right)$; for otherwise $g\left(x_{2}\right)>f\left(x_{2}\right)$ and from this and

$$
\lambda g\left[x_{1}, x_{2}\right]=\lambda f\left[x_{1}, x_{2}\right]=f\left(x_{1}\right)-f\left(x_{2}\right)
$$

we infer that $g(v)=f\left(x_{2}\right)$ for some $v \in\left(x_{1}, x_{2}\right)$. Thus

$$
\lambda f\left[x_{1}, v\right]=\lambda g\left[x_{1}, v\right] \geq f\left(x_{1}\right)-f\left(x_{2}\right)
$$

and hence $f(w)=f\left(x_{2}\right)$ for some $x \in\left[x_{1}, v\right]$, contrary to the choice of x_{2}. So

$$
\begin{equation*}
f\left(x_{2}\right)=g\left(x_{2}\right) . \tag{3}
\end{equation*}
$$

Just as we proved (2) we also prove $g\left[x_{2}, b\right]=f\left[x_{2}, b\right]$, and just as we proved (3) we also prove $f\left(x_{3}\right)=g\left(x_{3}\right)$. By induction, we prove that $g\left[x_{k}, b\right]=f\left[x_{k}, b\right]$ and $f\left(x_{k}\right)=g\left(x_{k}\right)$ for all k. From the second paragraph of this proof and from the continuity of f and g we infer

$$
f(b)=f\left(x^{\prime}\right)=\lim f\left(x_{k}\right)=\lim g\left(x_{k}\right)=g\left(x^{\prime}\right)=g(b),
$$

and from the third paragraph of this proof we infer $f(a)=g(a)$. In view of the modification of g we made, we conclude that in general

$$
\begin{equation*}
|f(a)-f(b)|=|g(a)-g(b)| . \tag{4}
\end{equation*}
$$

We improve on Lemma 3.
LEMMA 4. Let the hypothesis be as in Lemma 3. Then either $f+g$ or $f-g$ is constant on the subinterval $[a, b]$.

Proof. As in the proof of Lemma 3, we can assume without loss of generality that $g(a)=f(a)$ and that $g\left(x_{1}\right) \geq g(a)$. Just as in that argument we obtain $f\left(x_{1}\right)=g\left(x_{1}\right)$.

Moreover, $g(x) \geq g(a)$ for $x \in(a, b)$; for otherwise $g(x)<g(a)$ and $g[a, b]$ contains $g(x)$ and $g\left(x_{1}\right)=f\left(x_{1}\right)$, and $\lambda g[a, b]>f\left(x_{1}\right)-f(a)=\lambda f[a, b]$. We apply Lemma 3 to the interval $[a, x]$ and obtain

$$
|f(a)-f(x)|=|g(a)-g(x)| .
$$

But both $f(a)-f(x)$ and $g(a)-g(x)$ are nonpositive, so

$$
f(a)-f(x)=g(a)-g(x) .
$$

Finally, $f(a)=g(a)$ and it follows that $f(x)=g(x)$. In view of the modification of g we made, the desired conclusion follows.

If $f+g$ or $f-g$ is constant on a subinterval J of I, we say that f concurs with g on J. By Lemma 4, if f and g are continuous on I, if $\lambda f(J)=\lambda g(J)$ for every subinterval J of I and if $f(x)>f(a)$ for $a<x<b$, then f concurs with g on $[a, b]$. This works when $f(x)>f(b)$ replaces $f(x)>f(a)$. Just use $f(a+b-x)$ and $g(a+b-x)$. This also works when the inequalities $f(x)>f(a)$, etc., are reversed. Use $-f$ and $-g$.

LEMMA 5. Let f and g be continuous functions on I such that for any subinterval J of $I, \lambda f(J)=\lambda g(J)$. Then f concurs with g on I.

Proof. Without loss of generality we assume that f is not constant on I. Say $f(0)<\max f(I)$. (Otherwise use $-f$ in place of f.) Let u_{1} be the smallest number in I for which $f\left(u_{1}\right)=\max f(I)$. Let u_{2} be the smallest number in $\left(u_{1}, 1\right]$ for which $f\left(u_{2}\right)=\min f\left[u_{1}, 1\right]$, if there is one. Let u_{3} be the smallest number in ($\left.u_{2}, 1\right]$ for which $f\left(u_{3}\right)=\max f(I)$, if there is one. Let u_{4} be the smallest number in $\left(u_{3}, 1\right]$ for which $f\left(u_{4}\right)=\min f\left[u_{1}, 1\right]$, if there is one. We continue this way so that in general $f\left(u_{j}\right)=\max f(I)$ if j is odd, and $f\left(u_{j}\right)=\min f\left[u_{1}, 1\right]$ if j is even. But this process must conclude with some u_{q} because f is continuous on I. Put $u_{0}=0$. For each $j=1, \ldots, q$, let v_{j} be the largest number in $\left[u_{j-1}, u_{j}\right)$ for which $f\left(v_{j}\right)=f\left(u_{j-1}\right)$. Put $u_{q+1}=1$.

Note that $f(x)<f\left(u_{1}\right)$ for $u_{0}<x<u_{1}$, and $f(x)>\min \left(f\left(v_{1}\right), f\left(u_{2}\right)\right)$ for $v_{1}<x<u_{2}$. When $j \geq 3, f(x)<f\left(v_{j-1}\right)$ for $v_{j-1}<x<u_{j}$ and j odd, and $f(x)>f\left(v_{j-1}\right)$ for $v_{j-1}<x<u_{j}$ and j even. By Lemma $4, f$ concurs with g on the intervals $\left[u_{0}, u_{1}\right],\left[v_{1}, u_{2}\right],\left[v_{2}, u_{3}\right],\left[v_{3}, u_{4}\right], \ldots,\left[v_{q}, u_{q+1}\right]$. Now if f concurs with g on overlapping intervals J_{1} and J_{2} and if f is nonconstant on $J_{1} \cap J_{2}$, then f concurs with g on $J_{1} \cup J_{2}$. It follows that f concurs with g on the intervals $\left[u_{0}, u_{2}\right],\left[u_{0}, u_{3}\right],\left[u_{0}, u_{4}\right], \ldots,\left[u_{0}, u_{q}\right],\left[u_{0}, u_{q+1}\right]=I$.

Now Theorem 2 follows from Lemmas 2 and 5.

References

[1] F.S. Cater, On change of variables in integration, Ann. Univ. Sci. Budapestinensis de Rolando Eötvös XXII-XXIII (1979-80), 11-22.
[2] Edwin Hewitt and Karl Stromberg, Real and Abstract Analysis, SpringerVerlag, New York, 1965.

Received May 21, 1991

