F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207.

COMPARING THE RANGES OF CONTINUOUS FUNCTIONS

If f and g are differentiable real valued functions on I = [0, 1] such that $|f'| \ge |g'|$ on I, someone might expect that the length of the interval g(I) cannot exceed the length of f(I). This need not be true, as the counterexample $f(x) = |x - \frac{1}{2}|^3$ and $g(x) = (x - \frac{1}{2})^3$ shows. The trouble seems to be that some points u and $v \ (u \ne v)$ satisfy f(u) = f(v) and $g(u) \ne g(v)$. Suppose we require that the equation f(u) = f(v) implies g(u) = g(v). Then must length $f(I) \ge$ length g(I)? Under reasonable circumstances the answer is yes, as we now show.

We will use continuous real valued functions on I. We will say that a function f is an N-function if f maps each set of Lebesgue measure zero to a set of measure zero. Let λ denote Lebesgue outer measure. We offer:

THEOREM 1. Let f and g be continuous N-functions, differentiable almost everywhere on I. Let $|f'(x)| \ge |g'(x)|$ almost everywhere on I. For $u, v \in I$, let the equation f(u) = f(v) imply the equation g(u) = g(v). Then $\lambda f(I) \ge \lambda g(I)$.

THEOREM 2. Let f and g be continuous N-functions, differentiable almost everywhere on I. Let |f'(x)| = |g'(x)| almost everywhere on I. For $u, v \in I$, let each equation f(u) = f(v) and g(u) = g(v) imply the other. Then either f + g is constant or f - g is constant on I.

For functions f and g that are absolutely continuous or everywhere differentiable on I, we deduce from Theorem 2 that if |f'(x)| = |g'(x)| almost everywhere on I, if each equation f(u) = f(v), g(u) = g(v) $(u, v \in I)$ implies the other, then either f + g is constant or f - g is constant on I.

N-functions are essential in Theorems 1 and 2. For example, let *h* be a continuous nondecreasing nonconstant function such that h'(x) = 0 almost everywhere on *I*, let f(x) = x and g(x) = x + h(x) on *I*. Then $\lambda g(I) > \lambda f(I)$. But all the hypotheses of Theorem 2 are satisfied, except that *g* is not an *N*-function.

We require five Lemmas.

LEMMA 1. Let the hypothesis be as in Theorem 1. Then for any subinterval J of I, $\lambda f(J) \geq \lambda g(J)$.

Proof. Put $U = \{x \in J : f \text{ is differentiable at } x\}$, and $V = \{x \in J : g \text{ is differentiable at } x\}$

For each real number y, let B(f)(y) denote the number of points in the set $U \cap f^{-1}(y)$ and let B(g)(y) denote the number of points in the set $V \cap g^{-1}(y)$. For each $x \in I$, let $h_1(x) = 1/B(f)(f(x))$ and $h_2(x) = 1/B(g)(g(x))$. (Here we understand that $1/\infty$ means 0 and 1/0 means ∞ .)

Let $X = \{x \in I : f \text{ is not differentiable at } x\}$ and $X_0 = \{x \in I : f'(x) = 0\}$. Then $\lambda f(X_0) = 0$ by [HS, Exercise (18.48)] and $\lambda f(X) = 0$ because $\lambda(X) = 0$ and f is an N-function. Now if B(f)(y) is infinite, then $f^{-1}(y)$ contains an accumulation point x of $f^{-1}(y)$, and x must be in $X \cup X_0$. Thus $y \in f(X \cup X_0)$. Hence $\{y : B(f)(y) \text{ is infinite}\} \subset f(X \cup X_0)$ and $\{y : B(f)(y) \text{ is infinite}\}$ has measure zero. Likewise $\{y : B(g)(y) \text{ is infinite}\}$ has measure zero. From [C, Theorem 9] we infer that the functions $h_1(x)|f'(x)|$ and $h_2(x)|g'(x)|$ are measurable on J, and

$$\lambda f(J) = \int_J h_1(x) |f'(x)| dx,$$

 $\lambda g(J) = \int_J h_2(x) |g'(x)| dx.$

But from the hypothesis it follows that $h_1(x)|f'(x)| \ge h_2(x)|g'(x)|$ almost everywhere on J, so $\lambda f(J) \ge \lambda g(J)$. \Box

To prove Theorem 1, put J = I in Lemma 1. To prove Theorem 2, we require more Lemmas.

LEMMA 2. Let the hypothesis be as in Theorem 2. Then for every subinterval J of I, $\lambda f(J) = \lambda g(J)$.

Proof. This follows from Lemma 1. \Box

In the Lemmas that follow, f and g need not be N-functions and need not be differentiable.

LEMMA 3. Let f and g be continuous functions on I such that for any subinterval J of I, $\lambda f(J) = \lambda g(J)$. Let (a, b) be a subinterval of I such that f(x) > f(a) for a < x < b. Then |f(a) - f(b)| = |g(a) - g(b)|.

Proof. We assume, without loss of generality, that f is not constant on I; for otherwise f(I) and g(I) have length zero, and g is constant also.

Let $x_0 = a$ and let x_1 be the smallest value in $[x_0, b]$ for which $f(x_1) = \max f[x_0, b]$. Note that $f[x_0, x_1] = f[x_0, b]$. Let x_2 be the smallest value in $[x_1, b]$ such that $f(x_2) = \min f[x_1, b]$. Note that $f[x_1, x_2] = f[x_1, b]$. In general we let x_k be the smallest value in $[x_{k-1}, b]$ such that $f(x_k) = \max f[x_{k-1}, b]$ if k is odd, and $f(x_k) = \min f[x_{k-1}, b]$ if k is even. By induction we define x_k for all positive integers k, (x_k) is nondecreasing, and $f[x_{k-1}, x_k] = f[x_{k-1}, b]$ for all $k \ge 1$. Let $x' \in [a, b]$ be the limit of the sequence (x_k) in [a, b]. It follows from the construction that f is constant on [x', b], and $(f(x_k))$ converges to f(x') = f(b). Likewise, g is constant on [x', b] because f[x', b] and g[x', b] both have length zero. So g(x') = g(b) also.

We assume, without loss of generality, that $g(x_1) \ge g(x_0)$. For if $g(x_1) < g(x_0)$, we replace g with -g in the argument. We assume, without loss of generality, that $g(x_0) = f(x_0)$. Otherwise use $g + f(x_0) - g(x_0)$ in place of g.

Now for any $u \in (x_0, x_1)$ we have $f(x_0) < f(u) < f(x_1)$ and consequently $\lambda f[x_0, x_1] > \lambda f[x_0, u]$ and $\lambda f[x_0, x_1] > \lambda f[u, x_1]$. Hence $\lambda g[x_0, x_1] > \lambda g[x_0, u]$ and $\lambda g[x_0, x_1] > \lambda g[u, x_1]$. It follows from this, together with $g(x_1) \ge g(x_0)$, that $g(x_0) = \min g[x_0, x_1]$ and $g(x_1) = \max g[x_0, x_1]$. Thus

$$g(x_1) - g(x_0) = \lambda g[x_0, x_1] = \lambda f[x_0, x_1] = f(x_1) - f(x_0)$$

But $g(x_0) = f(x_0)$, so (1)

Moreover, $g(x) \leq f(x_1) = g(x_1)$ for $x \in [x_1, b]$; for otherwise $g(x) > f(x_1)$ and g[a, b] would contain g(x) and $g(x_0) = f(x_0)$, and

 $f(x_1) = q(x_1).$

$$\lambda g[a,b] > f(x_1) - f(x_0) = \lambda f[a,b].$$

Also $g(x) \ge f(x_2)$ for $x \in [x_1, b]$; for otherwise $g(x) < f(x_2)$ and $g[x_1, b]$ would contain g(x) and $g(x_1) = f(x_1)$, and

$$\lambda g[x_1,b] > f(x_1) - f(x_2) = \lambda f[x_1,b].$$

It follows that

$$g[x_1, b] \subset [f(x_2), f(x_1)] = f[x_1, b]$$

and from $\lambda g[x_1, b] = \lambda f[x_1, b]$ we infer that

(2)
$$g[x_1, b] = f[x_1, b].$$

It follows from (2) that $g(x_2) \ge f(x_2)$. It also follows that $g(x_2) \le f(x_2)$; for otherwise $g(x_2) > f(x_2)$ and from this and

$$\lambda g[x_1, x_2] = \lambda f[x_1, x_2] = f(x_1) - f(x_2)$$

we infer that $g(v) = f(x_2)$ for some $v \in (x_1, x_2)$. Thus

$$\lambda f[x_1, v] = \lambda g[x_1, v] \ge f(x_1) - f(x_2)$$

and hence $f(w) = f(x_2)$ for some $x \in [x_1, v]$, contrary to the choice of x_2 . So

(3)
$$f(x_2) = g(x_2).$$

Just as we proved (2) we also prove $g[x_2, b] = f[x_2, b]$, and just as we proved (3) we also prove $f(x_3) = g(x_3)$. By induction, we prove that $g[x_k, b] = f[x_k, b]$ and $f(x_k) = g(x_k)$ for all k. From the second paragraph of this proof and from the continuity of f and g we infer

$$f(b) = f(x') = \lim f(x_k) = \lim g(x_k) = g(x') = g(b),$$

and from the third paragraph of this proof we infer f(a) = g(a). In view of the modification of g we made, we conclude that in general

(4)
$$|f(a) - f(b)| = |g(a) - g(b)|.$$

We improve on Lemma 3.

LEMMA 4. Let the hypothesis be as in Lemma 3. Then either f + g or f - g is constant on the subinterval [a, b].

Proof. As in the proof of Lemma 3, we can assume without loss of generality that g(a) = f(a) and that $g(x_1) \ge g(a)$. Just as in that argument we obtain $f(x_1) = g(x_1)$.

Moreover, $g(x) \ge g(a)$ for $x \in (a, b)$; for otherwise g(x) < g(a) and g[a, b] contains g(x) and $g(x_1) = f(x_1)$, and $\lambda g[a, b] > f(x_1) - f(a) = \lambda f[a, b]$. We apply Lemma 3 to the interval [a, x] and obtain

$$|f(a) - f(x)| = |g(a) - g(x)|.$$

But both f(a) - f(x) and g(a) - g(x) are nonpositive, so

$$f(a) - f(x) = g(a) - g(x).$$

Finally, f(a) = g(a) and it follows that f(x) = g(x). In view of the modification of g we made, the desired conclusion follows.

If f+g or f-g is constant on a subinterval J of I, we say that f concurs with g on J. By Lemma 4, if f and g are continuous on I, if $\lambda f(J) = \lambda g(J)$ for every subinterval J of I and if f(x) > f(a) for a < x < b, then f concurs with g on [a, b]. This works when f(x) > f(b) replaces f(x) > f(a). Just use f(a + b - x) and g(a + b - x). This also works when the inequalities f(x) > f(a), etc., are reversed. Use -f and -g.

LEMMA 5. Let f and g be continuous functions on I such that for any subinterval J of I, $\lambda f(J) = \lambda g(J)$. Then f concurs with g on I.

Proof. Without loss of generality we assume that f is not constant on I. Say $f(0) < \max f(I)$. (Otherwise use -f in place of f.) Let u_1 be the smallest number in I for which $f(u_1) = \max f(I)$. Let u_2 be the smallest number in $(u_1, 1]$ for which $f(u_2) = \min f[u_1, 1]$, if there is one. Let u_3 be the smallest number in $(u_2, 1]$ for which $f(u_3) = \max f(I)$, if there is one. Let u_4 be the smallest number in $(u_3, 1]$ for which $f(u_4) = \min f[u_1, 1]$, if there is one. We continue this way so that in general $f(u_j) = \max f(I)$ if j is odd, and $f(u_j) = \min f[u_1, 1]$ if j is even. But this process must conclude with some u_q because f is continuous on I. Put $u_0 = 0$. For each $j = 1, \ldots, q$, let v_j be the largest number in $[u_{j-1}, u_j)$ for which $f(v_j) = f(u_{j-1})$. Put $u_{q+1} = 1$.

Note that $f(x) < f(u_1)$ for $u_0 < x < u_1$, and $f(x) > \min(f(v_1), f(u_2))$ for $v_1 < x < u_2$. When $j \ge 3$, $f(x) < f(v_{j-1})$ for $v_{j-1} < x < u_j$ and j odd, and $f(x) > f(v_{j-1})$ for $v_{j-1} < x < u_j$ and j odd, and $f(x) > f(v_{j-1})$ for $v_{j-1} < x < u_j$ and j even. By Lemma 4, f concurs with g on the intervals $[u_0, u_1], [v_1, u_2], [v_2, u_3], [v_3, u_4], \ldots, [v_q, u_{q+1}]$. Now if f concurs with g on overlapping intervals J_1 and J_2 and if f is nonconstant on $J_1 \cap J_2$, then f concurs with g on $J_1 \cup J_2$. It follows that f concurs with g on the intervals $[u_0, u_2], [u_0, u_3], [u_0, u_4], \ldots, [u_0, u_q], [u_0, u_{q+1}] = I$. \Box

Now Theorem 2 follows from Lemmas 2 and 5.

References

- [1] F.S. Cater, On change of variables in integration, Ann. Univ. Sci. Budapestinensis de Rolando Eötvös XXII-XXIII (1979-80), 11-22.
- [2] Edwin Hewitt and Karl Stromberg, *Real and Abstract Analysis*, Springer-Verlag, New York, 1965.

Received May 21, 1991