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 COMPARING THE RANGES OF CONTINUOUS
 FUNCTIONS

 If / and g are differentiable real valued functions on / = [0, 1] such that |/'| >
 'g'' on /, someone might expect that the length of the interval g(I) cannot exceed
 the length of /(/). This need not be true, as the counterexample f(x) = 'x - ||3
 and g(x) = (x - |)3 shows. The trouble seems to be that some points u and
 v (u ^ v) satisfy f(u ) = f(v) and g(u) ^ g(v). Suppose we require that the
 equation f(u) = f(v) implies g{u) = g(v). Then must length /(/) > length </(/)?
 Under reasonable circumstances the answer is yes, as we now show.

 We will use continuous real valued functions on I. We will say that a function
 / is an TV-function if / maps each set of Lebesgue measure zero to a set of measure
 zero. Let A denote Lebesgue outer measure. We offer:

 THEOREM 1. Let f and g be continuous N -functions, differentiable almost
 everywhere on I. Let |/'(a;)| > |<¡r'(a;)| almost everywhere on I. For u,v G I, let
 the equation f(u) = f(v) imply the equation g(u) = g(v). Then Xf(I) > X g(I).

 THEOREM 2. Let f and g be continuous N -functions, differentiable almost
 everywhere on I. Let |/'(x)| = |^'(x)| almost everywhere on I. For u,v € I, let
 each equation f(u ) = f(v) and g(u) = g(v) imply the other. Then either f + g is
 constant or f - g is constant on I.

 For functions / and g that are absolutely continuous or everywhere differen-
 tiable on /, we deduce from Theorem 2 that if |/'(ar)| = |^'(x)| almost everywhere
 on 7, if each equation f(u ) = f(v), g(u) = g(v) ( u , v € /) implies the other, then
 either / + g is constant or / - g is constant on I.

 iV-functions are essential in Theorems 1 and 2. For example, let h be a contin-
 uous nondecreasing nonconstant function such that h'(x) = 0 almost everywhere
 on /, let f(x) = x and g(x) = x + h(x) on I. Then Xg(I) > A/(7). But all the
 hypotheses of Theorem 2 are satisfied, except that g is not an iV-function.

 We require five Lemmas.
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 LEMMA 1. Let the hypothesis be as in Theorem 1. Then for any subinterval
 J of I, A f(J) > A g(J).

 Proof. Put U = {x € J : / is differentiable at a:}, and V = {x € J :
 g is differentiable at x}

 For each real number y, let B(f)(y) denote the number of points in the set
 U Ci /-1(y) and let B(g)(y) denote the number of points in the set V fi g~l(y).
 For each x € /, let h'{x) = 1/B(f)(f(x )) and hļ(x) = 1 / B(g)(g(x)). (Here we
 understand that l/oo means 0 and 1/0 means oo.)

 Let X = {x € I : / is not differentiable at x} and Xq = {x G I : /'(x) = 0}.
 Then Xf(Xo) = 0 by [HS, Exercise (18.48)] and A f(X) = 0 because A(X) = 0 and /
 is an N- function. Now if B(f)(y) is infinite, then /-1(y) contains an accumulation
 point x of /-1(y), and x must be in X U X0. Thus y G f(X U Xo). Hence
 {y : B(f)(y) is infinite} C f(X U Xo) and {y : B(f)(y) is infinite} has measure
 zero. Likewise {y : B(g)(y) is infinite} has measure zero. From [C, Theorem 9] we
 infer that the functions /&i(x)|/'(x)| and /i2(x)|<7'(x)| are measurable on J, and

 xf(J) = / hi(x)'f'(x)'dx,
 J J

 A g(J) = Jjh2(x)'g'(x)'dx.
 But from the hypothesis it follows that hi(x)'f'(x)' > h2(x)'g'(x)' almost every-
 where on J, so A f(J) > ^g(J). D

 To prove Theorem 1, put J = I in Lemma 1. To prove Theorem 2, we require
 more Lemmas.

 LEMMA 2. Let the hypothesis be as in Theorem 2. Then for every subinterval
 J of I, Xf(J) = A g(J).

 Proof. This follows from Lemma 1. □

 In the Lemmas that follow, / and g need not be iV-functions and need not be
 differentiable.

 LEMMA 3. Let f and g be continuous functions on I such that for any
 subinterval J of /, A f(J) = Xg(J). Let (a, 6) be a subinterval of I such that
 f(x ) > /(°) for a < x < b. Then 'f(a) - f(b)' = |5f(a) - ^(6)1.

 Proof. We assume, without loss of generality, that / is not constant on I; for
 otherwise /(/) and g(I) have length zero, and g is constant also.
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 Let xq = a and let x' be the smallest value in [xo, b] for which f[x i) =
 max f[xo,b]. Note that f[x o, ®i] = f[xo,b]. Let x2 be the smallest value in
 [xi, b] such that f(x 2) = min f[x',b]. Note that /[xi, x2] = f[x',b]. In general
 we let Xk be the smallest value in [xfc_i,¿>] such that /(x*) = max f[xk~i, b] if k
 is odd, and f(xk) = min /[x*_i,6] if k is even. By induction we define Xk for
 all positive integers k , (xk) is nondecreasing, and f[xk-i,xk] = /[xfc_i, 6] for all
 k > 1. Let x' G [a, 6] be the limit of the sequence (xk) in [a, 6]. It follows from the
 construction that / is constant on [x' 6], and ( /(x* )) converges to f(x') = /(&).
 Likewise, g is constant on [x', 6] because f[x', 6] and g[x', 6] both have length zero.
 So g(x') = g(b) also.

 We assume, without loss of generality, that g(x 1) > flf(xo). For if g(xļ) < g(x 0),
 we replace g with - g in the argument. We assume, without loss of generality, that
 g(x 0) = /(x0). Otherwise use g + f(x 0) - g(x 0) in place of g.

 Now for any u € (xo, Xi) we have f(x 0) < /(«) < /(x 1) and consequently
 A/[xo, xi] > A/[xo,«] and A/[x0,xi] > A/[u,xi]. Hence A^[x0,xi] > A<j[xo, u]
 and A^ř[xo, £1] > A¿f[«,xi]. It follows from this, together with </(xi) > g(xo), that
 g(x0) = min <7[x0, xi] and flf(xi) = max g[x o,xi]. Thus

 g(xi) - g(x0) = A¿f[x0,xi] = A/[x0,xi] = /(xi) - /(x 0).

 But g(x0) = /(x0), so
 (1) /(®i) = ^(xi).

 Moreover, <z(x) < /(xi) = g(xi) for x € [xi, 6]; for otherwise g(x) > f(x 1) and
 g[a , 6] would contain g(x) and g(xo) = f(x 0), and

 A g[a, b] > f(x 1) - /(x0) = A f[a, 6].

 Also g(x) > f{x 2) for x € [xx, 6]; for otherwise g(x) < /(x 2) and g[xi, 6] would
 contain g(x) and g(x') = /(x 1), and

 A¿|f[®i,5] > /(x 1) - /(x2) = A/[xi,i>].

 It follows that

 g[xi,b] C [fMifM] = fix i'6l

 and from Ag[xi, 6] = A/[xj, 6] we infer that

 (2) g[xi,b] = /[xx,6].

 It follows from (2) that <7(x2) > f(xļ). It also follows that g(x 2) < /(^2); for
 otherwise g(x2) > /(x2) and from this and

 A<7[xi,x2] = A/[xi,x2] = f(xi) - /(x2)
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 we infer that g(v) = f(x 2) for some v 6 (®i, 12)- Thus

 A/[s 1, v] = Ajr[xi, v] > f(xi) - f(x2)

 and hence f(w) = f(x 2) for some x € [®i,v], contrary to the choice of #2- So

 (3) f(x2) = g(x2).

 Just as we proved (2) we also prove g'x 2, 6] = f[x 2, 6], and just as we proved
 (3) we also prove f(x 3) = g(x3). By induction, we prove that g[xk, 6] = f[xk, b]
 and f(xk ) = g(xk) for all k. From the second paragraph of this proof and from
 the continuity of / and g we infer

 f(b) = f(x') = lim f(xk) = lim g(xk) = g(x') = g(b),

 and from the third paragraph of this proof we infer f(a) = g(a). In view of the
 modification of g we made, we conclude that in general

 (4) I /(a) - f(b) I = I g(a) - g(b) |.

 □

 We improve on Lemma 3.

 LEMMA 4. Let the hypothesis be as in Lemma 3. Then either f + g or f - g
 is constant on the subinterval [a, 6].

 Proof. As in the proof of Lemma 3, we can assume without loss of generality
 that g(a) = f(a) and that ^(xi) > g(a ). Just as in that argument we obtain
 /(* 1) = 5(*i)-

 Moreover, g(x) > g(a) for x € (a, 6); for otherwise g(x) < g(a) and g[a, 6]
 contains g(x) and = f(x 1), and Afli[a, 6] > f(x 1) - /(a) = A /[a, 6]. We apply
 Lemma 3 to the interval [a, x] and obtain

 'f(a)~ f(x)' = |p(a) -0(a:)|.

 But both /(a) - f(x) and g(a) - g(x) are nonpositive, so

 f(a) - f(x) = g(a) - g(x).

 Finally, f(a) = g(a) and it follows that f(x) = g(x). In view of the modification
 of g we made, the desired conclusion follows. □
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 If / + g or / - g is constant on a subinterval J of 7, we say that / concurs with
 g on J. By Lemma 4, if / and g are continuous on /, if A f(J) - A g(J ) for every
 subinterval J of I and if /(x) > f(a) for a < x < b, then / concurs with g on [a, 6],
 This works when f(x) > f(b ) replaces f(x) > f(a). Just use f(a + b - x) and
 g(a + b - x). This also works when the inequalities f(x) > /(a), etc., are reversed.
 Use - / and -g.

 LEMMA 5. Let f and g be continuous functions on I such that for any
 subinterval J of J, A f{J) = A g(J). Then f concurs with g on I.

 Proof. Without loss of generality we assume that / is not constant on I.
 Say /(0) < max /(/). (Otherwise use - / in place of /.) Let u' be the smallest
 number in I for which f(u') = max /(/). Let «2 be the smallest number in («i, 1]
 for which f(uļ) = min /[«1, 1], if there is one. Let «3 be the smallest number in
 («2, 1] for which f(us) = max /(/), if there is one. Let U4 be the smallest number
 in («3, 1] for which /(«4) = min /[«i, 1], if there is one. We continue this way so
 that in general f(uj) = max /(/) if j is odd, and f(uj) = min f[u', 1] if j is even.
 But this process must conclude with some uq because / is continuous on I. Put
 «o = 0. For each j = 1, . . . , <7, let Vj be the largest number in [«¿-i, Uj ) for which
 fiVi) = /K-0- Put "«+1 = !•

 Note that f(x) < f(u') for uo < x < ui, and f(x) > min (/(t>i), /(^2)) for
 Vļ < x < «2- When j > 3, f(x) < f(vj- 1) for vj- 1 < x < Uj and j odd, and
 f(x) > f(vj- 1) for Vj-i < x < Uj and j even. By Lemma 4, / concurs with
 g on the intervals [«0, «1], [vi, «2]» [^2, «3], [^3, U4], . . . , [u,, u9+i]. Now if / concurs
 with g on overlapping intervals Jļ and Jļ and if / is nonconstant on J' D J2, then
 / concurs with g on Ji U Jļ- It follows that / concurs with g on the intervals
 [uo, u2], [«0, «3], [«0, «4]» • • • » [«0, «,], [«0, u?+i] = /. □

 Now Theorem 2 follows from Lemmas 2 and 5.
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