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COMPARING THE RANGES OF CONTINUOUS
FUNCTIONS

If f and g are differentiable real valued functions on I = [0, 1] such that |f’| >
|g'| on I, someone might expect that the length of the interval g(I) cannot exceed
the length of f(I). This need not be true, as the counterexample f(z) = |z — 7|
and g(z) = (z — 1)® shows. The trouble seems to be that some points u and
v (u # v) satisfy f(u) = f(v) and g(u) # g(v). Suppose we require that the
equation f(u) = f(v) implies g(u) = g(v). Then must length f(I) > length g(I)?
Under reasonable circumstances the answer is yes, as we now show.

We will use continuous real valued functions on I. We will say that a function
f is an N-function if f maps each set of Lebesgue measure zero to a set of measure

zero. Let A denote Lebesgue outer measure. We offer:

THEOREM 1. Let f and g be continuous N—functions, differentiable almost
everywhere on I. Let |f'(z)| > |¢'(z)| almost everywhere on I. For u,v € I, let
the equation f(u) = f(v) imply the equation g(u) = g(v). Then A\f(I) > Ag(I).

THEOREM 2. Let f and g be continuous N—functions, differentiable almost
everywhere on I. Let |f'(z)| = |¢'(z)| almost everywhere on I. For u,v € I, let
each equation f(u) = f(v) and g(u) = g(v) imply the other. Then either f + g is
constant or f — g is constant on I.

For functions f and g that are absolutely continuous or everywhere differen-
tiable on I, we deduce from Theorem 2 that if |f'(z)| = |¢'(z)| almost everywhere
on I, if each equation f(u) = f(v), g(v) = g(v) (u,v € I) implies the other, then
either f + g is constant or f — g is constant on I.

N-functions are essential in Theorems 1 and 2. For example, let A be a contin-
uous nondecreasing nonconstant function such that A'(z) = 0 almost everywhere
on I, let f(z) = z and g(z) = = + h(z) on I. Then Ag(I) > Af(I). But all the
hypotheses of Theorem 2 are satisfied, except that g is not an N-function.

We require five Lemmas.
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LEMMA 1. Let the hypothesis be as in Theorem 1. Then for any subinterval
J of I, \f(J) = Ag(J).

Proof. Put U = {z € J : f is differentiableat z}, and V = {x € J :
g is differentiable at z}

For each real number y, let B(f)(y) denote the number of points in the set
U N f~'(y) and let B(g)(y) denote the number of points in the set V' N g~1(y).
For each z € I, let hi(z) = 1/B(f)(f(z)) and ho(z) = 1/B(g)(g(z)). (Here we
understand that 1/0o means 0 and 1/0 means cc.)

Let X = {z € I : f is not differentiable at z} and Xo = {z € I : f'(z) = 0}.
Then A f(Xo) = 0 by [HS, Exercise (18.48)] and A f(X) = 0 because A\(X) = 0 and f
is an N-function. Now if B(f)(y) is infinite, then f~!(y) contains an accumulation
point z of f~1(y), and = must be in X U Xo. Thus y € f(X U Xo). Hence
{y : B(f)(y) is infinite} C f(X U Xo) and {y : B(f)(y) is infinite} has measure
zero. Likewise {y : B(g)(y) is infinite} has measure zero. From [C, Theorem 9] we
infer that the functions hy(z)|f'(z)| and he(z)|g'(z)| are measurable on J, and

M) = [ m@)f(@)lds,

Y(J) = [ ha(@)lg'(@)lde.

But from the hypothesis it follows that hi(z)|f'(z)] = ha2(z)|g'(z)| almost every-
where on J, so Af(J) > Ag(J). O

To prove Theorem 1, put J = I in Lemma 1. To prove Theorem 2, we require
more Lemmas.

LEMMA 2. Let the hypothesis be as in Theorem 2. Then for every subinterval
J of I, Af(J) = Ag(J).

Proof. This follows from Lemma 1. O

In the Lemmas that follow, f and g need not be N-functions and need not be
differentiable.

LEMMA 3. Let f and g be continuous functions on I such that for any
subinterval J of I, Af(J) = Ag(J). Let (a,b) be a subinterval of I such that
f(@) > f(a) fora < < b. Then |f(a) — f(8)] = lg(a) — g(8)

Proof. We assume, without loss of generality, that f is not constant on I; for
otherwise f(I) and g(I) have length zero, and g is constant also.
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Let zo = a and let z; be the smallest value in [zo,b] for which f(z,) =
max f[zo,b]. Note that f[zo,z1] = f[zo,b]. Let z; be the smallest value in
[1,b] such that f(z2) = min f[z,,b]. Note that f[z1,z2] = f[z1,b]. In general
we let zx be the smallest value in [zx_1,b] such that f(zx) = max flzk-1,b] if k
is odd, and f(zx) = min f[zk_1,b] if k is even. By induction we define z; for
all positive integers k, (zx) is nondecreasing, and f[zk—1, k] = f[Tk-1,0] for all
k > 1. Let z' € [a, b] be the limit of the sequence (zx) in [a, b]. It follows from the
construction that f is constant on [z’,b], and (f(zx)) converges to f(z') = f(b).
Likewise, g is constant on [z’, b] because f[z',b] and g[z’, b] both have length zero.
So g(z') = ¢(b) also.

We assume, without loss of generality, that g(z;) > g(zo). For if g(z1) < g(zo),
we replace g with —g in the argument. We assume, without loss of generality, that
g9(zo) = f(xo). Otherwise use g + f(zo) — g(zo) in place of g.

Now for any u € (zo,z1) we have f(zo) < f(u) < f(z1) and consequently
Alzo,z] > Mflzo,u] and Aflzo,z) > Aflu,21]. Hence Aglzo,a1] > Aglzo,ul
and Ag[zo, z1] > Ag[u, z1]. It follows from this, together with g(z1) > g(zo), that
g(x0) = min g[xo,z,] and g(z,) = max g[zo,z1]. Thus

9(1) — 9(20) = Aglzo, 71] = Af[zo, 71] = f(21) — f(0).

But g(zo) = f(z0), so
(1 f(z1) = g(z1).

Moreover, g(z) < f(z1) = g(z1) for z € [z1, b]; for otherwise g(z) > f(z1) and
gla, b] would contain g(z) and g(zo) = f(z0), and

Agla,b] > f(z1) — f(zo) = Afla, b].

Also g(z) > f(x2) for € [z, b]; for otherwise g(z) < f(z2) and g[zi, ] would
contain ¢g(z) and g(z;) = f(z1), and

Ag[z1,8] > f(z1) — f(z2) = Af[z1, 8]
It follows that
9[z1,8] C [f(z2), f(z1)] = flz1, ]
and from \g[z;,b] = A f[z1, b] we infer that
(2) g[zla b] = f[mla b]'

It follows from (2) that g(z2) > f(z2). It also follows that g(x2) < f(z2); for
otherwise g(x2) > f(z2) and from this and

Aglz1, 23] = Af[z1, 2] = f(21) — f(2)
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we infer that g(v) = f(z) for some v € (z;,z;). Thus

Af[z1,v] = Aglz1,v] 2 f(21) — f(22)

and hence f(w) = f(z2) for some z € [z,,v], contrary to the choice of z;. So

(3) f(=z2) = g(=2).

Just as we proved (2) we also prove g[z2,b] = f[z2,b], and just as we proved
(3) we also prove f(z3) = g(z3). By induction, we prove that gz, b] = f[z&,b]
and f(zx) = g(zk) for all k. From the second paragraph of this proof and from
the continuity of f and g we infer

f(b) = f(z') = lim f(z) = lim g(zx) = g(z") = g(b),

and from the third paragraph of this proof we infer f(a) = g(a). In view of the
modification of ¢ we made, we conclude that in general

(4) |f(a) - f(B)] = lg(a) — g(b)I-

We improve on Lemma 3.

LEMMA 4. Let the hypothesis be as in Lemma 3. Then either f+gor f—g
is constant on the subinterval [a, b].

Proof. As in the proof of Lemma 3, we can assume without loss of generality
that g(a) = f(a) and that g(z,) > g(a). Just as in that argument we obtain
f(z1) = g(z1).

Moreover, g(z) > g(a) for z € (a,b); for otherwise g(z) < g(a) and g[a, b]
contains g(z) and g(z1) = f(z1), and Ag[a,d] > f(z1) — f(a) = Af[a,b]. We apply
Lemma 3 to the interval [a, z] and obtain

|f(a) — f(=)| = lg(a) — g().
But both f(a) — f(z) and g(a) — g(z) are nonpositive, so
f(a) - f(z) = g(a) — 9(=).

Finally, f(a) = g(a) and it follows that f(z) = g(z). In view of the modification
of g we made, the desired conclusion follows. O
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If f+ g or f — g is constant on a subinterval J of I, we say that f concurs with
gon J. By Lemma 4, if f and g are continuous on I, if Af(J) = Ag(J) for every
subinterval J of I and if f(z) > f(a) for a < z < b, then f concurs with g on [a, b].
This works when f(z) > f(b) replaces f(z) > f(a). Just use f(a + b— z) and
g(a+b—z). This also works when the inequalities f(z) > f(a), etc., are reversed.
Use —f and —g.

LEMMA 5. Let f and g be continuous functions on I such that for any
subinterval J of I, Af(J) = Ag(J). Then f concurs with g on I.

Proof. Without loss of generality we assume that f is not constant on I.
Say f(0) < max f(I). (Otherwise use —f in place of f.) Let u; be the smallest
number in I for which f(u,) = max f(I). Let u; be the smallest number in (uq,1]
for which f(u2) = min f[uy,1], if there is one. Let u3 be the smallest number in
(uz,1] for which f(us) = max f(I), if there is one. Let u4 be the smallest number
in (us, 1] for which f(u4) = min f[uy, 1], if there is one. We continue this way so
that in general f(u;) = max f(I) if j is odd, and f(u;) = min f[u,,1] if j is even.
But this process must conclude with some u, because f is continuous on I. Put
uo = 0. For each j = 1,...,q, let v; be the largest number in [u;_1,u;) for which
f(vj) = f(uj-1). Put ugyy =1.

Note that f(z) < f(u1) for up < = < uy, and f(z) > min (f(v1), f(u2)) for
v1 < T < uz. When j > 3, f(z) < f(vj-1) for vj; < ¢ < u; and j odd, and
f(z) > f(vj-1) for vjo1 < = < u; and j even. By Lemma 4, f concurs with
g on the intervals [uo, u1), [v1, u2], [v2, us], [va, u4), . . ., [Vg, Ug+1]. Now if f concurs
with g on overlapping intervals J; and J; and if f is nonconstant on J; N J;, then
f concurs with g on J; U J;. It follows that f concurs with g on the intervals

[u01 u2]’ [uo, u3], [an 'U4], ceey [uo, uq], [an uq+l] =I. O

Now Theorem 2 follows from Lemmas 2 and 5.
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